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1 Accelerator Physics





Precision Higgs Boson Measurement at CLIC

Mila Pandurović∗, on behalf of the CLICdp collaboration

Vinča Institute of Nuclear Sciences, Belgrade, Serbia

Abstract

The design of the next generation collider in high energy physics
will primarily focus on the possibility to achieve high precision of
the measurements of interest. The necessary precision limits are set,
in the first place, by the measurement of the Higgs boson but also
by measurements that are sensitive to signs of New Physics. The
Compact Linear Collider (CLIC) is an attractive option for a future
multi-TeV linear electron-positron collider, with the potential to
cover a rich physics program with high precision. In this lecture the
CLIC accelerator, detector and backgrounds will be presented with
emphesis on the capabilities of CLIC for precision Higgs physics.

1 Introduction

The particle that completed the Standard model (SM) picture, the Higgs
boson, was discovered at the Large Hadron Collier (LHC) in 2012 [1][2].
Besides the measurement of the Higgs boson mass, measurements of other
Higgs boson properties, like its couplings to the SM particles, require high
precision in order to be sensitive to eventual signs of New Physics, as well
as to understand the structure of the Higgs sector. The LHC, being the
discovery machine, was designed to reach extremely high center-of-mass
energy of 14 TeV at the ultimate stage of operation. Due to the composite
nature of colliding particles, the actual collision occurs at the parton level.
The effective center-of-mass energy available in the parton-parton collision
is
√
s ≈ 3TeV. Also, the initial state of colliding partons is not known, and

∗E-mail:milap@vinca.rs
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it is determined statistically from the final state. Besides, the presence
of high level of QCD background and multiple pile-up events restrict the
precision of all measurements. On the other hand at the lepton colliders
the colliding particles, electrons and positrons, are fundamental objects.
Therefore collisions have a well-known initial state and low level of back-
ground. Furthermore all of the center-of-mass energy is available for the
collision. These properties make the lepton colliders suitable candidates
to be the precision machines.

1.1 CLIC accelerator

The particle acceleration at CLIC is based on a new, ’two-beam’ accelera-
tion technique. Two separate beam pipes, running in the parallel to each
other, are carrying two beams: the drive beam and the main beam. The
drive beam is carrying power for the acceleration, with frequency of 12
GHz, high current (100 A) and low energy of (2.4 GeV -240 MeV). This
power is extracted from the drive beam and converted in radio-frequent
power in PETS (Power Extraction and Transfer Structures). PETS are
positioned along the drive beam and paired-up with the accelerating struc-
tures which are placed along the main beam (Figure 1) [3].

Figure 1: Two beam scheme: The beam power in the drive beam is con-
verted to RF power in Power Extraction and Transfer Structures, and
injected into accelerating structures in the main beam.

The energy extracted in the PETS is injected into accelerating struc-
tures and used to achieve the high energy (up to 1.5 TeV) in the main
beam. The CLIC accelerating gradient is foreseen to be 100 MV/m.

The particles in the main beam are organized into bunches. The bunch
population is 3.7 · 109 particles. Further, the bunches are organized into
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bunch trains of 312 bunches, with the bunch separation of 0.5 ns. Bunch
trains are released with frep=50 Hz repetition rate. The two-beam accel-
eration scheme is one of the subjects of the study of the CTF3 test facility
at CERN.

1.2 CLIC energy staged design

The energy staged design of the CLIC collider has been optimized to max-
imize the physics potential of the machine and provide an early start of
physics. Three distinct stages were chosen, in the way to adapt to the
known physics and to eventual discoveries at the LHC.
Current studies foresee three stages,

√
s =380 GeV, 1.4 TeV and 3 TeV.

This would yield the collider overall length of 11.4 km, 27.2 km, and fi-
nal extension to a length of 48.3 km, respectively, based on an accelerating
gradient of 100 MV/m. The staging design is based on the foreseen physics
program. The first stage of running,

√
s =380 GeV, is devoted to the Stan-

dard model Higgs studies and exploration of the top physics, including tt̄
threshold scan. The second stage,

√
s =1.4 TeV, is chosen as it is sensitive

to many of the Beyond Standard Model (BSM) models. Also the high
statistics of the dominant WW-fusion Higgs production channel at this
energy stage, gives access to rare Higgs processes, as well as to the Higgs
self-coupling and quartic Higgs coupling. The final stage,

√
s =3.0 TeV,

improves the precision obtained at previous energy stages in both Higgs
and BSM physics, and adds additional discovery potential.

1.3 CLIC experimental environment

One of the most important parameters of any collider experiment is its
luminosity. At a linear e+e− collider the increase in luminosity is achieved
by the optimisation of the beam parameters. The focusing of the beam,
on the other hand, is limited by the energy loss by beamstrahlung caused
by the electromagnetic interaction of the opposite beams.

1.3.1 Luminosity

The instantaneous luminosity is given by:

L =
nbN

2frep
4πσxσy

(1)
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Figure 2: CLIC luminosity spectrum as a function of the effective center-
of-mass energy.

where σx, σy are transverse bunch sizes, N is the bunch population and nb
is the number of bunches in a bunch train. The increase in the luminosity
at linear colliders is achieved by the using high bunch population, O(109),
and small beam sizes.

1.3.2 Beam-induced background

The high bunch population and small bunch size results in a strong electric
field of a bunch. This is causing the particles in the colliding bunches
to accelerate towards the bunch center, subsequently radiating photons.
The emission of this radiation, beamstrahlung, has a consequence that it
degrades the luminosity spectrum. Figure 2 shows the luminosity spectrum
for the 3 TeV CLIC [4]. The effect is most pronounced at the highest energy
stage, where around 35% of events preserve the nominal of center-of-mass
energy within the less then a percent energy loss.

The energy loss by beamstrahlung is proportional to:

δE ∝ N2

(σx + σy)σz
(2)

The maximal length of the bunch is limited by the Hourglass effect [5], thus
in order to maximize the luminosity and minimize beamstrahlung energy
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loss, the flat beams, with the σx � σy are chosen. For the final, 3 TeV
energy stage the parameters foreseen are σx=45 nm, σy=1 nm.

The beamstrahlung photons can convert into electron positron pairs,
or interact and produce hadrons in the final state. Such hadrons deposit
20 TeV of energy per bunch train in the central calorimeters. In addition,
beamstrahlung is causing radiation damage to the very forward calorime-
ters.

Besides, the γγ → hadrons background influences the event recon-
struction, by the central tracker especially at the highest energy stage,
where there is an average of 3.2 events per bunch crossing. This type
of background is rejected using momentum and timing cuts, which drives
challenging requirements on detector timing capabilities.

1.4 CLIC detector

The recent CLIC detector concept has emerged from two detector concepts
parallel developed, which were based on ILC detector models, CLIC ILD
[6], and CLIC SiD [7]. The difference between the two models are in the
tracking system, where the CLIC ILD foresees a gaseous tracking (TPC),
whereas CLIC SiD uses a silicon tracker. All other detector systems are
similar. These detectors were adapted to the CLIC beam and background
conditions, which are different than ILC primarily due to the higher center-
of-mass energies and beam structure.

The performance of each sub-detector system is driven from the physics
requirements. In the first place, precision measurement of the momentum
resolution of a track (

σpt
p2t

) is required for the recoil mass measurement of

the Higgs boson in the Higgsstrahlung process [3]. The impact parameter
resolution is necessary for heavy flavor separation (bottom/charm), and to
exploit the most probable Higgs decay channel, H → bb̄. The required im-
pact parameter resolution in the transverse plane is σrφ = 5⊕ 15

p·sin3/2(θ)
[µm]

[3]. Vertexing is performed with highly granulated, light-weight silicon
pixel detector. Separation of the electroweak bosons requires good jet en-
ergy resolution in the calorimeters, which for the jet energies above 100
GeV is σE

E
< 3.5 %.

These detectors are comprised in a strong solenoid field of 4-5 T. A
muon system, implemented as an instrumented return yoke, surrounds
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the whole detector. Special calorimeters for luminosity measurement and
beamstrahlung monitoring are foreseen in the very forward region, down to
1.5 deg, providing additional hermeticity of the detector, which is necessary
for the missing energy signature measurements in many BSM processes.

2 Higgs physics at CLIC

Measurement of properties of the Higgs boson will be a priority for CLIC.
In order to estimate the physics potential of CLIC in terms of precision
Higgs measurements, a comprehensive list of Higgs physics benchmark
studies is currently being carried out [8]. The most important measure-
ments are those of Higgs mass and couplings of Higgs to the SM particles,
including Higgs self-coupling. The high precision measurement of the Higgs
boson couplings would be a test of the SM, which predicts a strict linear-
ity of the couplings to the corresponding masses. Any deviation from the
predicted SM values would be a sign of New Physics [9].

2.1 Higgs Production at Linear Colliders

Different center-of-mass energies at CLIC give rise to different Higgs pro-
duction channels. At the lowest energy stage

√
s=380 GeV, the leading

Higgs production channel is the s-channel Higgsstrahlung process (HZ),
where the Higgs boson is radiated off a Z boson. The corresponding Feyn-
man diagram is given in Figure 3. This energy stage is in the first place
dedicated to the model independent measurement of the total HZ cross-
section and consequently to the absolute Higgs to Z coupling. Also at this
stage the available statistics allows the determination of the cross-section
of most of the Higgs decays, with the lightest accessible Higgs decay being
the one to cc̄. Besides, this energy stage allows the model independent
measurement of the Higgs boson mass.

At higher energy stages, Higgs production is accessed predominantly
by the t-channel WW-fusion, Figure 3 (right), where the cross-section rises
logarithmically with energy. The available statistics allows more precise
measurements of the Higgs couplings to be performed.
The distribution of the cross-sections for the various Higgs production
channels is given in Figure 4 (left), for unpolarized beams.
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Figure 3: Feynman diagrams of the highest cross section Higgs production
processes at CLIC; Higgsstrahlung (left), WW-fusion (right).

√
s 380 GeV 1.4 TeV 3 TeV

500 fb−1 1.5 ab−1 2 ab−1

# HZ events 68,000 20,000 11,000
# WW-fusion events 17,000 370,000 830,000
# ZZ-fusion events 3,700 37,000 84,000

Table 1: Number of Higgs events expected for the leading-order Higgs
production processes for mH=126 GeV, including initial state radiation
and CLIC beam spectrum, for unpolarized beams.

Table 1. lists the number of Higgs events of the most relevant produc-
tion processes expected in the studied CLIC staging scenario.

The cross-sections can be enhanced using polarised beams. For Pe−=80%
electron beam polarisation considered for CLIC, the listed numbers in-
crease by 12% for ZH and ZZ-fusion events and 80% for WW-fusion pro-
duction mechanisms.

2.2 Model independent Higgs boson measurements
at linear collider

A unique feature of lepton colliders is a model independent Higgs recoil
mass analysis in the Higgsstrahlung process, Figure 4 (right), which enables
the measurement of the Higgs boson mass and total cross-section of the
Higgsstrahlung process to be determined independently of the Higgs decay
mode. The total HZ cross-section is proportional to the absolute coupling
of the Z to Higgs boson and it is the starting point of the determination
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Figure 4: Left: The cross sections for the main Higgs production processes,
as a function of center-of-mass energy, at an e+e− collider. Right: recoil
mass distribution of muon pairs from Z decay at 380 GeV center-of-mass
energy scaled to an integrated luminosity of 500 fb1.

of all other absolute Higgs couplings.
The Higgsstrahlung process is identified by the pair of leptons (electrons

or muons) with the invariant mass consistent with the Z mass and the recoil
mass (mrec) consistent with the mass of the Higgs boson. The distribution
of the recoil mass is constructed using only the properties of the lepton
pair, invariant mass (mZ) and energy (EZ):

m2
rec = s+m2

Z − 2EZ
√
s (3)

The distribution of the recoil mass, constructed for
√
s=380 GeV, Fig-

ure 4 (right), features a clear peak at the Higgs mass. The high energy tail
is due to emission of beamstrahlung and initial state radiation.

In the analysis of the Z → µ+µ− decay, the Higgs mass is determined
with an absolute statistical precision of 120 MeV. The relative statisti-
cal error of the total cross-section of the Higgsstrahlung process ∆(σHZ)
/(σHZ) is determined by counting the number of events in the peak. For
the combined muonic and electronic Z-decays ∆(σHZ) /(σHZ) ≈ 4%, with
the resulting absolute coupling of Higgs to Z boson, g2

HZZ ≈ 2% [8].

The relative statistical error of the absolute Higgs to Z coupling, to-
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Figure 5: Reconstructed di-jet invariant mass versus reconstructed recoil
mass distributions for selected ZH → qqX events at 350 GeV, given for
signal events [10].

gether with the total Higgs decay width, ΓH , limits the precision of all
other absolute couplings. The leptonic Z-decays give a clear signature
of Higgsstrahlung events so the selection efficiency is independent of the
Higgs decay mode. On the other hand it is limited by the low Z branch-
ing fraction of 3%. It has been shown that the hadronic Z decay channel,
which has a high BR(Z→ qq ≈ 69%) can also be used, even though the
hadronic Z reconstruction depends on the Higgs decay mode. It has been
shown that careful selection criteria can be chosen, to ensure near model
independence [10]. The clearest separation between signal and background
is obtained from mqq and the recoil mass mrec, as shown in Figure 5. The
signal is clearly peaked at mqq ∼ mZ and mrec ∼ mH .

By combining the hadronic with leptonic channel the relative statistical
error is improved to 0.8%.

The total Higgs decay width, ΓH , is obtained through the WW-fusion
Higgs production channel with the consequent Higgs decay to a W pair,
H→WW*, once gHWW is known:
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σ(e+e− → Hνeν̄e)× (H → WW ∗) ∝ g4
HWW

ΓH
. (4)

ΓH can be used to determine the absolute value of all other measured
couplings.

2.3 The measurements of cross-sections of specific
Higgs decays

The measurement of absolute couplings of the Higgs to the Z boson can
be used to obtain absolute couplings of Higgs to other SM particles using
measurements of partial cross-sections of type (e+e− → HZ,WW-fusion) ×
BR(H → xx̄). This cross-section is proportional to the Higgs coupling to
one of the vector bosons, depending on the production channel, g2

HZZ for
Higgsstrahlung or g2

HWW for WW-fusion and to g2
Hxx through the decay

channel (H → xx̄). All three energy stages are used to extract g2
Hxx and

ΓH through
g2HZZ ·g2Hxx

ΓH
, in a model independent way.

The first stage of CLIC operation, with the Higgsstrahlung as the
leading Higgs production channel, enables the clean measurements of the
branching fractions of the Higgs decays into the b and c quarks, τ , WW*
and gluons using the reconstruction of the recoiling Z boson and the ex-
plicit reconstruction of the Higgs boson. For these measurements precise
flavor tagging for the separation of b and c jets is crucial, as well as the
excellent particle flow performance for the efficient identification of τ lep-
tons and for the reconstruction of hadronic W decays. The branching
ratio of H→gg can not be directly transformed to a coupling, but provides
model-dependent sensitivity to the coupling to the top quark through loop
contributions, since in the SM the coupling of the Higgs to the gluon is
realized through a heavy quark loop. The Higgsstrahlung process cross-
section can be increased by using the polarization Pe−=-80% up to 12%
[8].

At the higher energy stages the leading Higgs production channel is
WW-fusion. The cross-section of this production process can be increased
up to 80% with the maximal polarization Pe−=-80%.The abundant statis-
tic is used to improve the precision of the coupling measurements obtained
at the first energy stage. Also, the higher energy stages give access to
the low cross-section processes, also offering a possibility to directly mea-
sure the coupling of the Higgs to the top quark using e+e− → tt̄H process,
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which is sensitive to the top-Yukawa coupling. This process can be studied
using the most favorable Higgs decay, H→ bb̄, along with semileptonic and
hadronic W decays. This complex final state, with 6 to 8 jets including four
b-jets, is an excellent detector benchmark process, testing jet reconstruc-
tion, flavor tagging, lepton identification, and reconstruction of missing
energy. The combined precision is ∆σ(tt̄H) / σ(tt̄H)= 8.1% resulting in a
precision on the top Yukawa coupling of 4.3%.

The measurement of the trilinear self-coupling provides direct exper-
imental access to the shape of the Higgs potential. The e+e− →HHνeν̄e
process is available for measuring the trilinear Higgs self-coupling, with the
cross-section rising with the center of mass energy. The study of this cou-
pling using the most common Higgs decay mode HH→ bb̄bb̄ decay as the
signal, achieves a precision on the Higgs trilinear self-coupling of 32% at s
= 1.4 TeV and 16% at 3 TeV [8]. Using beam polarisation, this precision
further improves to 24% and 12%, respectively.

The measurement of the quartic coupling gHHWW are also possible at
higher energy stages. The simulation studies have shown that the quartic
coupling, using the HH→ bb̄bb̄ can be measured with a statistical un-
certainty of 7% at

√
s = 1.4 TeV and 3% at 3 TeV, including Pe−=80%

polarisation. These results could be improved by adding analyses for other
Higgs decay channels such as HH → bb̄WW*. The analysis of these Higgs
decay channels represents a challenge for the forward jet reconstruction.

Also the sufficiently high statistics allows for the Higgs coupling mea-
surement to the lightest SM particles, as in the Higgs decay to a pair of
muons. This decay has extremely low BR of the order of 10−4. The sta-
tistical precision of BR(H → µµ) × is 29% at the 1.4 TeV CLIC, and 16%
at the highest energy stage 3 TeV.

The indirect couplings of Higgs to γ can also be accessed at higher
energy stages. In the SM, this decay is induced via loop diagrams, dom-
inated by heavy charged particles, mostly W bosons and t quarks. This
measurement is highly sensitive to BSM physic proceses, which modify the
effective H→ γγ branching ratio. It has been shown that the statistical
uncertainty of 15% can be obtained at the 1.4 TeV energy stage. Simu-
lation studies of the H→ γZ decay channel including both hadronic and
leptonic (e,µ) Z decays reach a combined precision of the Higgs production
cross-section times branching ratio of 42% at 1.4 TeV [11].
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2.4 Combined Higgs Fit

The best result of the Higgs couplings and decay width measurement is
obtained by a simultaneous model-independent fit performed using the
results of all three energy stages. The starting point of this fit is the model-
independent measurement of the couplings of Higgs to Z bozon gHZZ . The
free parameters of the fit are the uncertainties of the couplings as well
as the total Higgs decay width. The relative statistical precision of the
measurement of Higgs couplings to the SM particles is shown in Figure
6 (left). It has been shown that the relative statistical uncertainties can
reach the percent level. The Higgs width is extracted with 3.5 % precision.
Better results can be obtained by using the fit which presumes that the
total Higgs decay width is constrained by the Standard model, that is, that
there are no unknown decays. The fit is performed in the same manner as
at the LHC experiments. The free parameters of the fit are relative partial
widths of the Higgs decays with respect to corresponding SM values. The
uncertainty of the total Higgs decay width does not enter the fit, but is
calculated using the uncertainties of the partial widths obtained in the fit.
The relative statistical uncertainty obtained by this method improves and
reaches the subpercent level for the most of the measurements except the
rare Higgs decays, like H→ γγ or H→ µµ. However, the results of this fit
are model dependent. The results of the model-dependent fit are shown in
Figure 6 (right).

2.5 Conclusion

In this lecture, the motivation for a e+e− collider as a next generation
facility in high energy physics is given. One of the possible options is the
Compact linear collider CLIC, operating at three centre-of-mass energy
stages, 380 GeV, 1.4 TeV and 3.0 TeV. The principle of CLIC particle
acceleration, the detector concepts and working conditions have been pre-
sented in some detail. The focus of the lecture was put on the capability
of CLIC for a comprehensive precision Higgs physics program.

The initial stage of operation, 380 GeV, allows the study of Higgs pro-
duction from both the HZ and the WW-fusion process. These data would
yield precise model-independent measurements of the Higgs-boson cou-
plings. The obtained statistical precision of the absoulte Higgs to Z boson
coupling is gHZZ = 0.8%, and the total Higgs width is measured with the
statistical precision of 5.0 %.
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electron polarization of -80 % at

√
s= 1.4TeV and 3 TeV energy stages are

included as a scale factor.

The abundant Higgs boson statistics which can be obtained at CLIC above
1 TeV, where the Higgs boson is produced predominantly through the
WW-fusion process, improves the precision of the absolute couplings and
also gives access to rarer processes, such as tt̄H and Higgs selfcoupling,
which serve as indirect measurements of the top Yukawa coupling and the
Higgs potential, respectively. Also, higher energy stages allow the mea-
surement of rare Higgs decays like H→ γγ or H→ µµ.
To exploit the results obtained independently at each energy stage, the si-
multaneous fit of the full data sample is performed. In a model-independent
fit, the majority of the accessible couplings are measured at the percent
level. Using the fit which constraines the total Higgs decays width to the
SM expectations, model-dependent fit, the result is improved to the sub-
percent level.
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The Deep Inelastic Scattering on the
Polarized Nucleons at Electron-Ion Collider

E.S.Timoshin, S.I.Timoshin
Sukhoi State Technical University of Gomel

Abstract

The contributions the individual quark and antiquark flavors,
the valence quarks in the nucleon spin are obtained in the deep in-
elastic scattering longitudinally polarized leptons off longitudinally
polarized protons, neutrons and deuterons with charged current for
the experiments at Electron-Ion Collider. The radiative corrections
to the measurable asymmetries are discussed.

Understanding how the nucleon spin is built up from the spin of quarks
and gluons and their orbital angular momentum is one of the most chal-
lenging goals in hadron physics [1–4].

We have two pictures about the nucleon spin:
1) Jaffe-Monahar (1990)

1

2
=

1

2
∆Σ + ∆G+ Lq + Lg.

Here ∆Σ,∆G are the quark and the gluon helicity; Lq, Lg are the orbital
momentum of the quarks and the gluons.

There is the simple parton picture for the longitudinal polarization.
2) X.Ji (1996)

1

2
= Jq + Jg =

1

2
∆Σ + Lq + Lg,

where Jq, Jg are the total angular momentum of the quarks and the gluons
respectively. This decomposition the nucleon spin relate to the partons in
transverse polarized nucleon.

At present we know fairly well the quark contribution
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∆Σ =

1∫
0

dx
[
∆u(x) + ∆u(x) + ∆d(x) + ∆d(x) + ∆s(x) + ∆s(x)

]
∼ 30%.

However, the details on the flavor and sea structure of the polarization
are still necessary as and contribution from small x. We know with large

uncertains about the gluon contribution ∆G =
1∫
0

dx g(x) ∼ 20% with

RHIC data [5]. There not have direct information on the quark and gluon
orbital angular momentum.

The calculations Lq in lattice QCD [6–8] and in model dependent way
with the pretzelasity distribution [9] give agreement results that Lu <
0, Ld > 0 and Lu + Ld ∼ 0. Now we have new phenomenology to study
nucleon structure – Generalized Parton Distributions (GPD) that provide
access to orbital angular momentum in Deep Virtual Compton Scattering
(DVCS) and Exclusive J/Ψ, ρ, ϕ production. These studies will require
high luminosity and polarized beams. The Electron-Ion Collider (EIC)
proposed as a next generation facility for nuclear physics, would expand
the opportunities for high-energy scattering on polarized protons, light
nuclei (D3, He...).

The machine designs are aimed to achive:

� Polarized (∼ 70%) beams of electrons, protons and light nuclei.

� High luminosity 1033−34cm−2s−1.

� Low x regime x→ 10−4.

� Center of mass energies∼ 20−100 GeV, upgradable∼ 140−150 GeV.
An EIC can delineate with unprecedented precision the full helicity
structure of the nucleon in terms of gluons, quarks and antiquarks
and their flavor.

� At EIC can to explore.

� Sea gluon x ∼ 10−2−10−4 (inclusive DIS, SIDIS at low x), spin flavor
decomposition of the light quark sea.
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� GPD (DVCS, Exclusive meson production) ⇒ angular momentum
Jq, Jg:

Jq =
1

2
lim
t→0

1∫
−1

dx x
[ GPD︷ ︸︸ ︷
Hq(x, ξ, t) + Eg(x, ξ, t)

]
=

1

2
∆Σ + Lq.

The first constraint on quark orbital contribution Lq to proton spin by
combining the sea from EIC and valence quarks from JLab 12.

A decomposition of Jg into spin and orbital components using gauge
invariant local operators (as for Jq) is impossible. The total angular mo-
mentum of gluons Jg can, in principle, be accessed in exclusive deeply
virtual meson production through the relation

Jg =
1

2
lim
t→0

1∫
0

dx
[
Hq(x, ξ, t) + Eg(x, ξ, t)

]
.

The deep inelastic scattering (DIS) with charged current (CC)

l +N → ν +X (1)

can be studied only in high-energy lepton-nucleon collision, e.g. at EIC.
Data from CC DIS experiments (1) with the polarized beams provide com-
plementary information on the nucleon spin as they probe combinations of
quark flavors different from those accessible in electromagnetic DIS. Here
are two independent polarized structure functions (SF)

g1 ∼ ∆q + ∆q

g6 ∼ ∆q −∆q

that provide flavor separation ∆q and ∆q.
Now flavor-separated parton distribution functions ∆q and ∆q are ob-

tained exclusively from semi-inclusive DIS (SIDIS) data. However, in con-
trast SIDIS the inclusive CC DIS (1) not have the fragmentation functions
which carry in an essential uncertains to measurable quantities.

In this paper we study CC DIS (1) on polarized nucleons with goal to
receive of an information about the spin structure of the nucleon in the
experiments at EIC.
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In the experiments with polarized beams the asymmetries are mea-
sured. The polarized asymmetries for CC DIS (1) in the Born approxima-
tion through SF are (the details see [10,11]).

