

Calibration and performance of the CMS electromagnetic calorimeter during the LHC RunII

Tatyana Dimova (Novosibirsk State University and Budker Institute of Nuclear Physics) On behalf of the CMS Collaboration

ISMART2018

Introduction

Electrons and photons essential for CMS physics :

- Precise Higgs mass measurement in H→4l channel (l = e[±], µ[±])
 - High energy resolution
 - Shower shape analysis due to the fine spatial granularity
- > Measurement of $\sigma(H)$ in the H $\rightarrow\gamma\gamma$ final state
 - High photon energy resolution
 - Precise direction measurement
- BSM physics (heavy resonances, SUSY decays),
- SM measurements (top physics, multibosons,etc)

The CMS Detector and the ECAL

CMS Length :21.5m Diameter: 15m Weight 14kT Magnetic filed:3.8T

ECAL: the main goal is to detect and measure with high precision the energies of electrons and photons

The CMS Electromagnetic calorimeter

Tapered crystals to provide off-pointing of ~ 3° from vertex

 $\label{eq:barrel} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \textbf{Barrel} \\ \displaystyle \textbf{36 Supermodules} \\ \displaystyle (\textbf{18 per half barrel}) \\ \displaystyle \textbf{61200 crystals} \\ \displaystyle \textbf{Total crystal mass 67.4t} \\ \displaystyle |\eta| < \textbf{1.48}, \sim \textbf{26X}_0 \\ \displaystyle \Delta\eta \ x \ \Delta\phi = \textbf{0.0174 x 0.0174} \end{array} \end{array}$

 $\label{eq:constraint} \begin{array}{l} \underline{\text{Endcaps}} \\ 4 \text{ Dees (2 per endcap)} \\ 14648 \text{ crystals} \\ \hline 14648 \text{ crystals} \\ \hline \text{Total crystal mass 22.9t} \\ 1.48 < |\eta| < 3, ~25 X_0 \\ \Delta \eta \ \text{x} \ \Delta \phi = 0.0175^2 \leftrightarrow 0.05^2 \end{array}$

 Endcap Preshower

 Pb $(2X_0, 1X_0) / Si$

 4 Dees (2 per endcap)

 4300 Si strips

 1.8mm x 63mm

 1.65< $|\eta| < 2.6$

Lead tungstate crystals (PbWO₄)

Reasons for choice Homogeneous medium

High density Short radiation length Small Molière radius Fast light emission Emission peak

8.28 g/cm³ $X_0 = 0.89$ cm $R_M = 2.19$ cm ~80% in 25 ns 425nm

Reasonable radiation resistance to very high doses

Challenges

LY temperature dependence $-2.2\%/^{\circ}C$ Stabilise to $\leq 0.1^{\circ}C$

Irradiation affects crystal transparency Need precise light monitoring system

Low light yield (1.3% NaI) Need photodetectors with gain in magnetic field

Radiation damage in PbWO₄

Absorbed dose after 10 years

Evolution of transmission due to irradiation

Radiation dose at the EM shower max for $L=10^{34}$ cm⁻²s⁻¹:

- 0.3Gy/h in EB
- 6.5 Gy/h at η =2.6

Ionizing radiation damage:

- It recovers at room temperature **Hadron damage:**
- No recovery at room temperature
- Shift of transmission band edge
- Will dominate at HL-LHC

Energy reconstruction

Clusterization

- Crystal transverse size is ~ R_M so EM shower spread over several crystals
- Clusters are extended in φ direction to form "superclusters" to recover energy radiated via bremsstrahlung or conversion

$$E_{e,\gamma} = F_{e,\gamma} \times \left[\frac{E_{ES}}{E} + G \times \sum_{i} C_{i} \times \frac{S_{i}(t)}{E} \times \frac{A_{i}(t)}{E} \right]$$

Energy of electrons/photons $\mathbf{E}_{e,\gamma}$:

- C_i inter-calibration among crystals
- $S_i(t)$ corrections for response time variations
- $A_i(t)$ signal amplitude
- **G** ADC to GeV global scale
- $\mathbf{F}_{\mathbf{e}/\gamma}$ cluster corrections
- E_{ES} preshower energy

