Neutron cross section measurements with diamond detectors

P. Kavrigin¹, E. Griesmayer¹, C. Weiss¹

¹CIVIDEC Instrumentation, Vienna, Austria

October 10th, 2018

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Diamond as a particle detection material

- Mechanical robustness
- High radiation resistance
- Low leakage current
- Operation without external cooling
- Subnanosecond response time
- Thermal neutron detection: With a neutron converter (⁶Li, ¹⁰B)
- Fast neutron detection: Diamond acts as a sample and a sensor
- Discrimination between different types of particle interactions based on the analysis of the detector current pulse shape

Uniform ionization profile

Electron drift profile

- 一司

Hole drift profile

< 67 ▶

э

Electron-dominated profile

Hole-dominated profile

Ballistic center interaction profile

Pulse-shape analysis - Rectangle

P.Kavrigin (CIVIDEC)

October 10th, 2018 9 / 24

Pulse-shape analysis - Triangle

P.Kavrigin (CIVIDEC)

October 10th, 2018 10 / 24

Pulse-shape analysis - Measured pulses

• Fast neutrons interacting in the *ballistic center* produce **rectangular** pulses with a minimum **drift time**

Measurement setup (I)

- 7 MV Van de Graaff accelerator, EC-JRC (Geel, Belgium)
- Quasi-monoenergetic neutron beam via $T(d,n)^4$ He reaction
- Deuteron (2 MeV) on Ti/T target
- Detector positions: 98° (E_n =14.3 MeV), 45° (E_n =17.0 MeV)

Measurement setup (II)

Measurement setup (III)

- Van de Graaff facility of the EC-JRC, Geel, Belgium
- Neutron energies: 14.3 MeV and 17.0 MeV
- CIVIDEC B1 Single-Crystal Diamond Detector
 - Thickness 500 μ m
 - $\bullet~$ Active area 4 mm \times 4 mm
 - Bias electric field 1 V/ μ m
 - Diamond detector was used as a sample and as a sensor
- CIVIDEC C2 Broadband Amplifier
 - Analogue bandwidth 2 GHz
 - Equivalent input current noise 0.4 μA
- LeCroy Waverunner oscilloscope
- Dedicated pulse-shape analysis for background rejection

• Cross section of $^{13}C(n,\alpha)^{10}Be$ was measured relatively to $^{12}C(n,\alpha)^9Be$

Deposited energy spectrum at 14.3 MeV (I)

P.Kavrigin (CIVIDEC)

October 10th, 2018 15 / 24

Deposited energy spectrum at 14.3 MeV (II)

Deposited energy spectrum at 14.3 MeV (III)

Deposited energy spectrum at 17.0 MeV (I)

P.Kavrigin (CIVIDEC)

October 10th, 2018 18 / 24

Results

 The ratio of the ¹³C(n,α₀)¹⁰Be and ¹²C(n,α₀)⁹Be reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ${}^{12}C$ and ${}^{13}C$ isotopes in diamond.

Results

• The ratio of the ${}^{13}C(n,\alpha_0){}^{10}Be$ and ${}^{12}C(n,\alpha_0){}^{9}Be$ reaction was derived as:

$$\frac{\sigma_{13}}{\sigma_{12}} = \frac{I_{13}}{I_{12}} \cdot \frac{N_{12}}{N_{13}} \tag{1}$$

where I_{12} and I_{13} are the net peak areas corresponding to the two reactions of interest, N_{12} and N_{13} are the fractions of ${}^{12}C$ and ${}^{13}C$ isotopes in diamond.

• Cross section ratio:

$$\sigma_{13}/\sigma_{12}$$
=(0.15±0.02) at 14.3 MeV.
 σ_{13}/σ_{12} =(0.17±0.02) at 17.0 MeV.

• Using the evaluated cross section σ_{12} at 14.3 MeV and 17.0 MeV (CENDL-3.1), the derived ${}^{13}C(n,\alpha_0){}^{10}Be$ cross section is:

 σ_{13} =(10.4±1.4) mb at 14.3 MeV. σ_{13} =(7.1±0.8) mb at 17.0 MeV.

13 C(n, α_0) 10 Be cross section

P.Kavrigin (CIVIDEC)

13 C(n, α_0) 10 Be cross section

P.Kavrigin (CIVIDEC)

- Deposited energy spectra of fast neutrons in diamond were measured with an sCVD diamond detector using a dedicated pulse-shape analysis technique.
- The analysis method allowed to reject the proton recoil background, and extract the ${}^{13}C(n,\alpha_0){}^{10}Be$ spectrum.
- The ${}^{13}C(n,\alpha_0){}^{10}Be$ cross section was measured relatively to the ${}^{12}C(n,\alpha_0){}^{9}Be$ cross section at 14.3 MeV and 17.0 MeV neutron energies.

References

- P. Kavrigin, E. Griesmayer, F. Belloni, A.J.M. Plompen,
 P. Schillebeeckx, C. Weiss, ¹³C(n,α₀)¹⁰Be cross section measurement with sCVD diamond detector, Eur. Phys. J. A 52, 179 (2016)
- C. Weiss, H. Frais-Kölbl, E. Griesmayer, P. Kavrigin, *Ionization signals of diamond detectors in fast neutron fields*, Eur. Phys. J. A 52, 269 (2016).

Thank you for your attention!

Addendum I - Neutron interactions in diamond

Reaction	Q [MeV]	E _{th} [MeV]
$^{12}C(n,el)^{12}C$	0	0
${}^{13}C(n,\alpha){}^{10}Be$	- 3.836	4.134
$^{12}\mathrm{C}(\mathrm{n},\alpha)^{9}\mathrm{Be}$	- 5.702	6.182
$^{12}C(n,n+2\alpha)^4$ He	- 7.275	7.886
${}^{12}C(n,p){}^{12}B$	- 12.587	13.645
${}^{12}C(n,d){}^{11}B$	- 13.732	14.887