Al−,l+(x,Q2) =
d2σ↓↑,↑↑l−,l+/dxdy − d

2σ↓↓,↑↓l−,l+/dxdy

d2σ↓↑,↑↑l−,l+/dxdy + d2σ↓↓,↑↓l−,l+/dxdy
=

=
y+1 g

l−,l+

6 (x,Q2)± y−1 g
l−,l+

1 (x,Q2)

y+1 F
l−,l+

1 (x,Q2)± y−1
2
F l−,l+

3 (x,Q2)

A±(x,Q2) =

(
d2σ↓↑l−/dxdy ± d

2σ↑↑l+/dxdy
)
−
(
d2σ↓↓l−/dxdy ± d

2σ↑↓l+/dxdy
)

(
d2σ↓↑l−/dxdy ± d2σ

↑↑
l+/dxdy

)
+
(
d2σ↓↓l−/dxdy ± d2σ

↑↓
l+/dxdy

)
=

y+1

[
gl

−
6 (x,Q2)± gl+6 (x,Q2)

]
+ y−1

[
gl

−
1 (x,Q2)∓ gl+1 (x,Q2)

]
y+1

[
F l−
1 (x,Q2)± F l+

1 (x,Q2)
]

+
y−1
2

[
F l−
3 (x,Q2)∓ F l+

3 (x,Q2)
] .

Here F1,3 and g1,6 are the spin-averaged and polarized SF; y±1 = 1 ±
y21, y1 = 1− y.

The polarized SF in leading order QCD (improved parton model) are

g1(x,Q
2) =

∑
q

∆q(x,Q2) +
∑
q

∆q(x,Q2),

g6(x,Q
2) =

∑
q

∆q(x,Q2)−
∑
q

∆q(x,Q2),

where q = u, c, t (q = d, s, b) and q = d, s, b (q = u, c, t) for lepton
(antilepton).

The first moments polarized SF give access to the quark and antiquark
contributions in the nucleon spin

Γ1,6(Q
2) =

1∫
0

g1,6(x,Q
2)dx =

∑
q,q

(∆q ±∆q),

where ∆q(∆q) =
1∫
0

∆q(x)
(
∆q(x)

)
dx is the quark (antiquark) contribution

to the nucleon spin.
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The proton

Γl−p
6 − Γl+p

6 = (∆u+ ∆u)− (∆d+ ∆d)− (∆s+ ∆s),

Γl−p
6 + Γl+p

6 = ∆uV + ∆dV = ∆qV ,

where ∆uV = ∆u−∆u, ∆dV = ∆d−∆d.

Γl−p
1 + Γl+p

1 = (∆u+ ∆u) + (∆d+ ∆d) + (∆s+ ∆s),

Γl−p
1 − Γl+p

1 = ∆uV −∆dV .

We use also the measurable quantity – the axial charge a3 = F + D =
1.2670± 0.0035 that in parton model: a3 = (∆u+ ∆u)− (∆d+ ∆d).

The quark contributions to the nucleon spin:
The quark flavors

∆u+ ∆u =
1

2

(
Γl−p
1 + Γl+p

1 − Γl+p
6 + Γl−p

6

)
,

∆d+ ∆d =
1

2

(
Γl−p
1 + Γl+p

1 − Γl+p
6 + Γl−p

6 − 2a3

)
,

∆s+ ∆s = Γl+p
6 − Γl−p

6 + a3.

The valence quarks

∆uV =
1

2

(
Γl−p
6 + Γl+p

6 − Γl−p
1 + Γl+p

1

)
,

∆dV =
1

2

(
Γl+p
1 − Γl−p

1 + Γl−p
6 + Γl+p

6

)
.

The sea quarks

∆u =
1

2

(
Γl+p
1 − Γl+p

6

)
,

∆d =
1

2

(
Γl−p
1 − Γl+p

6 − a3
)
,

∆s =
1

2

(
Γl+p
6 − Γl−p

6 + a3

)
.

We have obtained the quark contributions for neutron and deuteron.

28



The neutron

∆u+ ∆u =
1

2

(
Γl−n
6 − Γl+n

6 + Γl−n
1 + Γl+n

1

)
+ a3,

∆d+ ∆d =
1

2

(
Γl−n
1 + Γl+n

1 + Γl−n
6 − Γl+n

6

)
,

∆s+ ∆s = −a3 − Γl−n
6 + Γl+n

6 .

∆dV =
1

2

(
Γl−n
1 − Γl+n

1 + Γl−n
6 + Γl+n

6

)
,

∆uV =
1

2

(
Γl−n
6 + Γl+n

6 − Γl−n
1 + Γl+n

1

)
.

∆s =
1

2

(
−a3 − Γl−n

6 + Γl+n
6

)
,

∆d =
1

2

(
Γl+n
1 − Γl+n

6

)
,

∆u =
1

2

(
Γl−n
1 − Γl+n

6 + a3
)
.

The deuteron

∆s+ ∆s =
Γl+d
6 − Γl−d

6

1− 1, 5ω
,

∆uV + ∆dV =
Γl−d
6 + Γl+d

6

1− 1, 5ω
,

∆Σ =
Γl−d
1 + Γl+d

1

1− 1, 5ω
,

where ω = 0.05 is the probability D-state in the wave function of the
deuteron.

Obviously, this approach to obtain the quark polarization requires a
knowledge of SF g1, g6. These SF can be extracted from the measurable
asymmetries Al−,l+ and A±. In contrast electromagnetic DIS processes an
extraction of polarized SF in DIS with CC (1) is a nontrivial problem,
because the asymmetries Al−,l+ , A± include two independent SF g1 and
g6. The ways to extract the SF g1 and g6 from asymmetries measured in
experiments DIS with CC were proposed in our work [11,12].
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The numerical calculations the asymmetries were performed for DIS CC
polarized electrons (positrons) off longitudinal polarized protons, neutrons
and deuterons using parton distributions [13]. In Fig.1 we show the size of
the asymmetries Ae− for protons (top) and neutrons (bottom), but also Ae±

for deuterons (Fig.3). As can be seen, the asymmetries are considerable
and can to access more than 50% at x ≥ 0.7.

We calculated the QED corrections to the asymmetries in Leading Log
Approximation (LLA) [14,15].

In Fig.5 and Fig.6 we show size QED corrections in LLA to the asym-
metries Ap

e− and An
e− respectively. They are neglectly small at x & 0.5 and

get noticeable in regime small x accessing of value 10− 15% at small y.
The Next Leading Order QCD corrections to the asymmetries CC DIS

are small and leading order accuracy is very good approximation [16].

p
e
A 

n
e
A 

Figure 1. The asymmetries Ap
e− and An

e−
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pA

nA

Figure 2. The asymmetries Ap
+ and An

+

d
e
A 

Figure 3. The asymmetries Ad
e− and Ad

e+
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dA

Figure 4. The asymmetries Ad
+ and Ad

−

Figure 5. QED correction δl−(%) to asymmetry Ap
e− in leading log approximation

(LLA)
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Figure 6. QED correction δl,n− (%) to asymmetry An
e− in LLA

Conclusion

� Data from CC DIS experiments provide complementary information
on the spin structure nucleon as they probe combinations of quark
flavors different from those accessible in purely electromagnetic DIS.

� CC DIS can be studied only in high-energy lepton-nucleon collisions
(e.g. EIC).

� The quark contributions to the nucleon spin are obtained through
the first moments of the polarized SF g1, g6 that can be to extract
from the measurable asymmetries CC DIS.
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Center-Edge Asymmetry as a Tool for
Revealing Large Extra Dimensions at LHC
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Abstract
Arkani-Hamed, Dimopoulos and Dvali proposed a model in

which gravity propagates freely in d extra compact spatial dimen-
sions. The prospects of discovery and identification of large extra
spatial dimensions effects in the processes of lepton and photon
pair production at the Large Hadron Collider (LHC) were studied.
These effects can be found by the specific behavior of the invariant
mass distributions of the lepton and photon pairs. Identification of
the effects under study can be performed with angular distributions
of lepton and photon pairs. Discovery and identification reach on
the mass scale parameter MS can be obtained for graviton Kaluza
– Klein towers in lepton and photon pair production processes at
the LHC.

1 Introduction

Theories of low-scale quantum gravity featuring large extra spatial dimen-
sions (LED) have attracted considerable interest because of their possi-
ble observable consequences at existing and future colliders. In scenario,

∗E-mail:pankov@ictp.it
†E-mail:inna.serenkova@cern.ch
‡E-mail:tsytrin@rambler.ru
§E-mail:Vadim.Bednyakov@cern.ch
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proposed by Arkani-Hamed, Dimopoulos, and Dvali [1], the fermions and
gauge bosons of the Standard Model (SM) are confined to the three ordi-
nary spatial dimensions, which form the boundary (“the brane”) of a space
with d compact spatial dimensions (“the bulk”) in which gravitons alone
can propagate. In this model, the Planck scale is lowered to the electroweak
scale of O(1 TeV), which is postulated to be the only fundamental scale in
nature. The fundamental Planck scale in the extra dimensions (MS), the
characteristic size of the d extra dimensions (R) and the Planck scale on
the brane are related via

M2
Pl ∝Md+2

S Rd, (1)

a purely classical relationship calculated by applying the 4+d dimensional
Gauss’s law. In this scenario, then, the weakness of gravity compared to the
other SM interactions is explained by the suppression of the gravitational
field flux by a factor proportional to the volume of the extra dimensions.

While direct graviton emission cross section is well defined, the cross
section for virtual graviton exchange depends on a particular represen-
tation of the interaction Lagrangian and the definition of the ultraviolet
cutoff on the KK modes. Three such representations have appeared nearly
simultaneously [2–4]. In all of them, the effects of LED are parametrized
via a single variable ηG = F/M4

S, where F is a dimensionless parameter of
order one reflecting the dependence of virtual G∗n exchange on the number
of extra dimensions, and MS is the ultraviolet cutoff. Different formalisms
use different definitions of F , which result in different definitions of MS:

F =


1, (GRW [3]);
2
d−2 , d > 2, (HLZ [4]);
2λ
π

= ± 2
π
, (Hewett [2]).

(2)

Note that F depends explicitly on d only within the HLZ formalism. In
both the GRW and HLZ formalisms gravity effects interfere construtively
with the SM diagrams. In Hewett’s convention the sign of intereference is
not known, and the interference effects are parameterized via a parameter
λ of order one, which is usually taken to be either +1 (constructive inter-
ference) or −1 (destructive interference). The parameter ηG has units of
TeV−4 if MS is expressed in TeV, and describes the strength of gravity in
the presence of LED. The differential or total cross section in the presence
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of virtual graviton exchange can be parameterized as:

σtot = σSM + ηGσint + η2GσG, (3)

where σSM is the SM cross section for the process under study and σint, σG
are the interference and direct graviton effects, respectively.

Existing collider experimental data analysis gave no observation of LED
effects, but only constraints. Indirect graviton effects at the LHC were
searched for in processes of lepton and photon pair production. The cor-
responding constraints on MS (HLZ) obtained from LHC data were found
to be around 5.2 TeV (ATLAS) [5] and 4.8 TeV (CMS) [6] for d = 3.

A general feature of the different theories extending the SM of elemen-
tary particles is that new interactions involving heavy elementary objects
and mass scales should exist, and manifest themselves via deviations of
measured observables from the SM predictions. Here, we consider an al-
ternative to LED case when the heavy intermediate states could not be
produced even at the highest energy supercolliders and, correspondingly,
only “virtual” effects can be expected. A description of the relevant new
interaction in terms of “effective” contact-interaction (CI) is most appro-
priate in this case. Of course, since different interactions can give rise to
similar deviations from the SM predictions, the problem is to identify, from
a hypothetically measured deviation, the kind of new dynamics underlying
it.

We shall here discuss the possibility of distinguishing such effects of
extra dimensions from other new physics (NP) scenarios in lepton

p+ p→ l+l− +X, (4)

where l = e, µ, and photon pair production at the LHC:

p+ p→ γγ +X. (5)

2 Discovery reach in the dilepton channel

At hadron colliders in the SM lepton pairs can be produced at tree-level
via the following parton-level process

qq̄ → γ, Z → l+l−. (6)
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Now, if gravity can propagate in extra dimensions, the possibility of KK
graviton exchange opens up two tree-level channels in addition to the SM
channels, namely

qq̄ → G∗n → l+l− and gg → G∗n → l+l−, (7)

where G∗n represents the gravitons of the KK tower.
To estimate the discovery reach of graviton towers in ADD model one

can use the invariant mass distributions of lepton pairs that have signifi-
cantly different behavior in the SM and the ADD model.

Discovery reach of graviton towers in the ADD model can be deter-
mined with χ2 function defined as

χ2 =
∑
i

(
∆Ni

δNi

)2

, (8)

where Ni = εl+l−Lintσi, εl+l− = 90%, ∆Ni = NADD
i − NSM

i , δNi =
√
Ni.

Here, Lint is time integrated luminosity, εl+l− reconstruction efficiency of
the dilepton, σi is integrated cross-section within the i-th bin. Summation
in Eg. (8) runs over 15 bins with the width of 100 GeV in the range of
500 GeV and 2000 GeV. The results of the χ2 analysis are demonstrated
in Fig. 1. In particular, Fig. 1 shows discovery reach on cutoff scale MS at
95% C.L. for d = 3 and d = 6 as a function of integrated luminosity of the
LHC.

3 Center-edge asymmetry and identification

reach in the dilepton channel

In practice the asymmetry, which is defined based on the angular distribu-
tion of the final states in scattering or decay processes, can be utilized to
scrutinize underlying dynamics in new physics (NP) beyond the SM. As
one of the possible NP which might be discovered early at the LHC, LED
are theoretical well motivated. Once LED are discovered at the LHC, it
is crucial to discriminate the different NP scenarios that can lead to the
same or very similar experimental signatures. In principle such task can
be accomplished by measuring the angular distribution of the lepton final
states which are produced via G∗n-mediated processes. In the real data
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Figure 1: Discovery (gray band) and identification (hatched band) reaches
on MS (in TeV) at 95% CL as a function of integrated luminosity Lint for
different number of extra dimensions (d = 3− 6) at the LHC with 14 TeV.

analysis, asymmetry is always adopted. In [7–9] center-edge asymmetry
has been proposed at LHC for such kind of analysis.

The center–edge and total cross sections at the parton level can be
defined as:

σ̂CE ≡
[∫ z∗

−z∗
−
(∫ −z∗
−1

+

∫ 1

z∗

)]
dσ̂

dz
dz,

σ̂ ≡
∫ 1

−1

dσ̂

dz
dz, (9)

where z = cos θ̂, with θ̂ the angle, in the c.m. frame of the two leptons,
between the lepton and the proton. Here, 0 < z∗ < 1 is a parameter which
defines the border between the “center” and the “edge” regions.

The center–edge asymmetry at hadron level for a given dilepton invari-
ant mass Mll can be defined as

ACE(Mll) =
dσCE/dMll

dσ/dMll

, (10)

where a convolution over parton momenta is performed, and we obtain
dσCE/dMll and dσ/dMll from the inclusive differential cross sections
dσCE/dMll dy dz and dσ/dMll dy dz, respectively, by integrating over z ac-
cording to Eq. (9) and over rapidity y between −Y and Y , with Y =
log(
√
s/Mll).
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For the SM contribution to the center–edge asymmetry, the convolution
integrals, depending on the parton distribution functions, cancel, and one
finds

ASM
CE =

1

2
z∗(z∗2 + 3)− 1. (11)

This result is thus independent of the dilepton mass Mll, and identical to
the result for e+e− colliders. Hence, in the case of no cuts on the angular
integration, there is a unique value, z∗ = z∗0 ' 0.596, for which ASM

CE

vanishes, corresponding to θ̂ = 53.4◦.
The SM center-edge asymmetry of Eq. (11) is equally valid for a wide

variety of NP models: composite-like contact interactions, heavy Z ′ bosons
[10], TeV-scale gauge bosons, etc. However, if graviton tower exchange
is possible, the graviton tensor couplings would yield a different angular
distribution, leading to a different dependence of ACE on z∗. In this case,
the center–edge asymmetry would not vanish for the above choice of z∗ =
z∗0 . Furthermore, it would show a non-trivial dependence on Mll. Thus,
a value for ACE different from ASM

CE would indicate non-vector-exchange of
NP.

Another important difference from the SM case and NP CI-like sce-
narios is that the graviton also couples to gluons, and therefore it has the
additional gg initial state of Eq. (7) available. In summary then, including
graviton exchange and also experimental cuts relevant to the LHC detec-
tors, the center–edge asymmetry is no longer the simple function of z∗

given by Eq. (11).
We assume now that a deviation from the SM is discovered in the cross

section in the form of “effective” CI. We will here investigate in which
regions of the ADD parameter spaces such a deviation can be identified
as being caused by spin-2 exchange. More precisely, we will see how the
center–edge asymmetry (10) can be used to exclude spin-1 exchange inter-
actions beyond that of the SM.

We define the bin-integrated center–edge asymmetry:

ACE(i) =

∫
i

dσCE

dMll

dMll∫
i

dσ

dMll

dMll

, (12)

where i being bin in Mll. To determine the underlying new physics (spin-
1 vs. spin-2 couplings) one can introduce the deviation of the measured
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center–edge asymmetry from that expected from pure spin-1 exchange,
Aspin−1

CE (i), in each i-th bin,

∆ACE(i) = Aspin−2
CE (i)− Aspin−1

CE (i). (13)

The bin-integrated statistical uncertainty is then given as

δACE(i) =

√
1− A2

CE(i)

εl+l−Lintσ(i)
, (14)

based on the number of events that are effectively detected and the ACE

that is actually measured. In the ADD scenario, the identification reach
in MS can be estimated from a χ2 analysis:

χ2 =
∑
i

[
∆ACE(i)

δACE(i)

]2
, (15)

where i runs over the different bins in Mll. The 95% CL is then obtained
by requiring χ2 = 3.84, as pertinent to a one-parameter fit.

From a conventional χ2 analysis we find the ADD-scenario identification
reach on MS at the LHC. The results are summarized in Fig. 1 which shows
the identification reaches for different number of extra dimensions (d = 3,
6) as a function of integrated luminosity Lint.

In conclusion, a method proposed here and based on ACE is suitable
for actually pinning down the spin-2 nature of the KK gravitons up to very
high MS close to discovery reach. Therefore, the analysis sketched here can
potentially represent a valuable method complementary to the direct fit to
the angular distribution of the lepton pairs. We find that for

√
s = 14 TeV

and Lint = 100 fb−1 the LHC detectors will be capable of discovering
and identifying graviton spin-2 exchange effects in the ADD scenario with
MDIS

S = 6.2 TeV (M ID
S = 4.8 TeV) for d = 6 and MDIS

S = 8.8 TeV
(M ID

S = 6.8 TeV) for d = 3.

4 Effects of LED in the diphoton channel

The process of photon pairs production

p+ p→ γγ +X (16)
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is one of the important processes at the hadron colliders and has been used
to do precision of the SM. Also it provides a laboratory for probing new
physics (CI, unparticles, supersymmetry, extra dimensions, etc.).

A unique feature of the process of photon pairs production in the ADD
model compared with the lepton channel of Drell - Yan process is that
intermediate states in this process can only be scalar and tensor particles
whereas in dileptonic production does not exclude the possibility of the ex-
istence vector state. The Landau-Yang theorem [11, 12] forbids decays of
vector particle into two photons. As an intermediate state, we consider the
scalar unparticle [13, 14]. Reducing the number of hypothetical interme-
diate states in the Born approximation effectively leads to “enhance” the
sensitivity of the observed values for dynamic parameters graviton towers
and, thereby, expands the identification reach of graviton exchange towers
in the ADD model.

4.1 Discovery reach

At hadron colliders in the ADD model photon pairs can be produced via
the following parton-level process, namely

q + q → γ + γ and g + g → γ + γ. (17)

The differential cross section for the subprocess qq → γγ, defined by
the t - and u - channel diagrams in the SM and exchange graviton states in
the s - channel, in the approximation of massless fermions can be written
as:

dσ(qq̄ → γγ)

dz
=

1

96πŝ

[
2e4Q4

q

1 + z2

1− z2
+ 2πe2Q2

q

ŝ2

M4
S

(1 + z2)F

+
π2

2

ŝ4

M8
S

(1− z4)F2

]
, (18)

where F is defined in Eq.(2).
Here

√
ŝ ≡ Mγγ is an invariant mass of photon pairs, z ≡ cos θcm, θcm

- angle in the center-of-mass photons, Qq - quark electric charge q.
The differential cross section for the subprocess gg → γγ:

dσ(gg → γγ)

dz
=

π

512

ŝ3

M8
S

(1 + 6z2 + z4) F2 , (19)
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where the factor F is given in Eq.(2).
Discovery reach of graviton towers in the ADD model can be deter-

mined with χ2 function. The requirement on the functions χ2 = 3,84
provides a limit on the parameter MS, called as discovery reach with a
confidence level is 95%.

4.2 Identification reach

The present analysis is aimed at determining an interval of values for the
scale parameter MS (at fixed d) such that, within this interval, the ADD
model (which, in the following, is called a “correct” model) can be statis-
tically separated at a preset confidence level from competing new physics
models that could mimic experimentally effects of the correct model and
which have a different physical nature (from Georgi’s unparticle physics
model in the case being considered) at any values of their parameters.
Below, we refer to such competing models as tested models and to the
boundary value for the MS range in question as the identification reach for
the ADD model. In order to separate effects of the correct and tested mod-
els, we introduce the function χ2 by analogy with that which was used to
estimate the identification reaches for MS on the basis of expression (15).
For the problem at hand, the function χ2 has the form

χ2 =

(
AADD
CE − ANG

CE

δAADD
CE

)2

, (20)

where ANG
CE is the asymmetry center-edge in the Georgi’s unparticle-physics

model, δAADD
CE is the respective statistical uncertainty within the correct

ADD model.
In order to separate effects induced by graviton towers and Georgi’s

unparticles in the process (4), we will make use of the criterion χ2 = 3.84 for
the function χ2 defined by expression (20). Results of numerical analysis
for discovery and identification reach are shown in Fig. 2.

5 Conclusion

Along with contact interactions, effects of the exchange of KK graviton
towers within the ADD model, which involves extra spatial dimensions,
may become among the first new physics effects that would be discovered
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Figure 2: Discovery (gray band) and identification (hatched band) reaches
on MS (in TeV) at 95% CL as a function of integrated luminosity Lint for
different number of extra dimensions (d = 3− 6) at the LHC with 14 TeV.

at the LHC. The Drell-Yan process of dilepton production is one of the
most efficient channels of searches for new intermediate states owing to a
strong suppression of background processes and a high efficiency of dilepton
identification. In many respects, the same applies to diphoton production.
If, in the dilepton and/or in the diphoton channel, experiments exhibit
some indirect new physics effects, such as a deviation of the dilepton or
diphoton invariant mass distribution from the respective predictions of the
SM, then the next step in studying the nature of this new phenomenon
will consist in determining the spin of the respective intermediate state. In
the present study, we have explored prospects of the discovery and identi-
fication of indirect effects of the exchange of Kaluza-Klein graviton towers,
whose existence is predicted by the ADD model featuring extra spatial
dimensions, in the processes of dilepton and diphoton production in the
ATLAS experiment at the LHC. Searches for these new effects are based
on looking for characteristic features in the behavior of the dilepton and
diphoton spectra. As for the identification of the intermediate state spin,
it is being performed in terms of the center-edge asymmetry. The results
of our numerical analysis aimed at the search for and the identification of
effects of extra spatial dimensions in the dilepton and diphoton channels
are summarized in Table. 1.
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Table 1: Discovery and identification reach on MS (in TeV) at the LHC

MS l+l− γγ
(TeV) DIS (ID) DIS (ID)
d = 3 8.8 (6.8) 8.5 (7.6)
d = 6 6.2 (4.8) 6.0 (5.4)
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Abstract

We consider the expected sensitivity to Z ′ boson effects in the
W± boson pair production process at the Large Hadron Collider
(LHC). The results of a model-dependent analysis of Z ′ boson ef-
fects are presented as constraints on the Z-Z ′ mixing angle φ and
Z ′ boson mass. We show that the process pp→W+W−+X allows
to place stringent constraints on the Z-Z ′ mixing angle.

1 Introduction

Many New Physics (NP) scenarios beyond the Standard Model (SM) [1],
including superstring and left-right-symmetric models, predict the exis-
tence of new neutral gauge bosons, which might be light enough to be
accessible at current and/or future colliders [2–5].

The search for these Z ′ particles is an important aspect of the ex-
perimental physics program of current and future high-energy colliders.
Present limits from direct production at the LHC and virtual effects at
LEP, through interference or mixing with the Z boson, imply that new
Z ′ bosons are rather heavy and mix very little with the Z boson. De-
pending on the considered theoretical model, Z ′ masses of the order of
2.5–3.0 TeV [6–9] and Z-Z ′ mixing angles at the level of a few per mil are
excluded [10–12]. The size of the mixing angle is strongly constrained by

∗E-mail:pankov@ictp.it
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very high precision Z-pole experiments at LEP and the SLC [13]. They
contain measurements from the Z line shape, from the leptonic branching
ratios normalized to the total hadronic Z decay width and from leptonic
forward-backward asymmetries. A Z ′ boson, if lighter than about 5 TeV,
could be discovered at the LHC [14,15] with

√
s = 14 TeV in the Drell-Yan

process
pp→ Z ′ → `+`− +X (1)

with ` = e, µ. The future e+e− International linear collider (ILC) with
high c.m. energies and longitudinally polarized beams could indicate the
existence of Z ′ bosons via its interference effects in fermion pair production
processes, with masses up to about 6×

√
s [16] while Z-Z ′ mixing will be

constrained down to ∼ 10−4−10−3 in the process e+e− → W+W− [17,18].
After the discovery of a Z ′ boson at the LHC via the process (1), some

diagnostics of its couplings and Z-Z ′ mixing needs to be done in order
to identify the correct theoretical framework. In this paper we study the
potential of the LHC to discover Z-Z ′ mixing effects in the process

pp→ W+W− +X (2)

and compare it with that expected at the ILC.
The W± boson pair production process (2) is rather important for

studying the electroweak gauge symmetry at the LHC. Properties of the
weak gauge bosons are closely related to electroweak symmetry breaking
and the structure of the gauge sector in general. In addition, the diboson
decay modes of Z ′ directly probe the gauge coupling strength between the
new and the standard-model gauge bosons. The coupling strength strongly
influences the decay branching ratios and the natural widths of the new
gauge bosons. Thus, detailed examination of the process (2) will both test
the gauge sector of the SM with the highest accuracy and throw light on
NP that may appear beyond the SM.