Response monitoring

- <u>Barrel:</u> the response change is **up to 10%**. <u>Endcaps:</u> reaches **up to 50%** at $\eta \sim$ **2.5** and **up to 90%** in the region closest to the beam pipe.
- The recovery of the crystal response during the period without collisions is visible. In the regions close to beam pipe, not fully recovered

Response monitored with a laser system injecting light in every crystal

APD: Avalanche Photodiode (EB) VPT: Vacuum Phototriode (EE) PN: Reference diode

Pulse shape reconstruction

New method –"multifit":

estimate the in-time signal amplitude and up to 9 out-of-time amplitudes by means of χ^2 minimization

$$\chi^{2} = \sum_{i=1}^{10} \frac{\left(\sum_{j=1}^{M} A_{j} \times p_{ij} - S_{i}\right)^{2}}{\sigma_{s_{i}}^{2}}$$

- S_i : digitized amplitudes
- $A_j(\geq 0)$: amplitudes from pulse at bunch crossing j
- p_{*ij*}: the template pulses , all identical and shifted by jx25ns
- σ_{Si} : noise covariance matrix

Pedestal measurement

Pedestals drift in 2017: red – long term aging effects, **blue** – short term effects that depend on instantaneous luminosity

Pedestal measurements for each channel are directly used in the multifit.

ECAL intercalibration

Crystal by crystal **inter-calibration** due to different light-yield and photodetector response to equalize the response among different crystals:

- φ-symmetry: balance average energy response in channels at constant η
- π⁰/η mass: iterative method based on invariant mass reconstructed from unconverted photons
- E/p method: iterative method based on ECAL energy and tracker momentum for isolated electrons, E/p ~ 1
- Z → ee mass (in Run II): exploiting the invariant mass constraint of dielectron system

100 110 120 130

 $m(e^+e^-)$ [GeV]

91.5

91-

90

90.5

89.5

89

88.5-+

June

July

Median m_{ee} (GeV)

Energy global scale

Global energy scale is adjusted thus the data $Z \rightarrow e^+e^-$ peak agrees with MC simulation.

Relative electron resolution for barrel and endcaps

The resolution improves significantly after a dedicated calibration using the full 2017 dataset (**blue points**) with respect to the end-of-year-2017 calibration (**gray points**) for which only time dependent effects were corrected

Conclusions

 ✓ ECAL has operated smoothly and with excellent performance during Run II due to

- ECAL online and offline reconstruction has been adapted to meet the challenges of higher LHC luminosity and detector aging
- Regular monitoring and updates of crystal response, pedestals, pulse shape are performed to maintain energy resolution
- Effective suppression of out-of-time PU using the multifit algorithm
- With these updates, the excellent energy resolution and stability achieved during Run I has been maintained in Run II
- ✓ The excellent ECAL performance was crucial for the Higgs boson discovery made by CMS and remains very important for precision measurements and for searches of new physics, as well

Backup slides

Detector layout

Photodetectors

Barrel: Avalanche photo-diodes (APD, Hamamatsu) Two 5x5 mm² APDs/crystal, ~ 4.5 p.e./MeV Gain 50 QE ~ 75% at 420 nm Temperature dependence $1/G \Delta G/\Delta T = -2.4\%/C$ High-Voltage dependence $1/G \Delta G/\Delta V = 3.1\%/V$ Need to stabilize HV at 30 mV Measured HV fluctuation: ~30 mV

Endcaps: Vacuum photo-triodes (VPT, Research Institute "Electron", Russia) More radiation resistant than Si diodes UV glass window Active area ~ 280 mm²/crystal, ~ 4.5 p.e./MeV Gain 8 -10 (B=4T) Q.E. ~ 20% at 420 nm Gain spread among VPTs ~ 25% Need intercalibration

Radiation damage in PbWO₄

Scintillation (S/S₀) vs laser light (R/R₀)

The changes in the crystal transparency due to irradiation impact on the signals from an electromagnetic shower in different way than from laser pulse.

Simulation of changes in EE crystal response

With large transparency losses, energy resolution will degrade :

- photo statistics reduced
- relative noise increased
- crystal non-uniformity

CMS Integrated Luminosity, pp

A new machine, for high luminosity, to measure the H couplings, H rare decays, HH, Vector boson scattering, other searches and difficult SUSY benchmarks, measure properties of other particles eventually discovered in Phase1.