Direct searches for a heavy WW resonance have been performed by
the CDF and D0 collaborations at the Tevatron. The D0 collaboration
explored diboson resonant production using the `ν`′ν ′ and `νjj final states
[19]. The CDF collaboration also searched for resonant WW production
in the eνjj final state, resulting in a lower limit on the mass of an RS
graviton, Z ′ and W ′ bosons [12].

The direct WW resonance search by the ATLAS Collaboration using
lνl′ν ′ final-state events in 4.7 fb−1 pp collision data at the collider energy
of 7 TeV set mass limits on such resonances [20, 21]. Also, the lνjj final
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state allows to reconstruct the invariant mass of the system, under certain
assumptions on the neutrino momentum from a W boson decay.

Here, we examine the feasibility of observing a Z ′ boson in the W± pair
production process at the LHC, which in contrast to the Drell-Yan process
(1) is not the principal discovery channel, but can help to understand the
origin of new gauge bosons.

2 Z ′ models

There are many theoretical models which predict a Z ′ with mass possibly in
the TeV range. Popular classes of models are represented by E6-motivated
models, the Left-Right Symmetric Model (LR), the Z ′ in an ‘alternative’
left-right scenario and the Sequential Standard Model (SSM), which has
a heavier boson with couplings like those of the SM Z. Searching for Z ′

in the above models has been widely studied in the literature [2–4] and
applied at LEP2, the Tevatron and the LHC. For the notation we refer
to [17], where also a brief description can be found. The different models
considered are: (i) Models related to the breaking of E6, parametrized
by a parameter β, familiar cases are the Z ′χ, Z ′ψ, Z ′η and Z ′I models; (ii)
Left-right models, originating from the breaking down of an SO(10) grand-
unification symmetry, leading to a Z ′LR; (iii) The sequential Z ′SSM, which
has couplings to fermions being the same as those of the SM Z.

The mass-squared matrix of the Z and Z ′ can have non-diagonal entries
δM2, which are related to the vacuum expectation values of the fields of
an extended Higgs sector:

M2
ZZ′ =

(
M2

Z δM2

δM2 M2
Z′

)
. (3)

Here, Z and Z ′ denote the weak gauge boson eigenstates of SU(2)L×U(1)Y
and of the extra U(1)′, respectively. The mass eigenstates, Z1 and Z2,
diagonalizing the matrix (3), are then obtained by the rotation of the
fields Z and Z ′:

Z1 = Z cosφ+ Z ′ sinφ , (4a)

Z2 = −Z sinφ+ Z ′ cosφ . (4b)

Here, the mixing angle φ is expressed in terms of masses as:

tan2 φ =
M2

Z −M2
1

M2
2 −M2

Z

' 2MZ∆M

M2
2

, (5)
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where ∆M = MZ −M1 > 0, MZ being the mass of the Z1 boson in the
absence of mixing, i.e., for φ = 0. Once we assume the mass M1 to be
determined experimentally, the mixing depends on two free parameters,
which we identify as φ and M2.

From (4), one obtains the vector and axial-vector couplings of the Z1

and Z2 bosons to fermions:

v1f = vf cosφ+ v′f sinφ , a1f = af cosφ+ a′f sinφ , (6a)

v2f = v′f cosφ− vf sinφ , a2f = a′f cosφ− af sinφ , (6b)

with (vf , af ) = (gfL ± g
f
R)/2, and (v′f , a

′
f ) similarly defined in terms of the

Z ′ couplings. The fermionic Z ′ couplings can be found, e.g. in [17].
Analogously, one obtains according to the remarks above:

gWWZ1 = cosφ gWWZ , (7a)

gWWZ2 = − sinφ gWWZ , (7b)

where gWWZ = cot θW .

3 Cross section

The parton model cross section for the process (2) from initial quark-
antiquark states can be written as

dσqq̄
dM dy dz

= K
2M

s

∑
q

[fq|P1(ξ1)fq̄|P2(ξ2) + fq̄|P1(ξ1)fq|P2(ξ2)]
dσ̂qq̄
dz

. (8)

Here, s is the proton-proton center-of-mass energy squared; z = cos θ with
θ the W−-boson–quark angle in the W+W− center-of-mass frame; y is the
diboson rapidity; fq|P1(ξ1,M) and fq̄|P2(ξ2,M) are parton distribution func-
tions in the protons P1 and P2, respectively, with ξ1,2 = (M/

√
s) exp(±y)

the parton fractional momenta; finally, dσ̂qq̄/dz are the partonic differen-
tial cross sections. In (8), the K factor accounts for next-to-leading order
QCD contributions [22,23]. For simplicity, we will use as an approximation
a global flat value K = 1.2 [24, 25] both for the SM and Z ′ boson cases.
For numerical computation, we use CTEQ-6L1 parton distributions [26].
Since our estimates will be at the Born level, the factorisation scale µF

enters solely through the parton distribution functions, as the parton-level
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cross section at this order does not depend on µF. As regards the scale de-
pendence of the parton distributions we choose for the factorization scale
the WW invariant mass, i.e., µ2

F = M2 = ŝ, with ŝ = ξ1 ξ2 s the parton
subprocess c.m. energy squared. We have checked that the obtained con-
straints presented in the following are not significantly modified when µF

is varied in the interval µF/2 to 2µF.
Taking into account the experimental rapidity cut relevant to the LHC

experiments, (Ycut = 2.5), one should carry out the integration over the
phase space in (8) determined as [27,28]:

|y| ≤ Y = min
[
ln(
√
s/M), Ycut

]
= ln(

√
s/M), (9)

where we do not consider low masses, ln(
√
s/M) < Ycut. This leads to a

cut in the production angle

|z| ≤ zcut = min [tanh(Ycut − |y|)/βW , 1] , (10)

where βW =
√

1− 4M2
W/ŝ and MW is the W boson mass.

The resonant Z ′ production cross section of process (2) needed in order
to estimate the expected number of Z ′ events, can be derived from (8) by
integrating its right-hand-side over z, the rapidity of the W±-pair y and
invariant mass M around the resonance peak (MR−∆M/2, MR+∆M/2):

σ(pp→ W+W− +X) =

∫ MR+∆M/2

MR−∆M/2

dM

∫ Y

−Y
dy

∫ zcut

−zcut
dz

dσqq̄
dM dy dz

. (11)

We adopt the parametrization of the experimental mass resolution ∆M in
reconstructing the diboson invariant mass of the W+W− system, ∆M vs.
M , as proposed in Ref. [29]. (After integration over y, interference effects
vanish.)

The parton level W± boson pair production can be described, within
the gauge models discussed here, by the subprocesses

qq̄ → γ, Z1, Z2 → W+W−, (12)

as well as t- and u-channel amplitudes.
The differential (unpolarized) cross section of process (12) can be writ-

ten as:
dσ̂qq̄
dz

=
1

NC

βW
32πŝ

∑
λ,λ′,τ,τ ′

|Fλλ′ττ ′(ŝ, θ)|2 . (13)
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Here, NC is the number of quark colors; λ = −λ′ = ±1/2 are the quark
helicities; the helicities of the W− and W+ are denoted by τ, τ ′ = ±1, 0.
The helicity amplitudes Fλλ′ττ ′(ŝ, θ) are summarized in Ref. [27]. There ŝ,
t̂, û are the Mandelstam variables defined as t̂ = M2

W − ŝ(1−βW z)/2, û =
M2

W − ŝ(1 +βW z)/2; Γ1,2 are Z1,2 boson decay widths; gλ1,f = v1,f − 2a1,fλ,

gλ2,f = v2,f−2a2,fλ; and γW =
√
ŝ/2MW . In the t- and u-channel exchanges

we account for the initial q = u, d, s, c, only the CKM favoured quarks in
the approximation of unity relevant matrix element.

In evaluation of the total width Γ2 of the Z2 boson we take into account
its decay channels into fermions and W± boson pair [30]:

Γ2 =
∑
f

Γff2 + ΓWW
2 . (14)

Further contributions of decays involving Higgs and/or gauge bosons and
supersymmetric partners (including sfermions), which are not accounted
for in (14), could increase Γ2 by a model-dependent amount typically as
large as 50% [30]. For definiteness the Z2 width Γ2 is assumed to scale
with the Z2 mass Γ2 = (M2/M1)Γ1 ≈ 0.03M2. This scaling is what would
be expected for the reference model SSM [31].

For illustrative purposes, the invariant mass distribution of W± pairs
in the process pp → W+W+ + X in the SM (solid black curve) and for
the Z ′SSM model at two vaues of the Z-Z ′ mixing angle at the LHC with√
s = 14 TeV is shown in Fig. 1. The W±-pair invariant mass distribution

(dσ/dM) is calculated with the same parton distribution functions and
event selection criterion as those used in Ref. [32]. Also, the bin size
∆M of the diboson invariant mass is depicted for comparison with the
Z ′ width. For numerical computations, we take ∆M = 0.03M . The W
bosons are kept on-shell and their subsequent decays are not included in the
crosss sections represented in Fig. 1. Here, we assumed that the invariant
mass distribution of the cross section can be reconstructed from the decay
products of the W+W−. Fig. 1 shows that at the LHC with integrated
luminosity Lint = 100 fb−1 the expected number of W+W− background
events within a mass bin ∆M is of the order of a few events while the
resonant yield at φ = 10−3 is NZ′ ∼ 100.
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Figure 1: Invariant mass distribution of W± pairs in pp→ W+W−+X in
the SM (solid curve) and for the Z ′SSM model (MZ′ = 3.5 TeV) with Z-Z ′

mixing angle of φ = 10−3 (dashed line) and φ = 0.7 · 10−3 (dash-dotted
line) at the LHC with

√
s = 14 TeV.

4 Constraints on Z ′

We focus on the WW production via intermediate Z ′ and subsequent
purely leptonic decay of on-shell W ′s, that will be probed at LHC:

pp→ WW +X → lνl′ν ′ +X (l, l′ = e or µ), (15)

and, we follow the analysis given in [27,33,34], to evaluate the main back-
grounds and possible cuts to enhance the Z ′ signal to background ratio.

In our analysis, we denote by NSM and NZ′ the numbers of ‘background’
and ‘signal’ events, and we adopt the criterion NZ′ = 2

√
NSM or 3 events,

whichever is larger, as the minimum signal for reach at the 95% C.L. [4].
Here, the Z ′ signal can be determined as

NZ′ = Lint × σZ
′ × PEW

surv × A× ε`, (16)

with
σZ

′
= σ(pp→ Z ′)× Br(Z ′ → W+W− → lνl′ν ′). (17)
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In Eq. (16), Lint is the time-integrated luminosity, and A×ε` is the product
of the overall acceptance times the lepton detection and reconstruction ef-
ficiencies where A represents the kinematic and geometric acceptance from
the total phase space to the fiducial phase space governed by Eqs. (9) and
(10), while ε` represents detector effects such as lepton trigger and identi-
fication efficiencies. The overall acceptance times the lepton efficiency is
W± invariant mass dependent and, for simplicity, we take that to be 0.5.
The SM background reads:

NSM = Lint

(
σEW

SM PEW
surv + σtt̄SM PQCD

surv

)
Aε` ≈ Lint σ

EW
SM PEW

surv Aε
`, (18)

where σEW
SM is determined by Eqs. (11) and (13) taking into account solely

the SM contribution. Also, in the latter expression for NSM we take into
account that for heavy MZ′ , σEW

SM � σtt̄SM as was shown in [33].
We depict in Fig. 2 the region in parameter space to which the LHC

will be able to constrain Z-Z ′ mixing for Lint = 100 fb−1.
In particular, the discovery reach on the Z-Z ′ mixing and M2 mass for

Z ′SSM obtained from the process pp → WW + X → lνl′ν ′ + X (l, l′ = e
or µ) at the LHC with

√
s = 14 TeV and Lint = 100 fb−1 are depicted by

the two solid lines. The form of these bounds is governed by the criterion
of NZ′ = 3 and the quadratic dependence of the resonant cross section on
the Z-Z ′ mixing angle. Also, current limits on M2 for Z ′SSM derived from
the Drell–Yan (l+l−) process at the LHC (8 TeV) (horizontal solid line)
as well as those expected from the future experiments at the LHC with
14 TeV (horizontal dotted line) are shown. The combined allowed area in
the (φ,M2) plane obtained from the Drell–Yan and W± pair production
processes is shown as a hatched region. In addition, present limits on the
Z-Z ′ mixing angle obtained from electroweak precision data analysis [10]
labelled as ‘EW data’ are displayed (these have a weak mass dependence
which we have not attempted to draw). For comparison, the corresponding
limits obtained from W± pair production at the ILC with polarized beams
and for two options of energy and time-integrated luminosity (0.5 (1) TeV
and 0.5 (1) ab−1, respectively) are also presented [17]. Fig. 2 show that
the LHC is able to not only significantly improve the current limits on the
Z-Z ′ mixing angle, but in several cases, also allow more stringent bounds
than those expected from future experiments on the WW channel at the
electron–positron collider ILC [11].

In Table 1, we collect our limits on the Z ′ parameters for the models
listed in Section II. Also shown in Table 1 are the current limits on vari-
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Figure 2: Reach (at 95 %C.L.) on Z-Z ′ mixing and M2 mass for Z ′SSM

obtained from the inclusive process pp → WW → lνl′ν ′ (l, l′ = e or µ) at
the LHC (solid lines). The allowed domain in φ and M2 is the hatched one.
Current limits on M2 for Z ′SSM derived from the Drell–Yan (l+l−) process
at the LHC (8 TeV) (horizontal solid line) as well as ‘typical’ mass limits
expected at the LHC (14 TeV) (horizontal dotted line) are shown. Limits
on the Z-Z ′ mixing angle from electroweak precision data are displayed,
and those expected from W± pair production at the ILC with polarized
beams.

ous Z ′ boson masses from the LEP2 and Tevatron from studies of diboson
W+W− pair production. The limits on φ and M2 at the Tevatron assume
that no decay channels into exotic fermions or superpartners are open to
the Z ′. Otherwise, the limits would be moderately weaker. LEP2 con-
strains virtual and Z-Z ′ boson mixing effects by the angular distribution
of W bosons. Table 1 shows that the limits on φ from the EW precision
data are generally competitive with and in many cases stronger than those
from the colliders, except for the ILC (1 TeV) and LHC (14 TeV) that
possess high potential to improve substantially the current bounds on the
Z-Z ′ mixing angle. We stress that these limits are highly complementary.

If a new Z ′ boson exists in the mass range ∼ 3–4.5 TeV, its discov-
ery is possible in the Drell–Yan channel. Moreover, the detection of the
Z ′ → W+W− mode is eminently possible and gives valuable information
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Table 1: Reach on the Z-Z ′ mixing angle φ at 95% C.L. in different pro-
cesses and experiments.

collider, |φ|× Z ′χ Z ′ψ Z ′η Z ′SSM MZ′

process |φ| |φ| |φ| |φ| (TeV)

LEP2 [11], 10−2 6 15 50 7 ≥ 1

e+e− →W+W−

Tevatron [12], 10−2 – – – 2 0.4–0.9

pp̄→W+W− +X

electroweak data 10−3 1.6 1.8 4.7 2.6 –

[10]

ILC (0.5 TeV) [17], 10−3 1.5 2.3 1.6 1.2 ≥ 3

e+e− →W+W−

ILC (1.0 TeV) [17], 10−3 0.4 0.6 0.5 0.3 ≥ 3

e+e− →W+W−

LHC (8 TeV), 10−3 – – – 5.2 3

pp→W+W− → lνl′ν ′

LHC (14 TeV), 10−4 4–8 3–6 3–6 5–9 3–4.5

pp→W+W− → lνl′ν ′

on the Z-Z ′ mixing. It might be the only mode other than the dilep-
tonic one, Z ′ → l+l−, that is accessible. Our results demonstrate that it
might be possible to detect a new heavy Z ′ boson from the totally leptonic
or semileptonic WW channels at the LHC. The LHC at nominal energy
and integrated luminosity provides the best opportunity of studying a new
heavy Z ′ through its WW decay mode and creates the possibility of mea-
suring (or constraining) the Z-Z ′ mixing, thus providing insight into the
pattern of symmetry breaking.
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A Stand-alone Geant4 Simulation of an
Electron Calorimter for COMET Experiment

A.Melnik, Dz. Shoukavy ∗

Institute of Physics, National Academy of Sciences of Belarus

Abstract

The simple model of electron calorimter (ECAL) for COMET
experiment based on LYSO crtystal was created using GEANT4.
We shown that single module can’t use as the cluster for ECAL
trigger. Array of 3x3 modules and 2x2 modules selected by BINP
algorithm are suitable as the cluster for ECAL trigger. We found
the optimal value for the threshold energy is 0,5σnoise module.

1 Introduction

On 4 July 2012, the ATLAS and CMS experiments at CERN’s Large
Hadron Collider (LHC) announced they had each observed a new par-
ticle – a boson consistent with the Higgs boson. The excess of signal over
background was observed at a mass of around 126 GeV at 95% confidence
level [1], [2]. Well known that Higgs boson plays a central role in a sym-
metry breaking scheme called the Brout-Englert-Higgs mechanism. The
Brout-Englert-Higgs mechanism was first proposed in 1964 in two papers
published independently, the first by R. Brout and F. Englert, and the
second by physicist P. Higgs. This mechanism explains how elementary
particles gain mass by interacting with an invisible field, now called the
Higgs field that permeates all space. P. Higgs predicted a massive spin-zero
boson of a new type. So the discovery of the Higgs boson by the ATLAS
and CMS experiments at CERN showed that the Standard Model (SM) is
correct.

∗E-mail: shoukavy@ifanbel.bas-net.by
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However there remain many shortcomings in the SM’s description of
nature. So according to the Standard Model, neutrinos are massless parti-
cles. But, neutrino oscillation experiments have shown that neutrinos have
mass. There is no candidate to Dark Matter in the pure Standard Model.
Also this model does not explain the nature of the confinement of quarks,
why do elementary particles as much as we see and why their masses are
different and so on.

So perhaps Standart Model is only a part of a bigger picture that in-
cludes new physics hidden deep in the subatomic world or in the dark
recesses of the universe. Unfortunately, so far we have no evidence for
physics beyond the Standard Model to explain the many remaining mys-
teries of the Universe. Even the most powerful particle accelerator ever
built – the Large Hadron Collider at CERN – has not found any hard ev-
idence for a new theory. New information from different experiments will
help us to find more of these missing pieces. We know that lepton flavour is
not conserved in neutrino oscillations and the Standard Model prediction
for Charged Lepton Flavour Violation (CLFV) is O(10−54). Therefore, if
observed at any higher rate, it will be clear evidence of physics beyond the
Standard Model. The COMET experiment [3],[4] will search for CLFV
through the coherent neutrinoless conversion of a muon to an electron in
the field of an aluminium nucleus, with a branching ratio sensitivity at a
factor of 104 better than the current limit from SINDRUM-II at PSI [5].

2 Electron calorimeter for COMET experi-

ment

The electron calorimeter (ECAL) of COMET experiment consists of seg-
mented scintillating crystals. Based on the prototype ECAL results in
the test experiment LYSO (Lu1.8Y.2SiO5 : Ce) crystal with 20x20x120 mm3

was chosen. ECAL is placed down-stream of the straw chamber detec-
tor and serves the following purposes. One is to measure the energy of
electrons with good resolution and to provide the ratio E/p for electron
identification. The second is to provide additional data on hit positions
of the electron tracks at the calorimeter location. This would be useful in
eliminating false tracking. The last is to provide a timing signal for the
electron events, and at the same time give a trigger signal that could be
used to select events to be recorded for further analysis. On this regard,
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fast response and high efficiency are needed.
The basic unit of the electron calorimeter is module consist of a group

of 2x2 crystals that wrapped with a Mylar foil. The whole ECAL consists
of 568 (=2272/4) modules that cover the full cross-section of the detector
region (55π2 = 9503mm3).

3 Algorithms for ECAL trigger

The ECAL trigger is required to give a good time resolution (to keep the
readout windows around the trigger time as narrow as possible) and good
energy resolution (so as to select energy clusters in the signal region rather
than background). Since the energy deposition will be divided among sev-
eral crystals, it is necessary to do a summation over crystals to reconstruct
the full energy.

Collaboration proposed to select the basic trigger unit (cell) as a group
of 2x2 crystals, i.e. corresponding to one module of the ECAL. Since for
online analysis we have informations from modules only that is a problem of
choice of cluster. What type of cluster that can be used for data collection
is better to use for ECAL trigger?

In this paper three types of clusters : 1 × 1, 2 × 2 and 3 × 3 modules
were considered. Let us to consider more detailed the different types of
clusters and algorithms its choice.

a) 1× 1 cluster. For each event it is necessary to determine unit
with maximum deposited energy on it. The detector is scanned by a probe
to determine this maximally energetic unit. The selected module is used
as a cluster.

b) 3× 3 cluster. This cluster includes the maximally energetic
unit that was found as it described above, and eight surrounding this unit
modules.

c) 2× 2 cluster. 2× 2 cluster is allocated from the 9 modules. For
doing this there are two algorithms. The first one describes in Techical
Design Report ([4]). First we construct the 3x3 cluster as it described
above. Then we determine the total energy by using the sum of an array
of 2x2 trigger cells (i.e. 4x4 crystals). All possible combinations of the sums
of 2x2 trigger cells will calculated. The maximally energetic solution will
be chosen and its information (energy, time and position) will be sent to
global trigger for decision. This is illustrated in Fig. 1. Since this algorithm
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was proposed by Budker Institute of Nuclear Physics (Novosibirsk, Russia)
further we will label one as BINP algorithm.

We propose an alternative algorithm of choice the 2x2 cluster. Below
we use for this algorithm short name as IP algorithm

In the IP algorithm (see Fig. 2), it is compared the energy deposited
in the upper-center (module 2) and bottom-center clusters (module 8 ) at
first. If more energy is deposited in the bottom-central module, then we
should compare the bottom-left (module 7) and the bottom-right (module
9) modules and choose maximally energetic unit. For example, it will be
bottom-left. Thus, we can make the supposition that the particle hit in the
bottom-left of crystal of central unit (red). So in this case as the cluster
we take module 5, module 8, module 7 and module 4.

Figure 1: Crystal regions which are
summed within the ECAL trigger for
BINP algorithm. Illustration of the
calculation of all possible combina-
tions of the trigger cell and their sum-
mation areas.

Figure 2: Crystal regions which are
summed within the ECAL trigger for
IP algorithm. Illustration of the calcu-
lation of all possible combinations of
the trigger cell and their summation
areas.

Each algorithm must be implemented for every event. For each cluster,
we should determine the energy resolution and estimate deposit energy
lost by the electron with a momentum of 105 MeV/c.

4 Monte-Carlo model of ECAL

The first step is creation of Monte-Carlo model of electron calorimeter us-
ing GEANT4. The ECAL is a 24× 24 matrix composed of LYSO crystals
with 20x20x120 mm3. Simulated piece of calorimeter is a 1/4 part of the
actual size of the ECAL. However, it is permissible for the simulation and
allow to minimize amount of machine resources. It was set the main char-
acteristics of crystals for creation of Monte-Carlo model of calorimeter,
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such as the chemical composition of crystals, density, molecular density,
physical condition, also their dimensions, number and location in the sim-
ulated calorimeter matrix. Each group of four crystals combined at the
2× 2 unit that is wrapped with foil. The calorimeter is composed of these
units and located in vacuum vessel. It is imposed a uniform magnetic field
of 1 T in the space along the Oz axis. Also electronics noise in the model
is taken into account as follows: in each crystal of calorimeter was added
random noise that smeared by normal distribution with σnoise = 0.6 MeV
and average meaning of noise is zero.

The next step is setting of the source parameters. In the model is used
a point isotropic source of mono-energetic electrons with the kinetic energy
104,49 MeV - that correspond to the momentum in 105 MeV/c. Electrons
are emitted by the solid angle ±20◦ . Solid angle selected in the way that to
cover a large area of detector, but electrons should not hit at the extreme
crystals. Distance between the source and the detector surface is 2.5 m
along the axis Oz that corresponds to real distance beetwen colimator
and ECAL for COMET experment. Implementation of the algorithm is
described through the Monte-Carlo simulation of the ECAL in GEANT4
environment. Some results of modeling, comparison of results for all types
of clusters and algorithms of their implementation is shown at section 5.

5 Results

First we found the distribution of total deposited energy for 105 Mev/c
electron beam in trigger cells for 3x3 array using our Monte-Carlo model
that described above. This is illustrated in Fig. 3. On Fig.4 the energy
spectra for maximal energetic module (central module on Fig.3) is given

A trigger condition for COMET experiment would correspond to an
energy deposition in the signal window Emin(∼ 95MeV ) < E(' 105MeV )
< Emax(∼ 115MeV ).

Thus it becomes clear that the single unit can not be used as a clus-
ter because it does not meet to the stated requirements for the trigger
condition.

Further we estimate a leak energy for different types of clusters depend
on the solid angle. We considered three cases when electrons are emitted
by the solid angle: ±5◦, ±10◦, ±20◦. Here the energy leak means the
difference between the total deposited energy in the ECAL and the total
deposited energy in array of 3x3 and 2x2 modules.
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Figure 3: The distribution
of total deposited energy for
3x3 cluster

Figure 4: The energy spectra for maximal
energetic module

From Fig.5 follows that IP algorithm looks more wors all. The answer
is a very easy. This is due to the fact that the IP algorithm is not always
correctly restore the crystal, which is hit by electron (see Fig.6).
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Figure 5: The leak energy for different types of clusters depend on solid
angle.

Thus, we come to conclusion that the 2 × 2 cluster selected by IP
algorithm isn’t suitable as the cluster for ECAL trigger.

The next step is estimation the energy resolution by fitting Log-normal
distribution for 3x3 cluster and 2x2 cluster selected by BINP algorithm
and search for an optimal value of threshold energy that remove con-
tribution of noise. Let us remember that in our Monte-Carlo model in
each crystal of calorimeter was added random noise that smeared by nor-
mal distribution with σnoise = 0.6 MeV and average meaning of noise is
zero. In this way we simulate the electric noise that approximately ex-
pected in experemint. Thus, we add the threshold energy for trigger cell
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Figure 6: The difference between the true value of line for crystal which
hit by electron and the reconstructing value of line.

in our model i.e we take into acount events when total deposited energy
in module larger then threshold. Since module consist of 4 crystals then
σmoise module =

√
4 · σnoise crystal =

√
4 · 0.62 = 1.2MeV.

We have plotted the dependence of energy resolution on threshold en-
ergy for trigger cell (see Fig.7). As it follows from Fig.7 that the optimal
value for threshold energy is Ethreshold = 0.5σmoise module for both types of
clusters. Since in this case we have the best energy resolution of these
clusters.
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Figure 7: The dependence of energy resolution on threshold energy for
module.
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6 Conclusion

In this paper the simulation of an ECAL trigger algorithm for COMET
experiment is performed. For this purpose we have created a simple Monte-
Carlo model taking into account electronics noise using a GEANT4. We
have shown that single module can’t be used as a cluster for ECAL trigger
due to does not meet to the stated requirements for the trigger condition.
At the same time we have demonstrated that array of 3x3 modules and 2x2
cluster selected by BINP algorithm are suitable as the cluster for ECAL
trigger. Also we studied the dependence of energy resolution on threshold
energy for trigger cell. We found the optimal value for the threshold energy
is 0.5σmoise module.

In the future we plan to divide the electronics noise in crystal into corre-

lated and uncorrelated noise i.e. σmoise crystal =
√
σ2
correlated + σ2

uncorrelated,
where σcorrelated is a constant. Since we expect that impact of correlated
noise on the choice of the cluster is significant.
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Minimal Length in Quantum Theory and
Gravity and Measurability

A.E.Shalyt-Margolin∗
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Abstract

At the present time the majority of researchers agree that a
minimal length is involved at high (Planck’s) energies. But all the
currently used low-energy theories (quantum mechanics and field
theory, gravity, etc.) are continuous, i.e. the minimal length in
them is zero. This paper presents an alternative approach when the
minimal length is nonzero at all the energy scales. By this approach
the definition of measurability and of measurable quantities is
given. Further it is demonstrated that, provided a theory involves
a minimal length, this theory must be free from such infinitesimal
quantities as infinitely small variations in surface of the holographic
screen, its volume, and entropy. The corresponding infinitesimal
quantities in this case must be replaced by the ≪minimal variations
possible≫ – finite quantities dependent on the existent energies. As
a result, the initial low-energy theory (quantum theory or general
relativity) inevitably must be replaced by a minimal-length the-
ory that gives very close results but operates with absolutely other
mathematical apparatus.

1 Introduction

One of the most important problems in modern fundamental physics is
the problem of transition from low to high energies. Just this problem is
basic for many others: divergence in a quantum field theory [1], nonrenor-
malisability of Einstein’s gravitation theory for the standard transfer to its

∗E-mail: a.shalyt@mail.ru; alexm@hep.by
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quantization [2], and the like. In fact, this problem was at the root of such
beautiful theories as string theory [3] and loop quantum gravity [4].

At the present time all high-energy generalizations (limits) of the basic
≪components≫ in fundamental physics (quantum theory [1] and gravity
[5]) of necessity lead to a minimal length on the order of the Planck length
lmin ∝ lP . This follows from a string theory [6]– [3], loop quantum gravity
[4], and other approaches [9]–[17].

But it is clear that, provided a minimal length exists, it is existent at
all the energy scales and not at high (Planck’s) scales only.

What is inferred on this basis for real physics? At least, it is suggested
that the use of infinitesimal quantities dxµ in a mathematical apparatus of
both quantum theory and gravity is incorrect, despite the fact that both
these theories give the results correlating well with the experiment (for
example, [18]).

Indeed, in all cases the infinitesimal quantities dxµ bring about an
infinitely small length ds [5]

ds2 = gµνdxµdxν (1)

that is inexistent because of lmin.
The same is true for any function Υ dependent only on different pa-

rameters Li whose dimensions of length of the exponents are equal to or
greater than 1 νi ≥ 1

Υ ≡ Υ(Lνi
i ). (2)

Obviously, the infinitely small variation dΥ of Υ is senseless as, according
to (2), we have

dΥ ≡ dΥ(νiL
νi−1
i dLi). (3)

But, because of lmin, the infinitesimal quantities dLi make no sense and
hence dΥ makes no sense too.

Instead of these infinitesimal quantities, reasonable are ≪minimal vari-
ations possible≫ ∆min of the quantity L having the dimension of length,
i.e. the quantity

∆minL = lmin. (4)

And then

∆minΥ ≡ ∆minΥ(νiL
νi−1
i ∆minLi) = ∆minΥ(νiL

νi−1
i lmin). (5)

However, the ≪minimal variations possible≫ of any quantity having the
dimensions of length (4) which are equal to lmin ∝ lP require, according
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to the Heisenberg Uncertainty Principle (HUP) [19], maximal momentum
pmax ∝ PPl and energy Emax ∝ EP . Here lP , PPl, EP – Planck’s length,
momentum, and energy, respectively.

But at low energies (far from the Planck energy) there are no such
quantities and hence in essence ∆minL = lmin ∝ lP (4) corresponds to the
high-energy (Planck’s) case only.

For the energies lower than Planck’s energy, the ≪minimal variations
possible≫ ∆minL of the quantity L having the dimensions of length must
be greater than lmin and dependent on the present E

∆min ≡ ∆min,E,∆min,EL > lmin. (6)

Besides, as we have a minimal length unit lmin, it is clear that any quantity
having the dimensions of length is ≪quantized≫, i.e. its value measured in
the units lmin equals an integer number and we have

L = NLlmin, (7)

where NL– positive integer number.
The problem is, how the ≪minimal variations possible≫ ∆min,E (6) are

dependent on the energy or, what is the same, on the scales of the measured
lengths?

2 Minimal Length and Space-Time Quan-

tum Fluctuations

To solve the above-mentioned problem, initially we can use the Space-
Time Quantum Fluctuations (STQF) with regard to quantum theory and
gravity. The definition of STQF is closely associated with the notion of
≪space-time foam≫. The notion ≪space-time foam≫, introduced by J. A.
Wheeler about 60 years ago for the description and investigation of physics
at Planck’s scales (Early Universe) [21],[22], is fairly settled. Despite the
fact that in the last decade numerous works have been devoted to physics
at Planck’s scales within the scope of this notion, for example [23]–[42], by
this time still their no clear understanding of the ≪space-time foam≫ as it
is.

On the other hand, it is undoubtful that a quantum theory of the Early
Universe should be a deformation of the well-known quantum theory.
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In my works with the colleagues [43]–[52] I has put forward one of the
possible approaches to resolution of a quantum theory at Planck’s scales
on the basis of the density matrix deformation.

In accordance with the modern concepts, the space-time foam [22] no-
tion forms the basis for space-time at Planck’s scales (Big Bang). This ob-
ject is associated with the quantum fluctuations generated by uncertainties
in measurements of the fundamental quantities, inducing uncertainties in
any distance measurement. A precise description of the space-time foam
is still lacking along with an adequate quantum gravity theory. But for
the description of quantum fluctuations we have a number of interesting
methods (for example, [53],[32]–[42]).

In what follows, we use the terms and symbols from [34]. Then for the

fluctuations δ̃l of the distance l we have the following estimate:

(δ̃l)γ ∼> lγP l
1−γ = lP (

l

lP
)1−γ = l(

lP
l
)γ = lλγ

l , (8)

or that same

|(δ̃l)γ|min = βlγP l
1−γ = βlP (

l

lP
)1−γ = βlλγ

l , (9)

where 0 < γ ≤ 1, coefficient β is of order 1 and λl ≡ lP/l.
From (8),(9), we can derive the quantum fluctuations for all the primary

characteristics, specifically for the time (δ̃t)γ, energy (δ̃E)γ, and metrics

(δ̃gµν)γ. In particular, for (δ̃gµν)γ we can use formula (10) in [34]

(δ̃gµν)γ ∼> λγ. (10)

Further in the text is assumed that the theory involves a minimal length
on the order of Planck’s length

lmin ∝ lP

or that is the same
lmin = ξlP , (11)

where the coefficient ξ is on the order of unity too.
In this case it is unimportant which is the origin of this minimal length.

For simplicity, we assume that it comes from the Generalized Uncertainty
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Principle (GUP) that is an extension of HUP for Planck’s energies, where
gravity must be taken into consideration [6]–[17]:

△x ≥ ~
△p

+ α′l2P
△p

~
. (12)

Here α′ is the model-dependent dimensionless numerical factor.
The equation (12) leads to the minimal length lmin = ξlP = 2

√
α′lP .

Therefore, in this case replacement of Planck’s length by the minimal
length in all the above formulae is absolutely correct and is used with-
out detriment to the generality [20]

lP → lmin. (13)

Thus, λl ≡ lmin/l and then (8)– (10) upon the replacement (13) are read
unchanged.

And (9) may be written as

|(δ̃l)γ|min = βlλγ
l = βNl(N

−γ
l ) = βN1−γ

l lmin. (14)

Here one should take into account the following consideration: due to the
(Integrality Condition) (7) in the right-hand side of (14) for the factor
βN1−γ

l before lmin its integer part is always meant

βN1−γ
l 7→ [βN1−γ

l ] (15)

and this goes without special mentioning for the whole text.
As noted in the overview [34], the value γ = 2/3 derived in [53] is

totally consistent with the Holographic Principle [54]–[56].
The following points of importance should be noted [20]:
2.1. It is clear that at Planck’s scales, i.e. at the minimal length

scales
l → lmin (16)

models for different values of the parameter γ are coincident.
2.2. As noted, specifically in (7), provided some quantity has a

minimal measuring unit, values of this quantity are multiples of
this unit. Naturally, any quantity having a minimal measuring unit is
uniformly discrete. The latter property is not met, in particular, by the
energy E.
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As E ∼ 1/l, where l – measurable scale, the energy E is a discrete
quantity but the nonuniformly discrete one. It is clear that the
difference between the adjacent values of E is the less the lower E. In
other words, for l ≫ lmin i.e.

E ≪ EP (17)

E becomes a practically continuous quantity.
2.3. In fact, the parameter λl was introduced earlier in papers [43]–

[52] as a deformation parameter on going from the canonical quantum
mechanics to the quantum mechanics at Planck’s scales (early Universe)
that is considered to be the quantum mechanics with the fundamental
length (QMFL):

0 < αx = l2min/x
2 ≤ 1/4, (18)

where x is the measuring scale, lmin ∼ lp.
The deformation is understood as an extension of a partic-

ular theory by inclusion of one or several additional parame-
ters in such a way that the initial theory appears in the limiting
transition[57].

Obviously, everywhere, apart from the limiting point λx = 1 or x =
lmin, we have

λx =
√
αx, (19)

From (18) it is seen that at the limiting point x = lmin the parameter αx

is not defined due to the appearance of singularity [43]–[52]. But at this
point its definition may be extended (regularized).

The parameter αl has the following clear physical meaning:

α−1
l ∼ SBH , (20)

where

SBH =
A

4l2p
(21)

is the well-known Bekenstein-Hawking formula for the black hole entropy
in the semiclassical approximation [58],[59] for the black-hole event horizon
surface A, with the characteristics linear dimension (≪radius≫) R = l. This
is especially obvious in the spherically-symmetric case.

In what follows we use both parameters: λx and αx.
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Turning back to the introductory section of this work and to the defi-
nition ∆min,EL, we assume the following:

|∆min,EL| = |(δ̃L)γ|min, (22)

where |(δ̃L)γ|min is from formula (9), γ – fixed parameter from formulae
(8), (9), and E = c~/L.

In physics, and in thermodynamics in particular, the extensive quan-
tities or parameters are those proportional to the mass of a system or to
its volume. Proceeding from the definition (2) of the function Υ(Lνi

i ), one
can generalize this notion, taking as a Generalized Extensive Quan-
tity (GEQ) of some spatial system Ω the function dependent only on the
linear dimensions of this system, with the exponents no less than 1.

The function Υ(Lνi
i ), νi ≥ 1 (2) is GEQ of the system Ω with the

characteristic linear dimensions Li; i = 1, .., n or, identically, a sum of the
systems Ωi; i = 1, .., n, each of which has its individual characteristic linear
dimension Li.

Then from the initial formulae (2)–(6) it directly follows that, provided
the minimal length lmin is existent, there are no infinitesimal variations
of GEQ.

In the first place, this is true for such simplest objects as the n-dimen-
sional sphere Bn, n ≥ 2, whose surface area (area of the corresponding
hypersphere Sn) and volume Vn represent GEQs and are equal to the fol-
lowing:

Sn = nCnR
n−1;Vn = CnR

n, (23)

where R – radius of a sphere the length of which is a characteristic linear
dimension, Cn = πn/2/Γ(n

2
+ 1) , and Γ(x) is a gamma-function.

Of course, the same is true for the n-dimensional cube (or hypercube)
An; its surface area and its volume are GEQs, and a length of its edge is
a characteristic linear dimension.
Provided lmin exists, there are no infinitesimal increments for both the
surface area and volume of An or Bn; only minimal variations possible for
these quantities are the case.

In what follows we consider only the spatial systems whose surface
areas and volumes are GEQs.

Definition 1.
1. Let us define the quantity having the dimensions of length L mea-

surable, when it satisfies the relation (7).
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2. Let us define any physical quantity measurable, when its value is
consistent with point 1 of this Definition.

3 One Important Example of Gravity.

Let us consider a simple but very important example of gravity in horizon
spaces.

Gravity and thermodynamics of horizon spaces and their interrelations
are currently most actively studied [60]–[72]. Let us consider a relatively
simple illustration – the case of a static spherically-symmetric horizon in
space-time, the horizon being described by the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2. (24)

The horizon location will be given by a simple zero of the function f(r),
at the radius r = a.

This case is studied in detail by T.Padmanabhan in his works [60, 71]
and by the author of this paper in [73]. We use the notation system of
[71]. Let, for simplicity, the space be denoted as H.

It is known that for horizon spaces one can introduce the temperature
that can be identified with an analytic continuation to imaginary time. In
the case under consideration ([71], eq.(116))

kBT =
~cf ′(a)

4π
. (25)

Therewith, the condition f(a) = 0 and f ′(a) ̸= 0 must be fulfilled.
Then at the horizon r = a Einstein’s field equations

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2 (26)

where P = T r
r is the trace of the momentum-energy tensor and radial

pressure.
Now we proceed to the variables ≪α≫ from the formula (18) to consider

(26) in a new notation, expressing a in terms of the corresponding deforma-
tion parameter α. In what follows we omit the subscript in formula (18) of
αx, where the context implies which index is the case. In particular, here
we use α instead of αa. Then we have

a = lminα
−1/2. (27)
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Therefore,
f ′(a) = −2l−1

minα
3/2f ′(α). (28)

Substituting this into (26) we obtain in the considered case of Einstein’s
equations in the ≪α–representation≫ the following [73]:

c4

G
(−αf ′(α)− 1

2
) = 4πPα−1l2min. (29)

Multiplying the left- and right-hand sides of the last equation by α, we get

c4

G
(−f ′(α)α2 − 1

2
α) = 4πP l2min. (30)

L.h.s. of (30) is dependent on α. Because of this, r.h.s. of (30) must be
dependent on α as well, i. e. P = P (α), i.e

c4

G
(−f ′(α)α2 − 1

2
α) = 4πP (α)l2min. (31)

Note that in this specific case the parameter α within constant factors is
coincident with the Gaussian curvature Ka [74] corresponding to a:

l2min

a2
= l2minKa. (32)

Substituting r.h.s of (32) into (31), we obtain the Einstein equation on
horizon, in this case in terms of the Gaussian curvature

c4

G
(−f ′(Ka)K

2
a −

1

2
Ka) = 4πP (Ka). (33)

This means that up to the constants

−f ′(Ka)K
2
a −

1

2
Ka = P (Ka), (34)

i.e. the Gaussian curvature Ka is a solution of Einstein equations in this
case. Then we examine different cases of the solution (34) with due regard
for considerations of formula (22).

3.1. First, let us assume that a ≫ lmin. As, according (7), the radius a
is quantized, we have a = Nalmin with the natural number Na ≫ 1. Then
it is clear that the Gaussian curvature Ka = 1/a2 ≈ 0 takes a (nonuniform)

77



discrete series of values close to zero, and, within the factor 1/l2min, this
series represents inverse squares of natural numbers

(Ka) = (
1

N2
a

,
1

(Na ± 1)2
,

1

(Na ± 2)2
, ...). (35)

Let us return to formulas (9),(22) for l = a

|((δ̃a)γ)min| = βNalminN
−γ
a = βN1−γ

a lmin, (36)

where β in this case contains the proportionality factor that relates lmin

and lP .
Then, according to (22), a±1 is a measurable value of the radius r

following after a, and we have

(a±1)γ ≡ a± ((δ̃a)γ)min = a± βN1−γ
a lmin = Na(1± βN−γ

a )lmin. (37)

But, as Na ≫ 1, for sufficiently large Na and fixed γ, the bracketed ex-
pression in r.h.s. (37) is close to 1:

1± βN−γ
a ≈ 1. (38)

Obviously, we get
lim

Na→∞
(1± βN−γ

a ) → 1. (39)

As a result, the Gaussian curvature Ka±1 corresponding to r = a±1

Ka±1 = 1/a2±1 ∝
1

N2
a (1± βN−γ

a )2
(40)

in the case under study is only slightly different from Ka.
And this is the case for sufficiently large values of Na, for any value

of the parameter γ , for γ = 1 as well, corresponding to the absolute
minimum of fluctuations ≈ lmin,or more precisely – to βlmin. However, as
all the quantities of the length dimension are quantized and the factor β
is on the order of 1, actually we have β = 1.

Because of this, provided the minimal length is involved, lmin (9) is
read as

|(δ̃l)1|min = lmin. (41)

But, according to (11), lmin = ξlP is on the order of Planck’s length, and

it is clear that the fluctuation |(δ̃l)1|min corresponds to Planck’s energies
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and Planck’s scales. The Gaussian curvature Ka, due to its smallness
(Ka ≪ 1 up to the constant factor l−2

min) and smooth variations independent
of γ (formulas (37)–(40)), is insensitive to the differences between various
values of γ.

Consequently, for sufficiently small Gaussian curvature Ka we can take
any parameter from the interval 0 < γ ≤ 1 as γ.

It is obvious that the case γ = 1, i. e. |(δ̃l)1|min = lmin, is associated
with infinitely small variations da of the radius r = a in the Riemannian
geometry.
Since then Ka is varying practically continuously, in terms of Ka up to the
constant factor we can obtain the following:

d[L(Ka)] = d[P (Ka)], (42)

Where have

L(Ka) = −f ′(Ka)K
2
a −

1

2
Ka, (43)

i. e. l.h.s of (33) (or (34)).
But in fact, as in this case the energies are low, it is more correct to

consider

L((Ka±1)γ)− L(Ka) = [P (Ka±1)γ]− [P (Ka)] ≡ Fγ[P (Ka)], (44)

where γ < 1,rather than (42).
In view of the foregoing arguments 3.1, the difference between (44) and

(42) is insignificant and it is perfectly correct to use (42) instead of (44).
3.2. Now we consider the opposite case or the transition to the ultra-

violet limit
a → lmin = κlmin, (45)

i.e.
a = κlmin. (46)

Here κ is on the order of 1.
Taking into consideration point 1.1) stating that in this case models

for different values of the parameter γ are coincident, by formula (41) for
any γ we have

|(δ̃l)γ|min| = (δ̃l)1|min = lmin. (47)

But in this case the Gaussian curvature Ka is not a ≪small value≫ con-
tinuously dependent on a , taking, according to (40), a discrete series of
values Ka, Ka±1 , Ka±2 , ...
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Yet (26), similar to (33) ((34)), is valid in the semiclassical approxima-
tion only, i.e. at low energies.

Then in accordance with the above arguments, the limiting transition to
high energies (45) gives a discrete chain of equations or a single equation
with a discrete set of solutions as follows:

−f ′(Ka)K
2
a −

1

2
Ka = Θ(Ka);

−f ′(Ka±1)K
2
a±1 −

1

2
Ka±1 = Θ(Ka±1);

and so on. Here Θ(Ka) – some function that in the limiting transition
to low energies must reproduce the low-energy result to a high degree of
accuracy, i.e. P (Ka) appears for a ≫ lmin from formula (34)

lim
Ka→0

Θ(Ka)) = P (Ka). (48)

In general, Θ(Ka) may lack coincidence with the high-energy limit of the
momentum-energy tensor trace (if any):

lim
a→lmin

P (Ka). (49)

At the same time, when we naturally assume that the Static Spherically-
Symmetric Horizon Space-Time with the radius of several Planck’s units
(46) is nothing else but a micro black hole, then the high-energy limit (49)
is existing and the replacement of Θ(Ka) by P (Ka) in r.h.s. of the foregoing
equations is possible to give a hypothetical gravitational equation for the
event horizon micro black hole. But a question arises, for which values of
the parameter a (46) (or Ka) this is valid and what is a minimal value of
the parameter γ = γ(a) in this case.

In all the cases under study, 3.1) and 3.2), the deformation parameter
αa (18) (λa(19)) is, within the constant factor, coincident with the Gaus-
sian curvature Ka (respectively

√
Ka) that is in essence continuous in the

low-energy case and discrete in the high-energy case.
In this way the above-mentioned example shows that, despite the
absence of infinitesimal spatial-temporal increments owing to the
existence of lmin and the essential ≪discreteness≫ of a theory, this
discreteness at low energies is not ≪felt≫, the theory being actu-
ally continuous. The indicated discreteness is significant only in
the case of high (Planck’s) energies.
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In [71] it is shown that the Einstein Equation for horizon spaces in the
differential form may be written as a thermodynamic identity (the first
principle of thermodynamics) ([71], formula (119)):

~cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

G~
d

(
1

4
4πa2

)
︸ ︷︷ ︸

dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd

(
4π

3
a3
)

︸ ︷︷ ︸
P dV

. (50)

where, as noted above, T – temperature of the horizon surface, S – corre-
sponding entropy, E – internal energy, V – space volume.

Note that, because of the existing lmin, practically all quantities in (50)
(except of T ) represent GEQ. Apparently, the radius of a sphere r = a, its
volume V , and entropy represent such quantities:

S =
4πa2

4l2P
=

πa2

l2P
, (51)

within the constant factor 1/4l2P equal to a sphere with the radius a.
Because of this, there are no infinitesimal increments of these quantities,

i.e. da, dV, dS. And, provided lmin is involved, the Einstein equation for
the above-mentioned case in the differential form (50) makes no sense and
is useless. If da may be, purely formerly, replaced by lmin, then, as the
quantity lmin is fixed, it is obvious that ≪dS≫ and ≪dV ≫ in (50) will be
growing as a and a2, respectively. And at low energies, i.e. for large values
of a ≫ lmin, this naturally leads to infinitely large rather than infinitesimal
values.

In a similar way it is easily seen that the ≪Entropic Approach to Grav-
ity≫ [75] in the present formalism is invalid within the scope of the minimal
length theory. In fact, the ≪main instrument≫ in [75] is a formula for the
infinitesimal variation dN in the bit numbers N on the holographic screen
S with the radius R and with the surface area A ([75],formula (4.18)):

dN =
c3

G~
dA =

dA

l2P
. (52)

As N = A/l2P , and A represents GEQ, it is clear that N is also GEQ and
hence neither dA nor dN makes sense.

It is obvious that infinitesimal variations of the screen surface area dA
are possible only in a continuous theory involving no lmin.

81



When lmin ∝ lP is involved, the minimal variation △A is evidently
associated with a minimal variation in the radius R

R → R± lmin (53)

is dependent on R and growing with ∼ R for R ≫ lmin

△±A(R) = A(R± lmin))− A(R) ∝ (
±2R

lmin

+ 1) = ±2NR + 1, (54)

where NR = R/lmin, as indicated above.
But, as noted above, a minimal increment of the radius R equal to

|∆minR| = lmin ∝ lP corresponds only to the case of maximal (Planck’s)
energies or, what is the same, to the parameter γ = 1 in formula (22).
However, in [75] the considered low energies are far from the Planck ener-
gies and hence in this case in (22) γ < 1, (53), and (54) are respectively
replaced by

R → R±N1−γ
R lmin (55)

and

△±A(R) = A(R±N1−γ
R lmin)−A(R) ∝ ±N2−γ

R +N2−2γ
R = N2−2γ

R (±Nγ
R+1).
(56)

An increase of r.h.s in(56) with the growth of R (or identically of NR) for
R ≫ lmin is obvious.

So, if lmin is involved, formula (4.18) from [75] makes no sense similar to
other formulae derived on its basis (4.19),(4.20),(4.22),(5.32)–(5.34), . . . in
[75] and similar to the derivation method for Einstein’s equations proposed
in this work.

Proceeding from the principal parameters of this work αl(orλl), the
fact is obvious and is supported by the formula (20) given in this paper,
meaning that

α−1
R ∼ A, (57)

i.e. small variations of αR (low energies) result in large variations of α−1
R ,

as indicated by formula (54).
In fact, we have a no-go theorems.

4 Conclusion.

The last statements concerning dS, dN may be explicitly interpreted using
the language of a quantum information theory as follows:
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due to the existence of the minimal length lmin, the minimal
area l2min and volume l3min are also involved, and that means ≪quan-
tization≫ of the areas and volumes. As, up to the known constants,
the ≪bit number≫ N from (52) and the entropy S from (51) are nothing
else but

S =
A

4l2min

, N =
A

l2min

. (58)

It is obvious that there is a ≪minimal measure≫ for the ≪amount of
data≫ that may be referred to as ≪one bit≫ (or ≪one qubit≫).

The statement that there is no such quantity as dN (and respectively
dS) is equivalent to claiming the absence of 0, 25 bit, 0, 001 bit, and so on.

This inference completely conforms to the Hooft-Susskind Holographic
Principle (HP) [54]–[56] that includes two main statements:

(a) All information contained in a particular spatial domain is concen-
trated at the boundary of this domain.

(b) A theory for the boundary of the spatial domain under study should
contain maximally one degree of freedom per Planck’s area l2P .

In fact (but not explicitly) HP implicates the existence of lmin = lP .
The existence of lmin ∝ lP totally conforms to HP, providing its general-
ization. Specifically, without the loss of generality, l2P in point (b) may be
replaced by l2min.

So, the principal inference of this work is as follows: provided the min-
imal length lmin is involved, its existence must be taken into consideration
not only at high but also at low energies, both in a quantum theory and in
gravity. This becomes apparent by rejection of the infinitesimal quantities
associated with the spatial-temporal variations dxµ, .... In other words,
with the involvement of lmin, the General Relativity (GR) must be re-
placed by a (still unframed) minimal-length gravitation theory that may
be denoted as Gravlmin . In their results GR and Gravlmin should be very
close but, as regards their mathematical apparatus (instruments), these
theories are absolutely different.

Besides, Gravlmin should offer a rather natural transition from high to
low energies

[NL ≈ 1] → [NL ≫ 1] (59)

and vice versa
[NL ≫ 1] → [NL ≈ 1], (60)

where NL – integer from formula (7) determining the characteristics scale
of the lengths L (energies E ∼ 1/L ∝ 1/NL).
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It should be noted that in case Gravlmin the cosmological term Λ is no
longer a constant Λ ̸= const, (and the Bianchi identity ∇µGµν ≈ 0 [5] will
appear to a high degree of accuracy only in the low-energy limit), this term
is dependent on αl(λl) and we have [51],[73] with the known quantum field
theory

Λ(α) ∝ (α2 + η1α
2 + ...)Λp, (61)

and, provided the holographic principle is valid, we get [54]–[56]

ΛHol(α) ∝ (α + ξ1α
2 + ...)Λp, (62)

where Λp –cosmological term at Planck’s scales.
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Evolution of Entangled States in QCD
Vacuum

Kuvshinov V.I.∗, Bagashov E.G.
Joint Institute for Power and Nuclear Research - Sosny,

National Academy of Sciences of Belarus

Abstract

The interaction of single- and multiparticle quark states with
QCD stochastic vacuum is considered. On the basis of the acquired
results the implications for quark confinement are being made.

In multiparticle case the behaviour of entangled states is de-
scribed. It is shown that the interaction with stochastic vacuum in
the confinement region leads to fully mixed states and decoherence,
i.e. the entanglement vanishes.

For all of the considered states purity, fidelity and von Neumann
entropy are evaluated.

1 Introduction

The model of QCD stochastic vacuum is one of the phenomenological mod-
els used to explain quark confinement [1, 2, 3]. It is based on the assump-
tion that one can calculate vacuum expectation values of gauge invariant
quantities as expectation values with respect to some well-behaved stochas-
tic gauge field, for which only the second order correlators are important
and the others are negligible [3].

We consider QCD stochastic vacuum as the environment for colour
quantum particles and show that the result of their interaction is deco-
herence, relaxation of quantum superpositions, loss of information and
confinement of colour states phenomenon [4].

∗E-mail: v.kuvshinov@sosny.bas-net.by
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2 Interaction of Single Particle State with

QCD Vacuum

Suppose we have a quark which quantum state is described by the density
matrix:

ρ̂in = |ϕin⟩⟨ϕin|. (1)

As the result of the interaction of this state with stochastic QCD vacuum,
the density matrix takes form [5]:

ρ̂(L) = N−1
c Î + (ρ̂in −N−1

c Î)Wadj(L), (2)

where Wadj(L) is the Wilson loop in the adjoint representation [6] and L
is the space-time loop itself.

The exponential decay of Wilson loop is recognized as the condition of
confinement [3], so if we choose a rectangular loop L spanning over time
T and distance R, in the confinement region we get:

Wadj(L) = exp(−σadjRT ). (3)

Here σadj is the QCD string tension in the adjoint representation [4]. Thus
in the case of large distances and time periods we get

ρ̂(L : RT → ∞) = N−1
c Î . (4)

Thus the interaction of an arbitrary colour superposition represented by (1)
with the QCD stochastic vacuum at large distances leads to an emergence
of a fully mixed state with equal probabilities for different colours. This
process can be analyzed with use of some quantum optics’ quantities.

Purity P is defined as P=Tr(ρ̂2) and it represents the closeness of a
quantum state to a pure one. For the final state ρ̂(L) depicted by (2) we
acquire

P = N−1
c + (1−N−1

c )W 2
adj(L). (5)

Another quantity we are interested in is quantum fidelity. It is defined
as [7]

F (ω, τ) = Tr (
√√

ωτ
√
ω) (6)

This quantity represents the square root of the probability of transition
between the states described by density matrices ω and τ . In our case, for
the final state ρ̂(L) and the initial state ρ̂in we get

F (ρ̂in, ρ̂(L)) = Tr (ρ̂in
√
N−1

c + (1−N−1
c )Wadj(L)). (7)
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We also consider von Neumann entropy. It shows how much quantum
information is lost in the system during its departure from a pure state [8].
The definition is:

S = −Tr (ρ̂ ln ρ̂). (8)

For the initial state S = 0, as the state is pure and the density matrix
is idempotent. For the final state in case of RT → ∞ (see (4)) we get:

S = −Tr (N−1
c Î ln (N−1

c Î)) = lnNc. (9)

3 Multiparticle States

Density matrix is dependent on the quantity of degrees of freedom of a
system, i.e. on the quantity of particles in the system. Accordingly, the
density matrix dimesions for multiparticle states would be increased from
(Nc)x(Nc) to (NNp

c )x(NNp
c ), where Np is the number of particles. So the

expression (2) in the multiparticle case would look like

ρ̂(L) = N−Np
c Î + (ρ̂in −N−Np

c Î)Wadj(L). (10)

And the expression (4) can be written as

ρ̂(L : RT → ∞) = N−Np
c Î . (11)

The purity (5) would change to:

P = N−Np
c + (1−N−Np

c )W 2
adj(L), (12)

and the fidelity (7):

F = Tr (ρ̂in

√
N

−Np
c + (1−N

−Np
c )W (L)), (13)

with von Neumann entropy (8) being:

S = Np lnNc. (14)

Let us consider the following types of initial states for our system:

• By purity: 1) pure; 2) mixed.

• By separability: 1) separable; 2) non-separable (entangled).
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Table 1 represents the mentioned quantum optics’ characteristics for the
four types of states before the interaction with vacuum:

Table 1. Purity and entropy of different states of multiparticle
system before the interaction with vacuum

State: pure
separable

mixed
separable

pure
entangled

mixed
entangled

P (purity) 1 1

N
Np
c

≤P< 1 1 1

N
Np
c

<P< 1

S (entropy) 0 0<S≤ NplnNc 0 0<S<NplnNc

The same quantities after the interaction:

Table 2. Purity, fidelity and entropy of different states of
multiparticle system after the interaction with vacuum

State: pure
separable

mixed
separable

pure
entangled

mixed
entangled

P (purity) 1

N
Np
c

1

N
Np
c

1

N
Np
c

1

N
Np
c

S (entropy) Np ln Nc Np ln Nc Np ln Nc Np ln Nc

F (fidelity) 1

N
Np/2
c

1

N
Np/2
c

<F≤ 1 1

N
Np/2
c

1

N
Np/2
c

<F< 1

Thus we can see that the final state is defined by a number of particles (and
the number of possible colours for any individual particle) in the system.
But in any case the entropy during the interaction with QCD vacuum rises
to its maximum value and the information is being lost in this process. In
the limit W (L) → 0 we get fully mixed state of a form (11).

4 Conclusion

QCD vacuum can be effectively trated as environment (in the sense of
quantum statistics) for colour particles.
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In the case of the interaction of stochastic QCD vacuum (only corre-
lators of the second order are important) in confinement region (Wilson
loop decays exponentially) with one-particle state the latter undergoes de-
coherence into a fully mixed state, along with fidelity and purity decay,
and increase in von Neumann entropy.

The multi-particle case proposes additional options in terms of defining
the initial state, as it might be separable or entangled, pure or mixed. It
was shown, however, that after the interaction of ine initial state with QCD
vacuum the entanglement vanishes.
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High Precision Method for the Linear
Confining Potential in Momentum Space

Andreev V.V ∗

F.Skorina Gomel State University

Abstract

This paper shows that the Schrödinger equation in the momen-
tum representation for a linear confining potential for states with
zero orbital angular momentum can be solved with high accuracy
(far superior to other methods) using the special quadrature formu-
las for hypersingular integral.

1 Methods of solution of integral equations

After partial decomposition Schrödinger equation in the momentum space
for centrally symmetric potentials, takes the form:

k2

2µ
ϕℓ(k) +

∞∫
0

Vℓ(k, k
′)ϕℓ(k

′)k′2dk′ = Eϕℓ(k) , (1)

where µ = m1m2/(m1 +m2) is the reduced mass; m1,m2 are mass of the
constituents of a bound system; k is the momentum of the relative motion
(|k| = k); ϕℓ(k) is the radial part of the Fourier transform of the wave
function in the coordinate representation; Vℓ(k, k

′) is the operator ℓ -th
component of the partial decomposition of the interaction potential; E is
binding energy.

However, the description of bound states in the momentum represen-
tation is complicated by necessity of solving the integral equation (1),

∗E-mail:vik.andreev@gsu.by
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containing singular terms. So for a linear confining potential V (r) = σr
we have that

Vℓ(k, k
′) =

σ

π(kk′)2
Q′

ℓ(
k2 + k′2

2kk′ ) . (2)

where function Qℓ(y) is Legendre polynomial of 2nd kind. Since the func-
tion Q′

ℓ hypersingular if k = k′, then the potential Vℓ(k, k
′) is also hyper-

singular. Standard methods of numerical solution of the equation (1) with
the potential (2) gives relatively low accuracy of [1, 2]. The numerical
solution of the integral equation (1) can be reduced to a problem on the
eigenvalues, which arises when using quadrature formulas for the integrals
in the equation.

As a result, the integral equation of the form (1) can be reduced to the
problem

N∑
j=1

H (ki, kj)ϕ(kj) =
N∑
j=1

Hijϕ(kj) = Eϕ(ki) , (3)

where to obtain the eigenvalues and vectors need to know the elements of
Hij. And if i ̸= j, the problem of calculating the elements Hij for a linear
confining potential is not complex, then the i = j (k = k′) directly to do
this is not possible, due to the presence of singularities.

2 Quadrature formula for singular integrals

Receive quadrature formula for the integral

I (z) =

1∫
−1

F (t)w(t)g (t, z) dt (4)

where g (t, z) is function is singular at t = z. The functions F (t) and
w(t) is part of the kernel that does not contain the singularities for all
−1 < t, z < 1.

For this the function F (t) in (4) with the help of interpolation polyno-
mial

Gi (t) =
P

(α,β)
N (t)

(t− ξi,N)P
′(α,β)
N (ξi,N)

(5)
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replaced the expansion

F (t) ≈
N∑

i,=1

Gi (t) F (ξi,N) , (6)

where ξi,N are the roots of the Jacobi polynomial

P
(α,β)
N (ξi,N) = 0 (i = 1, 2, . . . , N) . (7)

Substituting the expansion (6) in a ratio of I (z) we find that the
quadrature formula for the integral takes the form

I (z) ≈
N∑
i=1

ωi (z)F (ξi,N) , (8)

where

ωi (z) =
1

P
′(α,β)
N (ξi,N)

1∫
−1

g (t, z) w (t)
P

(α,β)
N (t)

t− ξi,N
dt . (9)

Thus the calculation of (9) will help you find the weight coefficients for
the quadrature formula (4), the singular values.

3 The analytical form of weighting factors

Consider the possibility of analytical calculation of the weighting factors
for different types of singularities that is, depending on the function g (t, z).

3.1 The singular Cauchy integral

The most famous option (4) in the literature is the Cauchy integral

g (t, z) =
1

t− z
, −1 < z < 1 .

For this case, there are a large number of works (see for examples
[3, 4, 5]), which offered various options for quadrature formulas. In this
case, you can get a formula for the weighting factors (9) direct calculation
of the integral

ωC
i (z) =

1∫
−1

w (t)

P
′(α,β)
N (ξi,N)

P
(α,β)
N (t)

(t− ξi,N) (t− z)
dt . (10)
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With the help of identity

1

(t− ξi,N) (t− z)
=

1

z − ξi,N

[
1

t− z
− 1

t− ξi,N

]
(11)

coefficients (10)reducible to the form

ωC
i (z) =


1

P
′(α,β)
N (ξi,N)

Π
(α,β)
N (z)− Π

(α,β)
N (ξi,N)

(z − ξi,N)
, if z ̸= ξi,N ,

Π
′(α,β)
N (ξi,N)

P
′(α,β)
N (ξi,N)

, if z = ξi,N

, (12)

where

Π(α,β)
n (z) =

1∫
−1

w(t)
P

(α,β)
n (t)

(t− z)
dt . (13)

To calculate the coefficients of ωC
i (z) with a high degree of accuracy to

be calculated analytically integral (13) for a variety of functions w(t).
The most famous variant is the version of the function w(t) is weight

function of the Jacobi polynomial P
(α,β)
n (t) ..

w(t) = w(α,β) (t) ≡ (1− t)α (1 + t)β .

Then the integral (13) have the form

Π(α,β)
n (z) = Q(α,β)

n (z) ,

where

Q(α,β)
n (z) =

1∫
−1

(1− t)α (1 + t)β
P

(α,β)
n (t)

(t− z)
dt . (14)

In the most general case for arbitrary α and β, the function Q(α,β)
n (z)

connected with the Jacobi polynomials of the second kind Q
(α,β)
n (z) ratio

Q(α,β)
n (z) = (−2) (z − 1)α (z + 1)β Q(α,β)

n (z) , (15)

where

Q(α,β)
n (z) = 2α+β+n Γ(n+ α + 1)Γ(n+ β + 1)

Γ(2n+ α + β + 2)
(z + 1)−β ×

×(z − 1)−α−n−1
2F1

(
n+ 1, n+ α + 1; 2n+ α + β + 2;

2

1− z

)
.
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3.2 Hypersingular variant

Consider hypersingular variant the integral (9), when the function is

g(t, z) = 1/(t− z)2.

The concept of the final calculation of the integrals of this type was first
introduced by Hadamard (J. Hadamard, Lectures he Cauchy’s Problem in
Linear Partial Differential Equations, Yale University Press (1923).) and
developed in the papers [6, 7, 8].

The final part hypersingular integral can be written as

1∫
−1

=
f(t)

(t− z)2
dt =

d

dz

 1∫
−1

− f(t)

t− z
dt

 , −1 < z < 1 . (16)

Therefore, the weighting coefficients of the quadrature formula

1∫
−1

f(t)

(t− z)2
dt =

N∑
i=1

ωH
i (z) f(ξi,N) (17)

are related with coefficients ( ref fz3) ratio

ωH
i (z) =

d

dz

[
ωC
i (z)

]
. (18)

Then the weights for the integral (4) function g(t, z) = 1/(t − z)2 can
be calculated by formulas

ωH
i (z) =



1

P
′(α,β)
N (ξi,N)

{
Π

′(α,β)
N (z)

(z − ξi,N)
− Π

(α,β)
N (z)− Π

(α,β)
N (ξi,N)

(z − ξi,N)
2

}
,

if z ̸= ξi,N ,

Π
′′(α,β)
N (ξi,N)

2P
′(α,β)
N (ξi,N)

, if z = ξi,N .

(19)

For the Cauchy integral (g(t, z) = 1/(t− z)) with α = −β = −1/2, we
have

Π(−1/2,1/2)
n (z) =

1∫
−1

√
1 + t

1− t

Vn(t)

(t− z)
dt = πWn(z) , (20)
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where Vn(z) and Wn(z) are Chebyshev polynomials 3 and 4 of kind, re-
spectively (see [9]).

Then the quadrature formula for the Cauchy integral is of the form:

1∫
−1

√
1 + t

1− t

f(t)

(t− z)
dt ≈

N∑
i=1

ωC
i (z) f (ξi,N) , (21)

where

ωC
i (z) =


π

V ′
N(ξi,N)

WN (z)−WN (ξi,N)

(z − ξi,N)
, if z ̸= ξi,N ,

π
W ′

N (ξi,N)

V ′
N (ξi,N)

, if z = ξi,N

. (22)

Quadrature formula for hypersingular integral has the form:

1∫
−1

√
1 + t

1− t

f(t)

(t− z)2
dt ≈

N∑
i=1

ωH
i (z) f (ξi,N) , (23)

where

ωH
i (z) =


π

V ′
N(ξi,N)

{
W ′

N (z)

(z − ξi,N)
− WN (z)−WN (ξi,N)

(z − ξi,N)
2

}
, if z ̸= ξi,N ,

π

2

W ′′
N(ξi,N)

V ′
N(ξi,N)

, if z = ξi,N .

(24)
Formula (24) to calculate weight coefficients allows to them with high
accuracy and hence can be used to solve the Schrödinger equation with a
linear confining potential in momentum space.

4 The calculation of the energy spectrum

for a linear confining potential with ℓ = 0

The Schrödinger equation with a linear confining potential

k2

2µ
ϕℓ(k) +

σ

πk2

∞∫
0

Q′
ℓ(y)ϕℓ(k

′)dk′ = Eϕℓ(k) , y =
k2 + k′2

2kk′ , (25)
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reducible to the form

k̃2ϕℓ(k̃) +
1

πk̃2

∞∫
0

Q′
ℓ(y) k̃

′ϕℓ(k̃
′)dk̃′ = εϕℓ(k̃) (26)

with the help of replacements

k = βk̃ , E =
β2

2µ
ε , β = (2µσ)1/3 . (27)

Using the mapping

k̃ = β0

√
1 + z

1− z
, k̃′ = β0

√
1 + t

1− t
, (28)

we find that the equation (26) is transformed into

1

πβ0

(
1− z

1 + z

) 1∫
−1

Q′
ℓ(y(t, z))

ϕℓ(t)dt

(1− t)
√
1− t2

=

(
ε− β2

0

1 + z

1− z

)
ϕℓ(z) .

(29)
For the case of ℓ = 0 the equation (29) after simplifications can be written
as follows:

− 1

πβ0

(1− z)2
1∫

−1

ϕℓ=0(t)

√
1 + t

1− t

dt

(t− z)2
=

(
ε− β2

0

1 + z

1− z

)
ϕℓ=0(z) .

(30)
Thus, for a linear confining potential we have hypersingular kernel ∼

1/(t − z)2 and therefore for the numerical solution is necessary to use
weighting factors(24).

Function w(t) naturally chosen in the form

w(t) =

√
1 + t

1− t
.

As a result, the matrix for eigenvalue problems It takes the form:

Hij =

[
β2
0 δij

(
1 + ξj,N
1− ξj,N

)
−

ωH
j (ξi,N)

πβ0

(1− ξi,N)
2

]
, (31)

where z → ξi,N t → ξj,N , ξi,N are zeros of the polynomial VN(t) and matrix
ωH
j (ξi,N) is calculated using the (24).
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For a linear confining potential in the ℓ = 0 is known that

ε = −zn , n = 1, 2, 3 . . . (32)

where zn are the zeros of the Airy function Ai(z). Therefore, it is possible
to compare the results of numerical calculations of the matrix (31) and
accurate values (see, table 1)

Table 1: Relative error of δ of the solution of equation (31) (β0 = 0,9999)

N n = 1 = 2 n = 3 n = 4 n = 5
50 3× 10−22 4× 10−20 3× 10−17 3× 10−15 8× 10−14

80 5× 10−33 2× 10−29 1× 10−26 3× 10−24 4× 10−22

100 2× 10−39 1× 10−35 1× 10−32 4× 10−31 5× 10−28

150 4× 10−54 8× 10−50 5× 10−47 1× 10−43 6× 10−42

Thus, the choice of weighting coefficients in which the singularity trea-
ted analytically and functions w(t) associated with interpolating polyno-

mials P
(α,β)
N (t) allows us to solve the equation (25) for ℓ = 0 in momentum

space with high accuracy.
The accuracy of calculations many orders of magnitude higher than

similar calculations in momentum space [10, 11, 12, 13, 1]

5 Conclusion

I am grateful to the organizers for warm and kind hospitality throughout
the Conference. The work was supported by the Belarusian Republican
Foundation for Basic Research.

References

[1] Tang, A. The Nyström plus correction method for solving bound state
equations in momentum space / A. Tang, J. W. Norbury // Phys. Rev.
— 2001. — Vol. E63. — P. 066703.

[2] Norbury, J. W. Confining potential in momentum space / J. W. Nor-
bury, D. E. Kahana, K. Maung Maung // Can. J. Phys. — 1992. —
Vol. 70. — P. 86–89.

101



[3] Golberg, M. A. Numerical Solution of Integral Equations / M. A. Gol-
berg Mathematical concepts and methods in science and engineering.
— New York and London: Plenum Press , 1990. — 436 P.

[4] Kornejchuk, A.A. Quadrature formulae for singular integrals. (Rus-
sian)Zh. Vychisl. Mat. Mat. Fiz. 4, No.4, Suppl., 64-74 (1964).

[5] Sheshko, M.A.Convergence of quadrature processes for a singular in-
tegral. (Russian) Soviet Mathematics (Izvestiya VUZ. Matematika),
1976, 20:12, 8694

[6] Hui, C.-Y. Evaluations of hypersingular integrals using Gaussian
quadrature / C.-Y. Hui, D. Shia // International Journal for Numeri-
cal Methods in Engineering. — 1999. — Vol. 44 , N 2. — P. 205–214.

[7] Kaya, A. C. On the solution of integral equations with strongly singu-
lar kernels / A. C. Kaya, F. Erdogan // Quart. Appl. Math. — 1987.
— Vol. XLV. — P. 105–122.

[8] Kutt, H. R. On the numerical evaluation of finite part integrals in-
volving an algebraic singularity / H. R. Kutt. — 1975. — National
Research Institute for Mathematical Sciences, Pretoria.

[9] Mason, J. C. Chebyshev polynomials / J. C. Mason, D. C. Handscomb.
— Chapman& Hall/Crc , 2002. — 335 P.

[10] Chen, J.-K. Spectral method for the Cornell and screened Cornell
potentials in momentum space / J.-K. Chen // Phys. Rev. D. — Oct
2013. — Vol. 88.— P. 076006. — Erratum Phys. Rev. D 89, 099904
(2014).

[11] Deloff, A. Quarkonium bound-state problem in momentum space re-
visited / A. Deloff // Annals Phys. — 2007. — Vol. 322. — P. 2315–
2326.

[12] Hersbach, H. Relativistic linear potential in momentum space /
H. Hersbach // Phys. Rev. D. — Apr 1993. — Vol. 47. — P. 3027–
3033 .

[13] Linear confinement in momentum space: singularity-free bound-state
equations / S. Leitão, A. Stadler, M. T. Peña, E. P. Biernat //
Phys.Rev. — 2014. — Vol. D90 , N 9. — P. 096003.

102



New Properties of Conformal
Transformations for Scalar and Dirac

Particles in Riemannian and
Riemann-Cartan Spacetimes

Alexander J. Silenko∗

Institute for Nuclear Problems of Belarusian State University,

Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

Abstract

New symmetry properties are found for pointlike scalar and
Dirac particles (Higgs boson and all leptons) in Riemannian and
Riemann-Cartan spacetimes in the presence of electromagnetic in-
teractions. A Hermitian form of the Klein-Gordon equation for a
pointlike scalar particle in an arbitrary n-dimensional Riemannian
(or Riemann-Cartan) spacetime is obtained. New conformal sym-
metries of initial and Hermitian forms of this equation are ascer-
tained. In the above spacetime, general Hamiltonians in the gener-
alized Feshbach-Villars and Foldy-Wouthuysen representations are
derived. The conformal-like transformation conserving these Hamil-
tonians is found. Corresponding conformal symmetries of a Dirac
particle are determined. It is proven that all conformal symmetries
remain unchanged by an inclusion of electromagnetic interactions.

1 Introduction

A determination of symmetry properties of elementary particles is one
of the most important problems of contemporary particle physics. Sym-
metries of basic relativistic wave equations describing pointlike particles

∗E-mail:alsilenko@mail.ru
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with spin 0 (Higgs boson) and 1/2 (all leptons) retain an important place
among these properties. Intensive studies of such symmetries began fifty
years ago with the seminal work by Penrose [1]. He discovered the con-
formal invariance of the covariant Klein-Gordon (KG) equation [2] for a
massless scalar particle in Riemannian spacetimes and supplemented this
equation with a term describing a nonminimal coupling to the scalar cur-
vature. Chernikov and Tagirov [3] have studied the case of a nonzero mass
and n-dimensional Riemannian spacetimes. The inclusion of the additional
Penrose-Chernikov-Tagirov (PCT) term has been argued for both massive
and massless particles [3]. Accioly and Blas [4] have performed the exact
Foldy-Wouthuysen (FW) transformation for a massive spin-0 particle in
static spacetimes and have found new telling arguments in favor of the
predicted coupling to the scalar curvature. A derivation of the relativistic
FW Hamiltonian is very important for a comparison of gravitational (and
inertial) effects in classical and quantum gravity because the FW repre-
sentation restores Schrödinger-like forms of Hamiltonians and equations of
motion. These forms are convenient for finding a semiclassical approxi-
mation and a classical limit of relativistic quantum mechanics (see Refs.
[5, 6, 7, 8, 9] and references therein).

However, the transformation method used in Ref. [4] is not applica-
ble to either massless particles or nonstatic spacetimes. To find a specific
manifestation of the conformal invariance in the FW representation which
takes place just for massless particles, the generalized Feshbach-Villars
(GFV) transformation [10] applicable for such particles have been per-
formed [11]. The subsequent relativistic FW transformations has made it
possible to derive the FW Hamiltonians for the both massive and massless
scalar particles in general noninertial frames and stationary gravitational
fields. The new manifestation of the conformal invariance for massless par-
ticles consisting in the conservation of the FW Hamiltonian and the FW
wave function has been discovered. New exact FW Hamiltonians have
been obtained for both massive and massless scalar particles in general
static spacetimes and in frames rotating in the Kerr field approximated
by a spatially isotropic metric. The high-precision expression for the FW
Hamiltonian has been derived in the general case. It has also been shown
that conformal transformations change only such terms in the FW Hamil-
tonians that are proportional to the particle mass m.

In the present work, we consider the much more general problem of
scalar and Dirac particles in arbitrary gravitational (noninertial) and elec-
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tromagnetic fields and find (on a quantum-mechanical level) new symme-
try properties relative to conformal transformations not only in the FW
representation but also in initial representations. These properties are at-
tributed to all known pointlike scalar and Dirac particles (Higgs boson and
leptons) and also to the hypothetic pseudoscalar axion.

We denote world and spatial indices by Greek and Latin letters

α, µ, ν, . . . = 0, 1, 2, 3, i, j, k, . . . = 1, 2, 3

respectively. Tetrad indices are denoted by Latin letters from the beginning
of the alphabet, a, b, c, . . . = 0, 1, 2, 3. Temporal and spatial tetrad indices
are distinguished by hats. The signature is (+−−−), and the Ricci scalar
curvature is defined by R = gµνRµν = gµνRα

µαν , where R
α
µβν = ∂βΓ

α
µν−. . .

is the Riemann curvature tensor. The denotation f,µ means ∂f/(∂xµ). We
use the system of units ~ = 1, c = 1.

2 Hermitian form of the Klein-Gordon

equation and conformal symmetry for a

pointlike scalar particle

The covariant KG equation with the additional PCT term [1, 3] describing
a scalar particle in an n-dimensional Riemannian spacetime is given by

(�+m2 − λR)ψ = 0, � ≡ 1√
−g

∂µ
√
−ggµν∂ν . (1)

Minimal (zero) coupling corresponds to λ = 0, while the PCT coupling is
defined by λ = (n− 2)/[4(n− 1)] [3]. The sign of the Penrose-Chernikov-
Tagirov term depends on the definition of R. For noninertial (accelerated
and rotating) frames, the spacetime is flat and R = 0.

For a massless particle, the conformal transformation

g̃µν = O−2gµν (2)

conserves the form of Eq. (1) but changes the wave function and the
operators acting on it [1, 3]:

�− λR = O−n+2
2

(
�̃− λR̃

)
O

n−2
2 , ψ̃ = O

n−2
2 ψ. (3)
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To specify symmetry properties of the initial KG equation (1), it is
instructive to present it in the Hermitian form. Amazingly, this can be
achieved with the simple nonunitary transformation

ψ = f−1Φ, f =

√
g00

√
−g, g = det gµν . (4)

Since g̃ = O−2ng, Φ is invariant relative to the conformal transformation
(2). This invariance takes place only for a massless particle. After the
transformation (4), we multiply the obtained equation by the factor f/g00

and come to the Hermitian form of the KG equation:(
1

f
∂µ
√
−ggµν∂ν

1

f
+
m2

g00
− λR

g00

)
Φ = 0. (5)

The use of Eqs. (2)–(4) shows that Eq. (5) is conformally invariant
for a massless particle. However, it is not conformally invariant for a
massive one. To determine its conformal symmetry in the latter case, it is
sufficient to find a physical quantity that when substituted for m restores
the conformal invariance of Eq. (5). For this purpose, we can use the
quantity m′ which is equal to m in the initial spacetime and takes the
form

m̃′ = Om′ (6)

after the conformal transformation (2). The equation obtained from Eq.
(5) with the substitution of m′ for m,(

1

f
∂µ
√
−ggµν∂ν

1

f
+
m′2

g00
− λR

g00

)
Φ = 0, (7)

is conformally invariant. While this equation does not describe a real par-
ticle and is not equivalent to Eq. (5), finding the appropriate substitution
(6) determines the conformal symmetry of the suitable equation (5). The
determination of a new symmetry property for massive particles is rather
important because the only discovered pointlike scalar particle, the Higgs
boson, is massive.

Thus, we can conclude that Eq. (5) is not changed by the conformal-like
transformation

g̃µν = O−2gµν , m→ m′, m̃′ = Om′. (8)
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In particular, this transformation does not change the wave function Φ. In
the general case, we can substitute any quantity satisfying Eq. (6) for m
into Eq. (5).

We can now state the conformal symmetry of the initial KG equation
(1). The substitution of m′ for m makes the changed equation conformally
invariant with the following properties:

�+m′2 − λR = O−n+2
2

(
�̃+ m̃′2 − λR̃

)
O

n−2
2 ,

ψ̃ = O
n−2
2 ψ.

(9)

These properties establish the conformal symmetry of the covariant KG
equation (1) and the specific form of its invariance relative to the confor-
mal-like transformation (8).

The method of the FW transformation used in Ref. [11] is applicable
to nonstationary spacetimes. However, only the stationary case has been
considered in this work. To make a more general investigation of symmetry
properties in the FW representation, we need to present Eq. (5) in another
(equivalent) form.

Let us introduce the following denotations:

Γi =
√
−gg0i, Gij = gij − g0ig0j

g00
. (10)

Lengthy but straightforward calculations bring Eq. (5) to the form[
(∂0 +Υ)2 + ∂i

Gij

g00
∂j +

m2

g00
+ Λ

]
Φ = 0, (11)

where

Υ =
1

2f

{
∂i,Γ

i
} 1

f
=

1

2

{
∂i,

g0i

g00

}
,

Λ = −f,0 ,0
f

−
(
g0i

g00

)
,i

f,0
f

− 2
g0i

g00
f,0 ,i
f

−
(
g0i

g00

)
,0

f,i
f

−1

2

(
g0i

g00

)
,0 ,i

− 1

2f 2

(
g0i

g00

)
,i

Γj
,j −

g0i

2f 2g00
Γj
,j ,i

+
1

4f 2

(
Γi
,i

)2 − (
Gij

g00

)
,i

f,j
f

− Gij

g00
f,i ,j
f

− λR

g00
.

(12)

This form of the KG equation is also Hermitian and the wave function
is not changed as compared with Eq. (7). The replacement of m with
m′ makes Eq. (11) to be conformally invariant. Therefore, Eq. (11) is
invariant relative to the conformal-like transformation (8).
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3 Conformal symmetries of Hamiltonians

To fulfill the successive GFV and FW transformations, we use the method
developed in Ref. [10] and applied to the covariant KG equation in Ref.
[11]. The original Feshbach-Villars method does not work for massless par-
ticles while its generalization [10] makes it possible to extend the method
to such particles.

We introduce two new functions, ϕ and χ, as follows [10, 11]:

Φ = ϕ+ χ, i (∂0 +Υ)Φ = N(ϕ− χ), (13)

where N is an arbitrary nonzero real parameter. For the Feshbach-Villars
transformation, it is definite and equal to the particle mass m. These func-
tions form the two-component wave function in the GFV representation,

Ψ =

(
ϕ
χ

)
. Equations (11) and (13) result in (cf. Ref. [11])

i
∂Ψ

∂t
= HΨ, H = ρ3

N2 + T

2N
+iρ2

−N2 + T

2N
− iΥ,

T = ∂i
Gij

g00
∂j +

m2

g00
+ Λ,

(14)

whereH is the GFV Hamiltonian and ρi (i = 1, 2, 3) are the Pauli matrices.
Equation (14) is exact.

For a massless particle, this Hamiltonian is not changed by the confor-
mal transformation (2). In the general case, it is invariant relative to the
conformal-like transformation (8).

The general methods developed in Refs. [6, 8, 10] allow us to perform
the FW transformation of the Hamiltonian (14) for a relativistic particle
in external fields. These methods are iterative. The initial Hamiltonian
can be presented in the general form

H = ρ3M+ E +O, ρ3M = Mρ3,
ρ3E = Eρ3, ρ3O = −Oρ3,

(15)

where E and O denote the sums of even (diagonal) and odd (off-diagonal)
operators, respectively. In the considered case, [M,O] = 0,

M =
N2 + T

2N
, E = −iΥ, O = iρ2

−N2 + T

2N
, (16)
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and the transformation operator found in Ref. [8] reduces to the form
[10, 11]

U =
ϵ+N + ρ1(ϵ−N)

2
√
ϵN

, ϵ =
√
M2 +O2 =

√
T . (17)

This transformation operator is ρ3-pseudounitary (U † = ρ3U
−1ρ3).

It is important that the Hamiltonian obtained as a result of the trans-
formation with the operator (17) does not depend on N [10]:

H′ = ρ3ϵ+ E ′ +O′, ρ3E ′ = E ′ρ3, ρ3O′ = −O′ρ3,

E ′ = −iΥ+
1

2
√
ϵ

[√
ϵ, [

√
ϵ,F ]

] 1√
ϵ
,

O′ =ρ1
1

2
√
ϵ
[ϵ,F ]

1√
ϵ
, F = −i∂0 − iΥ.

(18)

This shows a self-consistency of the used transformation method. The ex-
act intermediate Hamiltonian (18) describes massive and massless particles
and is not changed by the conformal-like transformation (8).

The next transformation [10] eliminates residual odd terms and leads
to the final form of the approximate relativistic FW Hamiltonian:

HFW = ρ3ϵ− iΥ− 1

2
√
ϵ

[√
ϵ,
[√
ϵ, (i∂0 + iΥ)

]] 1√
ϵ
. (19)

This final Hamiltonian is also invariant relative to the conformal-like trans-
formation (8). As a rule, the relativistic FW Hamiltonian is expanded in
powers of the Planck constant and is useful when the de Broglie wavelength
is much smaller than the characteristic distance [8]. In such a Hamiltonian,
terms proportional to the zeroth and first powers of the Planck constant
are determined exactly while higher-order terms are not specified (see Ref.
[12]). As a result, the last term in Eq. (19) can be omitted if it is propor-
tional to the second or higher orders of ~.

4 Inclusion of electromagnetic interactions

Fortunately, an inclusion of electromagnetic interactions does not lead to
any significant complication of the above derivations. The initial covariant
KG equation takes the form[

gµν(∇µ + ieAµ)(∇ν + ieAν) +m2 − λR
]
ψ = 0, (20)
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where ∇µ is the covariant derivative and Aµ is the electromagnetic field
potential. This equation is equivalent to the following one:(

1√
−g

Dµ

√
−ggµνDν +m2 − λR

)
ψ = 0, (21)

where Dµ = ∂µ+ ieAµ. The nonunitary transformation (4) brings it to the
Hermitian form corresponding to Eq. (5):(

1

f
Dµ

√
−ggµνDν

1

f
+
m2

g00
− λR

g00

)
Φ = 0. (22)

It is convenient to present this equation in the equivalent form [cf. Eq.
(11)] [

(D0 +Υ′)2 +Di
Gij

g00
Dj +

m2

g00
+ Λ

]
Φ = 0,

Υ′ =
1

2f

{
∂i,Γ

i
} 1

f
=

1

2

{
Di,

g0i

g00

}
,

T ′ = Di
Gij

g00
Dj +

m2

g00
+ Λ,

(23)

where Gij and Λ are defined by Eqs. (10) and (12), respectively.
A repeat of the transformation given above allows us to derive the

Hamiltonian in the GFV representation:

H = ρ3
N2 + T ′

2N
+ ρ2

−N2 + T ′

2N
− iΥ′ + eA0. (24)

The FW transformation can be fulfilled with the operator (17) where

ϵ =
√
T ′. The transformed operator H′ is independent of N . The final

approximate FW Hamiltonian is given by (ϵ =
√
T ′)

HFW = ρ3ϵ− iΥ′ + eA0

− 1

2
√
ϵ

[√
ϵ,
[√
ϵ, (i∂0 + iΥ′ − eA0)

]] 1√
ϵ
.

(25)

The last term in Eq. (25) can be omitted if it is proportional to the second
or higher orders of ~ (see previous section).

All Hamiltonians obtained with the inclusion of electromagnetic in-
teractions (H, H′, and HFW ) are invariant relative to the conformal-
like transformation (8). The Hamiltonians are conformally invariant for
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a massless particle. Thus, this inclusion does not change the conformal
symmetries of the Hamiltonians.

In Secs. 2–4, we considered a scalar particle in Riemannian spacetimes.
However, all results obtained remain applicable to Riemann-Cartan space-
times. The spacetime torsion does not affect the Hamiltonian of a massless
particle and the corresponding equation of motion. In particular, the tor-
sion couples only to the particle spin and is not attached to the orbital
angular momentum of a test particle [13].

5 Conformal symmetry properties of Dirac

particles

It is easy to determine the conformal symmetry properties of a point-
like Dirac particle. It has been established in Ref. [11] that the Dirac
and FW Hamiltonians for a massless particle and the corresponding wave
functions are invariant relative to the conformal transformation (2). The
initial covariant Dirac equation is also conformally invariant relative to this
transformation. After the conformal transformation (2), the wave function
of the Dirac equation for a massless particle acquires the additional factor
O3/2 [11].

These results can be extended to massive particles. A pointlike particle
in Riemannian spacetimes is described by the covariant Dirac equation (see
Refs. [14, 15] and references therein)

(i~γaDa −mc)ψ = 0, Da = eµaDµ,

Dµ = ∂µ + ieAµ +
i

4
σabΓµab,

(26)

where Dµ is the covariant derivative, σab = i
(
γaγb − γbγa

)
/2, and the

Dirac matrices γa are defined in local Lorentz (tetrad) frames. The an-
holonomic components of the connection are [14, 15]

Γµab = −Γµ ba = ecµΓcab,

Γcab =
1

2
(−Ccab + Cabc − Cbca) , Cabc = eµae

ν
b (ecν,µ − ecµ,ν),

(27)

where eaµ is the tetrad and eµa is the inverse tetrad. It is convenient to
parametrize the spacetime metric as follows [15]:

ds2 = V 2(dx0)2 − δ̂iĵW
î
kW

ĵ
l (dx

k −Kkdx0) (dxl −K ldx0). (28)
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The functions V and Ki, as well as the components of the 3×3 matrixW î
j

may depend arbitrarily on xµ. It can be proven [15] that this parametriza-
tion defines ten independent variables that describe the general spacetime
metric. This is a modified version of the well-known parametrization of a
metric proposed by Arnowitt et al. [16] and De Witt [17] in the context of
the canonical formulation of the quantum gravity theory; the off-diagonal
metric components g0i = Ki/V 2 are related to the effects of rotation. The
parametrization (28) is general and covers any Riemannian and Riemann-
Cartan spacetimes.

The preferable choice of the tetrad [18] is the Schwinger gauge

e 0̂µ = V δ 0
µ , êiµ =W î

j

(
δjµ −Kj δ 0

µ

)
,

eµ
0̂
=

1

V

(
δµ0 + δµiK

i
)
, eµ

î
= δµjW

j
î,

(29)

where the inverse 3×3 matrix,W i
k̂W

k̂
j = δij, is introduced. The Schwinger

gauge is characterized by the conditions e 0̂i = 0, e0
î
= 0.

For the general metric (28) with the tetrad (29) we find explicitly [15]

Γµ î0̂ =
1

V
W j

î ∂jV eµ
0̂ − 1

V
Q(̂iĵ) eµ

ĵ, (30)

Γµ îĵ =
1

V
Q[̂iĵ] eµ

0̂ +
(
Cîĵk̂ + Cîk̂ĵ + Ck̂ĵî

)
eµ

k̂, (31)

where

Qîĵ = ĝik̂W
l
ĵ

(
Ẇ k̂

l +Km∂mW
k̂
l +W k̂

m∂lK
m
)
, (32)

Cîĵ
k̂ = W l

îW
m

ĵ ∂[lW
k̂
m] = −Cĵî

k̂, Cîĵk̂ = gk̂l̂ Cîĵ
l̂. (33)

The dot ˙ denotes the derivative with respect to the time t = x0. Here Cîĵ
k̂ is

nothing but the anholonomity object for the spatial triadW î
j. The indices

(which all run from 1 to 3) are raised and lowered with the help of the
spatial part of the flat Minkowski metric gab = diag(1,−1,−1,−1), ĝiĵ =
−δij.

In Riemann-Cartan gravity, the connection (27) should be added by a
contribution of a spacetime torsion and takes the form

Γµab =
1

2
ecµ (−Ccab + Cabc − Cbca)−Kµab. (34)
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The post-Riemannian contortion tensor is given by [19]

Kµab = −Kµ ba =
1

2
(−Tµab + Tabµ − Tbµa) ,

Tµνa = −Tνµa = eaν,µ − eaµ,ν + Γµbae
b
ν − Γνbae

b
µ. (35)

To calculate the contribution of the spacetime torsion, it is convenient
to use the components of the axial torsion vector

Ť a = − 1

2
ηabcdTbcd, (36)

where ηabcd is the totally antisymmetric Levi-Civita tensor (η0̂1̂2̂3̂=−η0̂1̂2̂3̂=
= +1).

A direct check shows [20] that the Hamiltonian form of the initial Dirac
equation (26) is characterized by a non-Hermitian Hamiltonian. To avoid
this difficulty, one can define a new wave function as follows [20, 15, 19]:

Ψ =
(√

−ge0
0̂

)1/2
ψ. (37)

This form of the nonunitary transformation operator is universal and is
applicable to any Riemannian and Riemann-Cartan spacetimes.

For both the Riemannian and Riemann-Cartan spacetimes, the Hermi-
tian Hamiltonian is given by [19]

H = βmV + eA0 +
1

2
αî{F j

î, πj}

+
1

2
(K · π + π ·K) +

1

4
(Ξ ·Σ−Υγ5) ,

Υ = −V ϵ̂iĵk̂Cîĵk̂ + V Ť 0̂, Ξî = ϵ̂iĵk̂ Qĵk̂ − V Ť î,

(38)

where F j
î = VW j

î, γ5 = −iγ 0̂γ 1̂γ 2̂γ 3̂, and ϵ̂iĵk̂ is the three-dimensional

totally antisymmetric Levi-Civita tensor (e1̂2̂3̂ = 1).
The conformal transformation of the metric parameters has the form

Ṽ = O−1V, W̃ î
k = O−1W î

k, W̃ i
k̂ = OW i

k̂, K̃ = K.

As a result,

C̃abc = OCabc, Q̃îĵ = Qîĵ, C̃îĵk̂ = OCîĵk̂, F̃ j
î = F j

î. (39)
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The conformal transformation (2) does not change the contortion tensor

Kµab. In compliance with this, ˜̌T a = OŤ a.

Thus, Ξ̃ = Ξ and Υ̃ = Υ. The above-mentioned relations show that
the Hermitian Dirac Hamiltonian (38) is invariant relative to the conformal
transformation (2) for massless particles [11] and relative to the conformal-
like transformation (8) for massive ones.

We can also note that the anholonomic components of the connection
(local Lorentz connection [19]) Γµab remain unchanged by the conformal
transformation. These components together with the tetrad eaµ form the
Poincaré gauge potentials [19]. Among these potentials, only the tetrad is
changed by the conformal transformation.

It is easy to find the conformal symmetry of the FW Hamiltonian.
Equation (38) can be presented in the form (15) (with ρ3 → β), where

M = mV, E = eA0+
1

2
(K · π + π ·K)+

1

4
Ξ·Σ, O =

1

2
αî{F j

î, πj}−Υγ5.

(40)
Equation (40) shows that

M̃ = O−1M, Ẽ = E , Õ = O. (41)

The unitary operator of the FW transformation is given by [8]

U =
βϵ+ βM−O√
(βϵ+ βM−O)2

β, ϵ =
√
M2 +O2. (42)

This operator is invariant relative to the conformal-like transformation (8).
After the first iteration with the operator (42), next iterations eliminate
residual odd terms. The final approximate FW Hamiltonian is equal to [8]

HFW = βϵ+ E +
1

4

{
1

2ϵ2 + {ϵ,M}
, (β [O, [O,M]]− [O, [O,F ]])

}
,

F = E − i~
∂

∂t
.

(43)
Evidently, this Hamiltonian (whose explicit form is obtained in Ref. [19])
is also invariant relative to the conformal-like transformation (8) in the
general case.

The wave function of the equation for the Hermitian Dirac Hamilto-
nian,

i
∂Ψ

∂t
= HΨ, (44)
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satisfies Eq. (37). It is invariant relative to the conformal-like transforma-
tion. The FW wave function also possesses this property. The use of Eq.
(37) allows us to obtain the following property of the wave function of the
initial Dirac equation (26) relative to the conformal-like transformation:

ψ̃ = O3/2ψ. (45)

Contrary to the conventional conformal invariance, this property is valid
for both massive and massless particles.

All properties stated in this section are valid in the presence of electro-
magnetic interactions.

We can conclude that the previously ascertained similarity between
massless scalar and Dirac particles in Riemannian spacetimes [11] exists
for any pointlike particles in both the Riemannian and Riemann-Cartan
spacetimes and is not violated by electromagnetic interactions.

6 Summary

In the present work, new symmetry properties have been found for funda-
mental pointlike scalar and Dirac particles (Higgs boson and all leptons)
in Riemannian and Riemann-Cartan spacetimes. All results are general
and have been obtained in the presence of electromagnetic interactions.
The KG equation for a pointlike scalar particle in arbitrary n-dimensional
Riemannian (or Riemann-Cartan) spacetimes has been brought to the Her-
mitian form (5). This form is useful to derive the general Hamiltonians in
the GFV and FW representations. The GFV Hamiltonians (14) and (24)
are exact. The corresponding FW Hamiltonians (19) and (25) are approx-
imate. They are expanded in powers of the Planck constant and are useful
when the de Broglie wavelength is much smaller than the characteristic
distance. Nevertheless, these Hamiltonians are rather general. They cover
the nonstationary case and can be applied for a relativistic particle in ar-
bitrarily strong gravitational and inertial fields. In the FW Hamiltonians,
terms proportional to the zeroth and first powers of the Planck constant
are determined exactly while higher-order terms are not specified.

New conformal symmetries of the initial and Hermitian forms of the KG
equation were ascertained. When the mass is replaced with any quantitym′

satisfying the conformal transformation (6), the changed equations become
conformally invariant. This property defines the conformal symmetries of
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the conventional and Hermitian KG equations. The latter equation as
well as the obtained Hamiltonians in the GFV and FW representations is
invariant relative to the conformal-like transformation (8).

Corresponding conformal symmetries are also determined for both mas-
sive and massless Dirac particles. The Dirac and FW Hamiltonians are
invariant relative to the conformal-like transformation (8). This transfor-
mation also defines the conformal symmetry of the initial Dirac equation
for a massive particle. When m′ defined by Eq. (6) is substituted for m,
the Dirac wave function has the property (45).

It has been proven that all conformal symmetries remain unchanged
by an inclusion of electromagnetic interactions. Thus, the results obtained
in the present study have allowed us to state the general properties of
conformal symmetry for pointlike scalar and Dirac particles (Higgs boson
and all leptons) in Riemannian and Riemann-Cartan spacetimes in the
presence of electromagnetic interactions.

The work was supported in part by the Belarusian Republican Foun-
dation for Fundamental Research (Grant No. Φ14D-007) and by the
Heisenberg-Landau program of the German Ministry for Science and Tech-
nology.
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The Integral Equations Solution for
Quantum Two Particle Systems with the
Cornell Potential in Momentum Space

K.S. Babich∗, V.V. Andreev
F.Skorina Gomel State University

Abstract

A new high precision method for solution of integral equations
in the momentum space with Cornell potential is suggested. The
method can be used effectively for the bound state equations.

1 Relativistic equation in momentum space

In the general case, the wave function (WF) of a bound system of spinor
quarks with masses mq, mQ and respectively with 4-momentums p1, p2
and helicities λ1,2 in Relativistic Hamiltonian Dynamics (RHD) satisfies
the three-dimensional integral equation [1]:

∑
λ1,λ2

∫
< k′, σ1, σ2 ‖ V̂ ‖ k, λ1, λ2 > ΦJµ

λ1λ2
(k′) dk′ =

=
(
M −

√
k2 +m2

q −
√
k2 +m2

Q

)
ΦJµ
σ1σ2

(k) . (1)

The knowledge of the kernel of the RHD integral equation makes it
possible to switch to the procedure of numerical solution and calculation
of the spectrum of masses of the quarkonium.

In the description of the meson, as a system of a quark and an anti-
quark is widely used the Cornell potential. Effective centrally symmetric

∗E-mail: kbabich@gsu.by
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Q̄(k2, λk2) Q̄(p2, λp2)

q(k1, λk1) q(p1, λp1)

Figure 1: One-gluon exchange contribution Vpert

potential interaction between quarks with constituent masses mq and mQ

contains Coulomb and linear part:

V̂ (r) = −4αs
3r

+ σr + w , r = |r| , (2)

where σ , w – model parameters, αs – QCD strong coupling constant.
This potential satisfies the requirement of quark confinement and has

been widely used in calculations of the spectra of heavy mesons [2, 3].
In a common way the potential of interaction in momentum space can

be constructed using the amplitude of the elastic scattering of particles
that construct the system [4]

qi(k1, λk1) + q̄j(k2, λk2)→ qk(p1, λp1) + q̄l(p2, λp2) , (3)

where particle momenta and spin numbers are given between parentheses
and i, j, k, l = 1, 2, 3 – color degrees of freedom.

For non-zero order of the perturbation theory the main contribution to
the amplitude of elastic scattering Tfi of quark-antiquark determined by
the diagram of one-gluon exchange (see Figure 1).

As a result the potential generated by diagram of gluon exchange in-
cluding conservation of the currents and the running coupling constant of
QCD will take the form:

V
(pert)
λp1 ,λp2 λk1 ,λk2

(k′,k) = (−1)
Nk,k′

8π2

4αs (q2)

3q2
Jµ (1) D̃µν (q) Jν (2) =

= (−1)
Nk,k′

8π2

4αs (q2)

3q2

[
jµ (1) jµ (2)− qµj

µ (1) qνj
ν (2)

q2

]
. (4)

In non-relativistic limit
(
k2, k′ 2 � m2

q,m
2
Q

)
potential (4) in coordinate

space takes the form of the Coulomb potential [5]

V̂C (r) = −4αs
3r

. (5)
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Therefore we can assume (4) as relativistic generalization of the Coulomb
potential (5).

The confining component of interquark potential can be derived by
analyzing the Lorentz structure of the potential and experimental data on
the meson mass spectrum.

The analysis results that the nonperturbative part of the interquark
potential is determined as the sum of the vector ( ∼ KV (q2)) and scalar
(∼ KS(q2) ) confining parts [6]:

< k′, λp1 , λp2 ‖ V̂conf ‖ k, λk1 , λk2 >=

=
Nk,k′

(2π)3

[
KV (q2)ūλp1 (p1)

(
γµ +

iκq
2mq

(k1 − p1)ν σ
µν

)
uλk1 (k1)×

×ῡλk2 (k2)

(
γµ +

iκQ
2mQ

(p2 − k2)ν σ
µν

)
υλp2 (p2) +

+KS(q2)ūλp1 (p1)uλk1 (k1)ῡλk2 (k2)υλp2 (p2)
]
, (6)

where functions

KV

(
q2
)

=
8πAV
q4

+ δ (k′ − k)BV (k) , (7)

KS

(
q2
)

=
8πAS
q4

+ δ (k′ − k)BS (k) . (8)

should provide confinement of the quarks in the meson.
Expression (6) for potential give in non-relativistic limit the linear con-

fining potential V (r) = σr + w with parameters

σ = (AV − AS) , w = (BV −BS) . (9)

Thus we can say that sum

< k′, λp1 , λp2 ‖ V̂pert + V̂conf ‖ k, λk1 , λk2 > (10)

defined by relations (4) and (6) is relativistic generalization of the Cornell
potential (2).

But in structure of (10) we meet terms which give singularities in initial
equation. At this place we have strong reasons for good numerical method
to stay making calculations in momentum space unlike to do different
expansion by velocities and so on.
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Absolute the same type of hypersingular integrals we meet in bound
state problems with the Cornell potential in momentum space. Further, for
simplicity, we demonstrate how to calculate numerically integrals of this
type with high precision on the example of non-relativistic Schrodinger
equation with the Cornell potential.

After transformation of integral [0,∞) → [−1, 1] by making substitu-
tion k = c1+t

1−t in

k2

2µ
φl(k) +

∫ ∞
0

Vl(k, k
′)φl(k

′)k′2dk′ = Eφl(k) , (11)

singular integrals appear [7]:
for Coulomb part

V C(r) = −α
r
⇒ V C

l (k, k′) = −α
π

Ql(y)

kk′
⇒

1∫
−1

f(t)ln|t−z|dt |z| ≤ 1

(12)
for linear part

V L(r) =
r

a2
⇒ V L

l (k, k′) =
Q′l(y)

π(akk′)2
⇒

1∫
−1

f(t)

(t− z)2
dt |z| ≤ 1,

(13)
where Ql – Legendre polynomial of the second kind;

y =
k2 + k′2

2kk′
. (14)

In paper [7] it was shown that “power of singularity” in integral (13)
can be “reduced”

1∫
−1

f(t)

(t− z)2
dt |z| ≤ 1, ⇒

1∫
−1

f(t)

(t− z)
dt |z| ≤ 1 (15)

by making integration by parts. But instead of integral equation we receive
integral-differential equation. This method has relatively low precision
(∼ 10−6).

In the same paper [7] was suggested Semispectral Chebyshev method
for integrals (12) and (15).
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2 New quadrature formula

In paper [8] was shown that using property
∞∫
0
Q′0 (y) dk′ = 0 we can

introduce contour-term and rewrite terms ∼ Q′0 (y) in a form

∞∫
0

Q′0 (y)φ0(k
′)dk′ ⇒

∞∫
0

Q′0 (y) (φ0(k
′)− φ0(k)) dk′ (16)

and substitution of pure expression

Q′0(y) =
1

1− y2
= −

(
2kk′

k′ + k

)2
1

(k′ − k)2
. (17)

leads (in the case of Non-relativistic Schödinger equation with Cornell
potential) to integral like

4σ

π

∫ ∞
0

Pl(y)

(k′ + k)2
[φ`(k

′)− φ`(k)]

(k − k′)2
dk′; (18)

After some calculations we have received new quadrature formula for
numerical calculation of such type singular integrals which combine advan-
tages of paper [7] and Lande subtraction method

1∫
−1

φ`(t)− φ`(z)

(t− z)2
dt =

N∑
j=1

ωj(z)φ`(tj) . (19)

ωj(z) =
2

N

N∑
i=1

′Ti−1(tj) Xi−1(z) , (20)

Xn(z) = 2
n−1∑
k=0

′Un−1−k(z)
{
Tk(z) ln

∣∣∣∣1− z1 + z

∣∣∣∣+Rk(z)
}
, (21)

Rn(z) = 2
n−1∑
k=0

′Tk(z)

[
(−1)(n−k)+1 + 1

(n− k)

]
. (22)

At the same time the type of initial equation remains to be integral
as before in contrast to paper [7] and accuracy of numerical calculations
increases.

122



3 Numerical tests

3.1 Tests for integrals with exact solution

Like a pure numerical test of formula (19) lets check quadrature formula
in the case of integrals that have exact solution. For the first test we took
function φ (t) = t4. In this case exact solution will have the next form

I1(φ) =

1∫
−1

t4 − z4

(t− z)2
dt =

2

3
+ 6z2 + 4z3ln

∣∣∣∣1− z1 + z

∣∣∣∣ , |z| < 1. (23)

The results of calculations is presented in Table 1.

Table 1: Numerical test of quadrature formula for the integral (23).

z Exact value, by (23) Quadrature form. (19) δ, %
-0.99 -13.997086845834733 -13.997086845834787 3.807× 10−15

-0.7 1.2267940186741848 1.2267940186741804 3.61992× 10−15

-0.3 1.1398104321587945 1.1398104321587932 1.16885× 10−15

-0.1 0.7258639838848181 0.7258639838848198 2.29428× 10−15

0.0 0.6666666666666666 0.6666666666666636 4.4964× 10−15

0.1 0.7258639838848181 0.7258639838848202 2.90609× 10−15

0.5 1.6173605223326117 1.6173605223326137 1.23559× 10−15

0.7 1.2267940186741848 1.2267940186741875 2.17195× 10−15

0.99 -13.997086845834733 -13.997086845834758 1.77673× 10−15

For the second test lets select function φ (t) = e−t. Than for the integral

I2(φ) =

1∫
−1

e−t − e−z

(t− z)2
dt (24)

we will have exact solution in a form

I2(f2) =
e−1−z

z2 − 1
{e(z2−1)[Ei(z+1)−Ei(z−1)]−ez+2(z−1)+ez(z+1)−2e},

(25)

where |z| < 1, Ei(z) = −
∞∫
−z

e−t

t
dt exponential integral. The results of

calculations is presented in Table 2.
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Table 2: Numerical test of quadrature formula for the integral (24).

z Exact value, by (25) Quadrature form. (19) δ, %
-0.99 -18.597791752712833 -18.597791752712908 4.0116× 10−15

-0.6 -0.9833492587254643 -0.9833492587253971 6.83058× 10−14

-0.2 0.6793649549585903 0.6793649549585903 5.5563× 10−15

0.0 1.0283404811209695 1.0283404811209635 5.82998× 10−15

0.1 1.1445832768980895 1.1445832768980928 2.90994× 10−15

0.3 1.3046004784874934 1.3046004784874938 3.40402× 10−16

0.7 1.518977651147536 1.518977651147532 2.63125× 10−15

0.99 3.3470563271679046 3.3470563271677065 5.91755× 10−14

3.2 Non-relativistic Schrodinger equation with linear
potential for the case l = 0

As a second numerical test we have done calculations of non-relativistic
Schrodinger equation (11) with linear potential for the case l = 0 for
which the exact solutions are well known [9].

Energy can be found by formula ε (0, s, 0) = −s2/3zν , where s ≡ 1/2µa,
and zν (ν = 1, 2, 3, . . .) – zeros of Airy function Ai (z). The results of this
calculation is presented in Table 3. There is very good agreement between
two results with excellent precision.

Table 3: Comparison of results of calculations for linear potential in mo-
mentum space by using our quadrature formula with exact value received
by Airy function zeros. Number of points N = 100.

n En (19) En (exact value) δ, %
1 2.3381074104597843 2.338107410459767 7.33× 10−13

2 4.0879494441309765 4.087949444130971 1.33× 10−13

3 5.520559828095326 5.520559828095551 4.06× 10−12

4 6.786708090071581 6.78670809007176 2.62× 10−12

5 7.944133587120411 7.944133587120854 5.58× 10−12

6 9.022650853340487 9.022650853340982 5.50× 10−12

7 10.040174341556877 10.040174341558087 1.21× 10−11

124



There is no results with accuracy better than 10−5÷10−6 in momentum
space.

3.3 Comparison results in momentum space with re-
sults of in coordinate space

Like a crosscheck we also made comparison our results for solution of (11)
with Cornell potential in momentum space for the first eigenvalue of en-
ergy E1 for different values of coefficient α, with results of calculation in
coordinate space by authors in [10] (see Table 4).

We should noted that our method let us repeat numbers from [10] with
very good precisions already with N = 100 points, while that last was
received on mesh N = 300000.

Table 4: Comparison of the results of 1S-state energy calculations for
Cornell potential in momentum space by using our quadrature formula
with results for coordinate space (ζ1) in [10].

α E1(1S), N = 100 ζ1(1S) [10], N = 300000 ∆ζ
0.0 2.338 107 410 459 784 3 2.338 107 410 458 750 1.0× 10−12

0.2 2.167 316 208 772 692 5 2.167 316 208 771 731 1.0× 10−12

0.4 1.988 503 899 750 148 7 1.988 503 899 749 943 9.6× 10−13

0.6 1.801 073 805 647 306 1.801 073 805 646 145 8.5× 10−13

0.8 1.604 408 543 236 034 9 1.604 408 543 235 973 6.6× 10−13

1.0 1.397 875 641 659 084 1.397 875 641 659 578 3.8× 10−13

1.2 1.180 833 939 742 701 1.180 833 939 744 863 2.1× 10−14

1.4 0.952 640 495 217 967 7 0.952 640 495 219 193 5.8× 10−13

4 Conclusions

The new high precision quadrature formula for singular integrals like in
bound-state equations with the Cornell potential was suggested.

Numerical tests of quadrature formula for the cases of exact solved
mathematical integrals and problems with the Cornell potential were per-
formed and was shown the good accuracy of method.
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Research of the Stability of Motion of
Fermions

E.E. Kazitsky∗, V.I. Kuvshinov†

Joint Institute for Power and Nuclear Research - Sosny
National Academy of Science of Belarus

1 Introduction

It is known that any particle movement can be described using respective
equations in partial or total derivatives. For these equations, it is nec-
essary to initialize. It is worth considering that there are always some
interference, noise, etc. that can affect the dependence, which can be ob-
tained from these equations. Accounting for such interference is extremely
difficult due to their smallness and stochastically. It is therefore easier to
determine the stability region of the corresponding equations. The move-
ment of non-abelian gauge field is unstable at any energy density in the
absence of background fields[1]. It stimulates interest in the study of sta-
bility of motion in the gauge fermion fields as fermion field can serve as
a background field for the Yang-Mills theory. Besides that the definition
of sustainability movement fermions due to the fact whether the system
consisting of fermions, gauge and Yang-Mills fields will be stable. In this
work the stability conditions for a fermion and gluons in the electromag-
netic fields will be determined, as well as the interaction with the Higgs
field. For this Todd criterion and generalized Hamilton equations were
used. First the stability in the electromagnetic field will be investigated,
then - the resistance movement in the gluon field, after that - the study
of the stability in the SU (2), considering the interaction with the Higgs
field.

∗E-mail: egorprostoy@mail.ru
†E-mail: kuvshinov2003@gmail.com
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2 Conventional signs
∂µ = ∂

∂xµ is the partial derivative where µ ∈ (0, 1, 2, 3); ψ is wave function
of the fermion; ψ+ = ψ+; γ0; γ0, γ1, γ2, γ3 is the Dirac matrices; m is mass
of the fermion; Aµ is vector potential of group U(1), Gµ

a is vector potential
of group U(N), a ∈ (0, , N); f , g, e is coupling constants.

3 The equation for fermions in the field
As it is known we can say that fermions must be described by the Dirac
equation [2, 3]

iγµ∂
µψ = mψ (1)

Corresponding to this equation the Lagrangian has the form [4]

L = iψ+γµ∂
µψ − ψ+mψ (2)

In the case of a particle in a field with which the interaction takes place,
the derivative is converted to an extended derivative[5]

∂µ → Dµ = ∂µ + igAµ (3)

where Aµ = Aµ
n
Tn

2
. We use matrix tn, which obey the Lie algebra[5]

[T n, Tm] = tn m fT f (4)

T n m f is a structure constant. The Lagrangian in this case takes the form

L = iψ+γµD
µψ − ψ+mψ + Lf (5)

Lf is Lagrangian of the gauge field. For motion in the scalar field we have

∂µ → D
′µ = ∂µ + igAµ + ifaµφ (6)

φ is function of the scalar field, aµ is a constant. In this ways Lagrangian
is

L = iψ+γµD
′µψ − ψ+mψ + Lf + Ls (7)

Ls is Lagrangian of the scalar field.
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4 Change of variables of wave function
We introduce the new variables in(7)

iψ+γµψ = q2µ (8)

Then a current density is writen as iψ+γµψ = (q20; q
2
1; q

2
2; q

2
3). For vector

potential we have Aµ = (A0;−Ak). Then gψ+Aµγµψ = gq20A0 − gq21A1 −
gq22A2 − gq23A3, mψ

+ψ = mq20, and ψ
+γµ∂

µψ = qµp
µ

5 Toda criterion
A convenient criterion for describing the stability is Toda criterion[6]. Let
us proceed from the density of the Lagrangian function to the density of
the Hamilton function.

H = T 00 =
∂L

∂p0
− L (9)

Next it is necessary to know the transformation matrix Y, received from
the expression (

d
dt
δpµ

d
dt
δqµ

)
= Y

(
δqµ
δpµ

)
(10)

To solve this problem it is convenient to use the equations of Hamilton,
which will have the form(

d
dt
δpµ

d
dt
δqµ

)
= I

(
−δ H

qµ

δ H
pµ

)
(11)

Substituting (12) to (11) we will get

(
d
dt
δpµ

d
dt
δqµ

)
=

 − ∂2

∂qµ∂qν
− ∂2

∂qµ∂pν
∂2

∂pµ∂qν
∂2

∂pµ∂pν

( δqν
δpν

)
(12)

Stability of motion defines the determinant of the matrix Y. The only imag-
inary eigenvalue λ indicates the stability of motion, the real one indicates
the instability of of motion.
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6 Massive fermions in an electromagnetic

field
In the first case the group of symmetry U(1) will be considered[7]. La-
grangian which is used in the theory of fermions in an electromagnetic
field has the following form

L = iψ+γµ∂
µψ − eψ+γµA

µψ − ψ+mψ (13)

Hamiltonian in an explicit form

H = mq20 + e(q20A0 − q21A1 − q22A2 − q23A3) + q21p1 − q22p2 − q23p3 (14)

The eigenvalues will take the form

λ0 = 0;λ0 = −2(m− eA0);λk = −eAk ±
√
−1 + e2A2

k (15)

Motion is not stability in any field if Ak > 0

7 Stability of motion of fermions with two

extra degrees of freedom
The case of the four space degrees of freedom and two extra degrees of free-
dom refers to the case of the group of symmetry SU(2)[5]. The difference
is that instead of q must be written column a matrix column, consist-

ing of wave functions, q →
(
q(1)
q(1)

)
, instead of q+ a conjugate matrix

q+ →
(
q∗(1) q∗(2)

)
, Aµ →

(
Gµ

11 Gµ
12

Gµ
21 Gµ

22

)
, where

(
Gµ

11 Gµ
12

Gµ
21 Gµ

22

)
= Gµ

aT
a,

T a generators of the group. Lagrangian will take the form

L = qµ(i)pµ(i)−gq20(i)G0(ii)+gq
2
1(i)G1(ii)+gq

2
2(i)G2(ii)+gq

2
3(i)G3(ii)−mq20+Lf

(16)
The eigenvalues will take the form

λ0 = 0;λ0 = −2(m− gG0);λk(i) = −2(gGk(i) ±
√
−1 + g2G2

k(i)) (17)

Motion is not stability in any field if Ak > 0 too.
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8 Stability of motion of non-massive fermi-

ons with two extra degrees of freedom and

the fermion interaction with the Higgs

field
Let us take the interaction of the fermion fields with the Higgs field. To
do this, the Lagrangian, which was considered in the second section, let us
add the interaction potential and the Lagrangian of the Higgs field. The
potential will be written in the form of the Yukawa interaction[8]

Vin = −fψ+φψ (18)

where φ - the Higgs field. The Lagrangian of the Higgs field will be written
as Lh. Then the total Lagrangian will take the form

L = qµ(i)pµ(i) − gq20(i)G0(ii) + gq21(i)G1(ii) + gq22(i)G2(ii) + gq23(i)G3(ii) −
−mq20 − fφq20 + Lf + Lh (19)

Doing all the operations which were used above for the eigenvalue we will
receive the values

λ0 = 0;λ0 = −2(fφ− gG0);λk(i) = −2(gGk(i) ±
√
−1 + g2G2

k(i)) (20)

For stability of motion the next conditions should fulfilled

fφ− gG0 = 0 (21)

The Higgs field can lead to (24). In this ways motion is stability.

9 Conclusions
From (16) we see that for the sustainability movement A2

k < 0 and λ0 = 0.
That is, if there is any external of the field, the square of the spatial
component of the vector potential is positive, the motion becomes unstable.
This result is quite logical. A particle falling into any field tests the effect
of this field, and begins to deviate from the middle of its trajectory. In the
case of the group SU (2) number of degrees of freedom increases, but the
expression for the vector potential remains the same. This follows from
the comparison (20) and (17). The condition is also not changed. The
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scalar Higgs field affects the stability that is evident from the expression
(24). Also, any scalar field affects the stability. And it may lead to the
stability of motion. After the analysis of the expression (31), determine
the type of the vector potential and accounting Weil calibration, the size
of the areas can be determined in which the motion of a particle is stable.
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Solution of the Schrödinger Equation for
Parabolic Double-well Potential

V. V. Kudryashov∗, A. V. Baran †

Institute of Physics, National Academy of Sciences of Belarus

Abstract

The smooth symmetric double-well potential is constructed by
means of joining two parabolic wells and central parabolic barrier.
The exact analytical solution of the Schrödinger equation is ob-
tained.

The models with double-well potentials are used in various branches
of physics and are investigated in numerous papers. For example, many
references can be found in [1, 2, 3, 4]. In the present paper, we consider
a symmetric potential V (q) = V (−q) which has two minima at points
±q0 and maximum V0 = V (0). Without loss of generality it is possible to
equate minima to zero by means of choice of an additive constant.

There is a small number of double-well potentials which permit the
exact solutions to the Schrödinger equation

d2Ψ(q)

dq2
=

2m

h̄2
(V (q)− E)Ψ(q). (1)

The most studied smooth double-well potential is the quartic potential
V (q) = V0(q

2 − q20 )2/q40 . For this potential, the validity of approxima-
tion methods is examined in [1, 2, 3, 4] since the exact solution of the
Schrödinger equation (1) is unknown in this case. The double oscillator

V (q) =
1

2
mω2(|q| − q0)2 (2)

∗E-mail: kudryash@dragon.bas-net.by
†E-mail: a.baran@dragon.bas-net.by
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was considered in [5]. This quadratic potential consists of two parabolas
which meet with discontinuous slope at the point q = 0. At the same
time this model is exactly solvable. Models with quadratic and quartic
double-well potentials are compared in [6].

In the present paper, we propose the generalization of formula (2). The
new potential

V (q) =
1

2
mω2

{
q20 − q2/g, |q| < gq0,
(|q| − q0)2/(1− g), |q| > gq0

(3)

consists of two parabolic wells and central parabolic barrier. Here 0 <
g < 1. The points q∓ = ∓gq0 are the points of inflection where the second
derivative is discontinuous. However, both the function V (q) and its first
derivative are continuous. In this case V0 = mω2q20/2. The potential (3)
coincides with (2) if g = 0. If q0 = 0, the potential (3) turns into the
potential of single harmonic oscillator mω2(1− g)−1q2/2.

By analogy with [5] it is convenient to introduce dimensionless quanti-
ties

x =

√
2mω

h̄
q, x0 =

√
2mω

h̄
q0, e =

E

h̄ω
(4)

and to transform the initial Schrödinger equation to the form

d2ψ(x)

dx2
= (v(x)− e)ψ(x) (5)

with reduced potential

v(x) =
1

4

{
x20 − x2/g, |x| < gx0,
(|x| − x0)

2/(1− g), |x| > gx0.
(6)

Note that the value of the central maximum of the reduced potential is
v0 = x20/4.

Fig. 1 shows the behavior of the reduced potential for different values
of g in the case of x0 = 2.5. Here and in all subsequent figures, we use
dotted lines for g = 0.1, solid lines for g = 0.5 and dashed lines for g = 0.9.

In the central region |x| < gx0, the Schrödinger equation (5) for the
potential (6) can be rewritten in the standard form [7]

d2ψc

dz2c
=

(
−z

2
c

4
− dc

)
ψc, (7)
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Figure 1: The reduced potential for different values of g.

where

zc =
x

g1/4
, dc = g1/2

(
e− 1

4
x20

)
. (8)

The even ψc1(x) and odd ψc2(x) solutions of this equation are expressed
through the confluent hypergeometric functions [7] with the help of formu-
las

ψc1(x0, g, e, x) = e−iz
2
c/4M

(
idc
2

+
1

4
,
1

2
,
iz2c
2

)

+ eiz
2
c/4M

(
−idc

2
+

1

4
,
1

2
,−iz

2
c

2

)
, (9)

ψc2(x0, g, e, x) = zce
−iz2c/4M

(
idc
2

+
3

4
,
3

2
,
iz2c
2

)

+ zce
iz2c/4M

(
−idc

2
+

3

4
,
3

2
,−iz

2
c

2

)
. (10)

It should be stressed that these solutions are real.
In both side regions x < −gx0 and x > gx0 adjoining to the central

region from the left and from the right, the wave functions satisfy another
standard equation [7]

d2ψs

dz2s
=

(
z2s
4
− ds

)
ψs, (11)

where

zs =
(|x| − x0)

(1− g)1/4
, ds = (1− g)1/2e. (12)
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The decreasing at |x| → ∞ solution of this equation can be presented
through the parabolic cylinder function [7] by means of the formula

ψs(x0, g, e, x) = Dds−1/2(zs). (13)

On the whole real axis −∞ < x < ∞, the continuous even (i = 1)
and odd (i = 2) solutions of the Schrödinger equation with the symmetric
smooth potential (6) can be written in the form

ψi(x0, g, e, x) = N


ψci(x0, g, e,−gx0)ψs(x0, g, e, x), x < −gx0,
ψs(x0, g, e, gx0)ψci(x0, g, e, x), −gx0 < x < gx0,
ψci(x0, g, e, gx0)ψs(x0, g, e, x), x > gx0.

(14)
The normalization coefficient N is determined by the condition∫ ∞

−∞
ψ2

i (x0, g, e, x) dx = 1. (15)

The additional requirement of continuity for the first derivative

ψ′i(x0, g, e, x) = dψi(x0, g, e, x)/dx

at the point x = gx0 leads to the energy quantization rule for even and
odd states:

ψs(x0, g, e, gx0)ψ
′
ci(x0, g, e, gx0) = ψci(x0, g, e, gx0)ψ

′
s(x0, g, e, gx0). (16)

Due to the symmetry of potential this rule ensures continuity of the first
derivative at the point x = −gx0 too. The eigenvalues e of energy are
easily found as the numerical solutions of the transcendental equation (16).
Substituting obtained values of e into the formula (14) we get finally the
eigenfunctions for the parabolic double-well potential.

Fig. 2 demonstrates dependence of the four lowest energy levels e
on x0 for different values of g. The dash-dot line reproduces the barrier
height x20/4 in the reduced potential. There are pairs of lines which be-
come indistinguishable at large values of x0. This is the evidence of double
degeneration of energy levels. At x0 = 0, in each pair, the values of non-
degenerate lower (even) and upper (odd) levels are (2n + 1/2)/(1 − g)1/2

and (2n + 1 + 1/2)/(1 − g)1/2 respectively. We see that at very large x0,
the indistinguishable levels tend to (n+ 1/2)/(1− g)1/2.
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Figure 2: The dependence of e on x0.

Figures 3-6 show the normalized wave functions of the four lowest en-
ergy eigenstates for different values of g in the case of x0 = 2.5.
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Figure 3: The ground state wave
functions.
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Figure 4: The first excited state
wave functions.
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Figure 5: The second excited state
wave functions.
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Figure 6: The third excited state
wave functions.
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Dipole Spin Polarizabilities and Gyrations of
Spin-1 Particles in the Duffin-Kemmer-Petiau
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Abstract

In this paper relativistic-invariant phenomenological Lagrangi-
ans of interaction between spin-1 particles and electromagnetic field
were obtained in the Duffin-Kemmer-Petiau formalism on the basis
of the covariant model that takes into account both spin polarizabil-
ities and gyrations of the above-mentioned particles. It was shown
that in the suggested covariant model with regard to the crossing
symmetry, spatial parity and gauge invariance conservation laws,
definite spin polarizabilities and gyrations of spin-1 particles con-
tribute to the expansion of Compton scattering amplitude, starting
from the corresponding orders on energy of pfotons that is in the
agreement with low-energy theorems for that process.
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1 Introduction

With the development of the Standard Model of electroweak interaction,
new electromagnetic properties of hadrons have been introduced recently.
These properties, by analogy with gyration [1,2], are connected with par-
ity violation [3,4]. In their turn, such electromagnetic characteristics as
polarizabilities and gyrations are directly related to the inner structure
of hadrons and the mechanism of electroweak photon-hadron interactions.
For more reliable determination of polarizabilities and hadron character-
istics connected with parity violation, a wide class of electrodynamic pro-
cesses is used. These processes include real and virtual photons scattering,
as wells as two-photon production in hadron-hadron interactions. In this
context, the task of consistent relativistic-invariant determination of the
contributions of polarizabilities and electroweak characteristics of particles
to the electrodynamic processes’ amplitudes and cross-sections is of great
relevance.

The solution for this task can be found in the framework of relativistic
theoretical and field approach to the description of interaction between
electromagnetic field and hadrons with the account for polarizabilities
(both electromagnetic and electroweak) of the latter. In papers [1, 5-9]
covariant techniques describing the interaction between electromagnetic
field and hadrons were presented. In such techniques the electromagnetic
characteristics of particles are fundamental.

Effective covariant Lagrangian of interaction between electromagnetic
field and spin-1/2 particles that takes into account the polarizabilities of
the latter was introduced in [1, 10] and has been recently used for fitting
the photon-proton scattering experimental data at the energies close to
resonance production ∆(1232) [11]. Characterization of electrodynamic
processes on the basis of relativistic theoretical and field approaches, which
are focused on the obtaining of phenomenological Lagrangians, equations
that describe interaction of electromagnetic field with hadrons, as well as
the calculation of electrodynamic processes amplitudes consistent with the
Standard Models low-energy theorems is one of the most effective methods
of interaction processes investigation.

Currently there is a number of theoretical papers (see [12-16]) devoted
to introduction and calculation of spin polarizabilities of spin-1/2 hadrons
that contribute to the series expansion of Compton scattering amplitude at
the energies of photons in the third expansion order. Along with the inves-
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tigations of spin-1/2 hadrons polarizabilities, a number of papers present
the results of determination and estimation of spin-1 particles polarizabil-
ities [17-20]. Such particles are characterized by both dipole, spin and
tensor polarizabilities.

Low-energy theorems play an important role in the understanding of
interaction between electromagnetic field and hadrons. It is stipulated by
the fact that they are based on the general concepts of quantum field the-
ory and series expansion of Compton scattering amplitude in powers of
photons energy. Currently, one of the most efficient methods of electrody-
namic processes investigation is the technique that uses phenomenological
Lagrangians obtained in the framework of theoretical and field approaches
and consistent with the low-energy theorems that are specified by the Stan-
dard Model of electroweak interactions. Construction of such Lagrangians
allows to obtain physical interpretation of electromagnetic and electroweak
characteristics of hadrons.

In paper [19] low-energy theorems for Compton scattering on a spin-1
particle were obtained. On the basis of these and with the use of tech-
niques for determination of the contribution of spin-1/2 particles polar-
izabilities to the amplitudes of electrodynamic processes, one can obtain
relativistic-invariant effective Lagrangians and covariant spin structures
of two-photon interaction amplitudes with consideration of polarizabilities
and electroweak properties (gyrations) on spin-1 particles. The present
paper is entirely devoted to the above-mentioned task.

In paper [21] the construction of the effective relativistic-invariant La-
grangian of interaction between electromagnetic field and particles with
constant electric and magnetic dipole moments was performed with the
help of dipole moments anti-symmetric tensor that is independent of elec-
tromagnetic field tensor Fµν .

The present article uses quantum-field relativistic-invariant Lagran-
gian, in which a tensor of induced dipole moments is introduced. It means
that, in contrast to paper [21], this tensor depends on Fµν [22]. In its turn,
polarizabilities tensor [23, 24] is introduced to determine contributions of
polarizabilities and gyrations to the low-energy Compton scattering am-
plitude with provision for particles spin degrees of freedom. Moreover, we
take into account hermiticity requirements, algebra of spin operators and
the behavior of tensor components under space and time inversion.

Such phenomenological approach allows to determine the effective re-
lativistic-covariant Lagrangian using the relativistic field consideration of

141



the properties of C-, P - and T -transformations, as wells as the crossing
symmetry. It also provides for conformance with the low-energy theorems
for Compton scattering on spin-1 particles.

In the present paper the Lagrangian and the amplitude of Compton
scattering on the spin-1 particles in the Duffin-Kemmer-Petiau formalism
with consideration of their polarizabilities and gyrations were obtained in
the framework of covariant theoretical and field approach. The technique
presented in papers [5, 22, 25, 26] was used.

2 Determination of the spin structure of

low-energy amplitude for spin-1 particle

Compton scattering

We will follow the paper [27] in order to determine the contributions of po-
larizabilities and gyrations to the low-energy amplitude of electromagnetic
field scattering on spin-1 particle. However, to calculate induced electric−→
d and magnetic −→m moments in terms of the electric

−→
E and magnetic

−→
H

vectors of electromagnetic field strength, we use the following formulas [2]:

−→
d = 4πα̂

−→
E (1)

−→m = 4πβ̂
−→
H (2)

where α̂ and β̂ are matrices, matrix-elements of which are the tensors of
electric and magnetic polarizabilities. Diagonal elements of these matrices
are expressed through scalar electric and magnetic polarizabilities:

αij = α1δij

βij = β1δij

Low-energy amplitude of electromagnetic field scattering that was ob-
tained using formulas (1) and (2) can be presented in the following way
[26]:

M(n⃗2) = 4πω2{(e⃗(λ2)∗α̂e⃗(λ1)) + (n⃗2e⃗
(λ1))(n⃗1β̂e⃗

(λ2)∗)+ (3)

+(n⃗1e⃗
(λ2)∗)(e⃗(λ1)β̂n⃗2)− (e⃗(λ2)∗ e⃗(λ1))(n⃗1β̂n⃗2)− (n⃗1n⃗2)(e⃗

(λ1)β̂e⃗(λ2)∗)+

+[(n⃗2n⃗1)(e⃗
(λ2)∗ e⃗(λ1))− (n⃗2e⃗

(λ1))(n⃗1e⃗
(λ2)∗)]Sp(β̂)}.
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Expression (3) includes the following designations: ω is the incident

wave frequency, n⃗1 =
k⃗1
|⃗k1|

, e⃗(λ1) and k⃗1 are correspondingly the polarization

and wave vectors of the incident wave.
According to the definitions of d⃗ and m⃗ presented in (1) and (2), it

follows that α̂ and β̂ should satisfy the hermiticity requirement. Taking
into account this requirement as well as the algebra of spin-1 operators Ŝi

[19] we can obtain the following:

[Ŝi, Ŝj] = iδijkŜk, (4)

ŜiŜjŜk = iδijk +
1

2
(Ŝiδjk + Ŝkδij) +

i

2
δikl(ŜjŜl + ŜlŜj) (5)

α̂ and β̂ operators can be presented in the following way [26]:

αij = α1δij + iα2δijkŜk + iχEδijk∂k + ¯̄α(ŜiŜj + ŜjŜi), (6)

βij = β1δij + iβ2δijkŜk + iχMδijk∂k +
¯̄β(ŜiŜj + ŜjŜi), (7)

where i,j, k and l can take the value of 1, 2 or 3, while δijk - is the three-
dimensional Levi-Civita tensor.

In formulas (6) and (7) α1 and β1 are scalar dipole electric and magnetic

polarizabilities correspondingly, ¯̄α and ¯̄β are tensor polarizabilities, α2 and
β2 are spin dipole polarizabilities, while χE and χM are correspondingly
electric and magnetic gyrations. As a consequence of crossing symmetry,
α2, β2 and χE, χM have non-zero contribution to the amplitude of Compton
scattering in the third expansion order of the photons energy.

As it was shown in [26], by substituting formulas (6) and (7) into (3) and

taking into account the contributions of α, β, ¯̄α and ¯̄β polarizabilities, one
can obtain the scattering amplitude in the second expansion order of the
photons energy. It coincides with beyond the Born part of the amplitude
and is due to the low-energy theorem [19].

Lets determine relativistic-invariant spin structures of the effective La-
grangian and the amplitudes of Compton scattering on spin-1 particles
with the help of covariant representation of (6) and (7) in the Duffin-
Kemmer-Petiau (DKP) formalism following paper [26].

The DKP equations for an unbounded spin-1 particle have the following
form [28]:

(βµ∂⃗µ +m)ψ(x) = 0, (8)
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ψ̄(x)(βµ∂⃗µ −m) = 0, (9)

where ψ(x) and ψ̄(x) = ψ+(x)η are ten-dimensional functions of particles,

η = 2(β
(10)
4 )2 − I, vectors over derivatives ∂µ show the direction of their

action, while four-dimensional vector is defined as aµ{a⃗, ia0}. In formulas
(8) and (9) βµ are ten-dimensional DKP matrices that satisfy the following
commutation rules:

βµβνβρ + βρβνβµ = δµνβρ + δρνβµ.

In the framework of theoretical and field covariant approach the ef-
fective Lagrangian of interaction between electromagnetic field and spin-1
particle with provision for polarizabilities has the form [5, 8, 26]:

L = − π

2m
ψ̄[βνL̂νσ

↔
∂σ

+ L̂νσβν
↔
∂σ

]ψ (10)

where
↔
∂σ

=
−→
∂ σ −

←−
∂ σ.

The formula (10) for the Lagrangian includes tensor L̂νσ, which is ex-
pressed in terms of polarizabilities and gyrations as:

L̂νσ(α, χE) = L̂νσ(α1) + L̂νσ(¯̄α) + L̂νσ(α2) + L̂νσ(χE), (11)

L̂νσ(β, χM) = L̂νσ(β1) + L̂νσ(
¯̄β) + L̂νσ(β2) + L̂νσ(χM), (12)

In order to determine the influence of crossing symmetry on the con-
tributions of spin polarizabilities and gyrations to the Compton scattering
amplitude in dipole representation we will transform tensors (11) as (see
[22]):

L̂νσ(α1) + L̂νσ(¯̄α) = Fνµα̂
µρ(α1)Fρσ + Fνµα̂

µρ(¯̄α)Fρσ, (13)

L̂νσ(α2) + L̂νσ(χE) = Fνµ
↔
∂λ

Fρσk̂µρλ(α2) + Fνµ
↔
∂λ

Fρσk̂µρλ(χE). (14)

Derivatives in equation (14) operate only on the tensors of electromag-
netic field

Fµν = ∂µAν − ∂νAµ.

Tensors α̂µρ(α1) and α̂
µρ(¯̄α), as well as k̂µρλ(α2) and k̂µρλ(χE) are the co-

variant generalization of tensors that appear in the right part of formula
(6). They have the following form:

α̂µρ = α1δµρ + ¯̄α(ŴµŴρ + ŴρŴµ), (15)
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k̂µρλ =
iα2

2m
δµρλkŴk +

iχE

2m
δµρλk

↔
∂k

(16)

In equations (15) and (16) the definition of covariant spin vector is
used. This vector can be expressed in terms of βν matrices (see [28]):

Wµ = − i

4m
δµχδηĴ

[δη] ↔
∂χ,

where Ĵ [δη] = βδβη − βηβδ. All derivatives found in (15) and (16) operate
on wave functions ψ and ψ̄.

Tensor (12) is defined in a similar way. One just needs to introduce

constants β1, β2,
¯̄β and χM , in formulas (13)-(14) and make a replacement

Fνµ → F̃νµ,

where

F̃µν =
i

2
δµνρσFρσ.

Lets now determine the spin structures of the amplitude of Compton scat-
tering on spin-1 particle with provision for polarizabilities and gyrations.
We will take Lagrangian (10) as a basis and follow the procedure presented
in paper [28]:

< k2, p2|Ŝ|k1, p1 >=
imδ(k1 + p1 − k2 − p2)
(2π)2

√
4ω1ω2E1E2

M, (17)

here M is the Compton scattering amplitude that represents the sum of
polarizabilities and gyrations contributions according to formulas (11) and
(12).

As it was shown in [26], the contribution of α, β and ¯̄α, ¯̄β is expressed
as a sum of amplitudes

M1 =M1(α, β) +M1(¯̄α,
¯̄β). (18)

Spin structure M(α, β) in equation (18) has the following form:

M1(α, β) =

(
− 2πi

m

){
α[F (2)

νµ F
(1)
µσ + F (1)

νµ F
(2)
µσ ]+ (19)

+β[F̃ (2)
νµ F̃

(1)
µσ + F̃ (1)

νµ F̃
(2)
µσ ]

}
Pσψ̄

(r2)(p2)βνψ
(r1)(p1).
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In its turn, structure M(¯̄α, ¯̄β) is determined as:

M1(¯̄α,
¯̄β) =

(
− πi

m

){
¯̄α[F (2)

νµ F
(1)
µσ + F (1)

νµ F
(2)
µσ ]+ (20)

+¯̄β[F̃ (2)
νµ F̃

(1)
µσ + F̃ (1)

νµ F̃
(2)
µσ ]

}
Pσψ̄

(r2)(p2)[βν{Ŵµ, Ŵρ}+ {Ŵµ, Ŵρ}βν ]ψ(r1)(p1).

Equations (19) and (20) include the following designations:

F (2)
νµ = k2νe

(λ2)∗

µ − k2µe(λ2)∗

ν ,

F (1)
µσ = k1µe

(λ1)
σ − k1σe(λ1)

µ ,

where F̃ (2)
νµ = i

2
δνµχδF

(2)
χδ , Pσ = 1

2
(p1 + p2)σ, p1 and p2 are the momenta of

initial and final spin-1 particles correspondingly.
Ten-dimensional wave functions in the DKP formalism are introduced

using complete matrix algebra elements εAB [28]

ψ(r)(p) = ψ(r)
µ (p)εµ1 +

1

2
ψ

(r)
[µν](p)ε

[µν]1.

In this formula

ψ(r)
µ (p) =

i√
2
λ(r)µ ,

ψ
(r)
[µν](p) == − 1√

2m

(
pµλ

(r)
ν − λ(r)µ pν

)
,

λ(r)µ are the components of polarization vectors of spin-1 particle, while
εAB are the elements of complete matrix algebra [28]:

(εAB)CD = δACδBD, εABεCD = δBCε
AD,

where for spin-1 particle indices A, B,C, D = µ, [ρσ], while square brackets
stand for the anti-symmetry with respect to indices ρ and σ.

Wave functions ψ̄(r)(p) that are conjugate with respect to ψ(r)(p) are
expressed in the following way (taking into account η matrix):

ψ̄(r)(p) = ψ+(p)η =

(
− i√

2

)
[λ̇(r)µ ε1µ +

i

2m
ε1[µν](pµλ̇

(r)
ν − pνλ̇(r)µ )],

where λ̇(r)µ

{
λ
(r)∗

i , λ
(r)
4

}
.
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Let’s now determine the spin structures of the amplitudes with provi-
sion for the contributions of spin polarizabilities α2, β2 and gyrations χE,
χM , i.e.

M2 =M2(α, β) +M2(χE, χM).

Using the summands L̂νσ(α2), L̂νσ(χE), L̂νσ(β2) (11) and L̂νσ(χM) (12),
of the Lagrangian, as well as the previous technique for determination of
polarizations contributions to the Compton scattering amplitude, one can
find:

M2(α2, β2) =
π

m
(k1 + k2)λδµρλk

{
α2[F

(2)
νµ F

(1)
ρσ − F (1)

νµ F
(2)
ρσ ]+ (21)

+β2[F̃
(2)
νµ F̃

(1)
ρσ − F̃ (1)

νµ F̃
(2)
ρσ ]

}
ψ̄(r2)(p2)[βνŴk + Ŵkβν ]Pσψ

(r1)(p1).

Amplitude (21) in the targets rest frame and with the neglect of the target
particles recoil can be expressed as:

M2(α2, β2) = 4iπ(ω1 + ω2)ω1ω2λ⃗
(r2)∗

{
α2(S⃗[e⃗

(λ2)∗ e⃗(λ1)])+ (22)

+β2S⃗[n⃗2e⃗
(λ2)∗ ][n⃗1e⃗

(λ1)]
}
λ⃗(r1).

Formulas (21) and (22) imply that dipole spin polarizabilities α2 and
β2 contribute to the amplitude of Compton scattering on spin-1 particle
in the third expansion order (series expansion in the energy of photons),
while the crossing symmetry requirements and parity conservation (with
respect to space inversion) rules are satisfied.

Using the above-introduced technique for constructing covariant blocks
of the effective Lagrangian with provision for the crossing symmetry and
parity violation, we can obtain the second summand of the amplitude that
depends on the contributions of electric and magnetic gyrations:

M2(χE, χM) =
2iπ

m2
(k1 + k2)λδµρλk

{
χE[F

(2)
νµ F

(1)
ρσ − F (1)

νµ F
(2)
ρσ ]+ (23)

+χM [F̃ (2)
νµ F̃

(1)
ρσ − F̃ (1)

νµ F̃
(2)
ρσ ]

}
PkPσψ̄

(r2)(p2)βνψ
(r1)(p1).

If we use approximation P⃗ = 0, in equation (23), i.e. we consider the
particle to be at rest and neglect its recoil momentum, the formula (23)
can be rewritten in the following way:

M2(χE, χM) = 4πω1ω2(λ⃗
(r2)∗λ⃗(r1))

{
χE(k⃗1 + k⃗2)[e⃗

(λ2)∗ e⃗(λ1)])+ (24)

+χM(k⃗1 + k⃗2)[Σ⃗2Σ⃗1]
}
,

where Σ⃗2 = [n⃗2e⃗
(λ2)∗ ], Σ⃗1 = [n⃗1e⃗

(λ1)].
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3 Conclusion

Hence, we determined the contributions of polarizabilities to the low-
energy Compton scattering amplitude with provision for the spin degrees
of freedom of particles by transforming the polarizabilities tensor that sat-
isfies both hermiticity requirement and spin algebra. This tensor is also
invariant with respect to space inversion transformations.

The relativistic-covariant form of contributions of spin and tensor po-
larizabilities, as well as gyrations to the Compton scattering amplitude in
the DKP formalism was found.

The effective Lagrangian that takes into account the changes of spin
structures during space inversion transformations and considers the cross-
ing symmetry of Compton scattering amplitude on spin-1 particle was
obtained in the DKP formalism using theoretical and field relativistic gen-
eralization. The coordination of this amplitude with the low-energy theo-
rems was performed as well.

References

[1] Maksimenko, N. V. Phenomenological description of the polarizability
of elementary particles in the field theory / Maksimenko, N. V. and
Moroz, L. G. // Proc. of the XI-th International School of Young
Scientists in High Energy Physics and Relativistic Nuclear Physics
[in Russian], D2-11707, Joint Institute for Nuclear Research, Dubna
(1979), pp. 533–543.

[2] Fedorov, F. I. Theory of Gyrotropy [in Russian], Nauka i Tekhnika,
Minsk (1976).

[3] Bedaque, P. F. Parity violation in p Compton Scattering / P. F. Be-
daque, M. J. Savage // Phys. Rev. C. 2000 V. 62 P. 018501 1–6.

[4] Gorchtein, M. Forward Compton Scattering with neutral current: con-
straints from sum rules / M. Gorchtein, X. Zhang [Electronic resourse].
2015. Mode of access: http://nucl-th/1501.0535v1. Date of access:
22.01.2015.

[5] Maksimenko, N. V. Covariant definition polarizability of hadrons with
spin one // Doklady Akad. Of Sciences BSSR, Ser. Fiz.-Mat. Navuk,
No. 6, 508–510 (1992).

148



[6] Levchuk, M. I. The nucleon gyration as one of nucleon electromag-
netic structure characteristics / M. I. Levchuk, L. G. Moroz // Proc.
Academy of Sciences of BSSR. Ser. fiz.-mat.navuk. 1985. No. 1. P.
45–54.

[7] Bogush, A. A., Kisel, V. V., and Moroz, L. G. On the description of
the polarizability of scalar particles in the theory of relativistic wave
equations in: Covariant Methods in Theoretical Physics. Physics of
Elementary Particles and Theory of Relativity, [in Russian], Minsk
(1981), pp. 81–90.

[8] Andreev, V. V., Maksimenko, N. V. Polarizability of elementary par-
ticles in the theoretical-field approach // Problems of Physics, Math-
ematics and Technics. 2011. No. 4 (9). pp. 7–11.

[9] Maksimenko, N. V., Deryuzhkova, O. M. Covariant gauge-invariant
Lagrangian formalism taking into account polarizability of the parti-
cle // Vestsi NAN Belarusi, Ser. Fiz.-Mat. Navuk, No. 2, pp. 27–30
(2011).

[10] Ilyichev, A. Static polarizability vertex and its applications / A.
Ilyichev, S. Lukashevich, N. Maksimenko // [Electronic resource].
2006. Mode of access:arXiv: //hep-ph/0611327v1. Date of access:
27.11.2006.

[11] Zhang, Y. Proton Compton scattering in a unified proton - △+ Model
/ Y. Zhang, K. Savvidy // Phys. Rev. C. 2013. Vol. 88. P. 064614-
1–12.

[12] Holstein, B. R. Hadron polarizabilities / B. R. Holstein, S. Scherer.
[Electronicresourse]. 2013.
Mode of access: http: // hep-ph/1401.0140v1. Date of access:
31.12.2013].

[13] Carlson, C. E. Constraining off-shell effects using low-energy Compton
scattering / C. E. Carlson, M. Vanderhaeghen // [Electronic resource].
2011. Mode of access: http://physics.atom-ph/1109.3779. Date of
access: 04.10.2011.

[14] Raguza, S. Third-order spin polarizabilities of the nucleon: I / S.
Raguza // Phys. Rev. D. 1993. Vol. 47. - 9. P. 3757–3767.

149



[15] Raguza, S. Third-order spin polarizabilities of the nucleon: II / S.
Raguza // Phys. Rev. D. 1994. Vol. 49. - 7. P. 3157–3159.

[16] Low-energy Compton scattering of polarized photons on polarized nu-
cleons / D. Babusci [et. al.] // Rev. C. 1998. Vol. 58. P. 1013–1041.

[17] Chen, J. W. The polarizability of the deuteron / J. W. Chen [et. al.]
// Nucl. Phys. A. 1998. Vol. 644. P. 221–234.

[18] Friar, J. L. Deuteron dipole polarizability and sum rules / J. L. Friar,
G. L. Payne // Rev. C. 2005. Vol. 72. P. 014004–1–014004–6.

[19] Lin, K. Y. Forward dispersion relation and low-energy theorems for
Compton scattering on spin 1 targets / K. Y. Lin, J. C. Chen // J.
Phys. G: Nucl. Phys. 1975 Vol.1 P. 394–399.

[20] F. Hagelstein. Sum Rules for Electromagnetic Moments and Polariz-
abilities of Spin-1 Particles in Massive Yang-Mills QED / Masterarbeit
in Physik vorgelegt dem Fachbereich Physik, Mathematik und Infor-
matik (FB 08) der Johannes Gutenberg-Universit.at Mainz am 11. Ma
rz 2014.

[21] Anandan, J. S. Classical and quantum interaction of the dipole / J.
S. Anandan // Phys. Rev. Lett. 2000. Vol.85. P. 1354–1357

[22] Andreev, V. V., Deryuzhkova, O. M., and Maksimenko, N. V. The
covariant representation spin polarizability of the nucleon // Problems
of Physics, Mathematics and Technics. 2014. No. 3(20). pp. 7–12.

[23] Galynskii, M. V., Fedorov, F. I. Transformation of the beam tensor
during a light-medium interaction // Journal of Applied Spectroscopy,
1986, Vol. 44, No. 2, pp. 200–203.

[24] Baryshevskii, V. G. Nuclear Optics of Polarized Media [in Russian],
Energoatomizdat, Moscow (1995).

[25] Vakulina, E. V., Maksimenko, N. V. Polarizability of the pion in the
formalism of Duffin Kemmer // Problems of Physics, Mathematics
and Technics. 2013. No. 3. pp. 16–18.

150



[26] Maksimenko, N.V. Spin 1 Particle Polarizability in the Duffin-
Kemmer-Petiau Formalism // N.V. Maksimenko, E.V. Vakulina, S.M.
Kuchin // Physics of Paticles and Nuclei Letters.- 2015. - Vol. 12,
No.7, P. 807–812.

[27] Landau, L. D., Lifshitz, E. M. Course of Theoretical Physics. Volume
2. The Classical Theory of Fields 4 Edition. Butterworth-Heinemann,
1975. 402 p. Series: Course of Theoretical Physics Series (Book 2).

[28] Bogush, A. A. Introduction to Gauge Field Theory of Electroweak
Interactions [in Russian], Nauka i Tekhnika, Minsk (1987).

151



Corrections to the Formula for
Baryshevsky-Luboshitz Effect in Magnetic

Field

A.I. Sery∗

Brest State A.S. Pushkin University

Abstract

In the framework of tree approximation a correction is obtained
to the formula for Baryshevsky-Lubositz rotation of the plane of
linear polarization of a photon in electron gas with high degree
of spin polarization of electrons in magnetic field. The frequency
of photon is considered to be of the same order as the cyclotron
frequency.

1 Introduction

The effect of rotation of the plane of polarization of X- and gamma-
photons on spin-polarized electrons was theoretically predicted by V.G.
Baryshevsky and V.L. Luboshitz in 1965 and experimentally tested at
early 1970s [1, 2, 3, 4]. The effect was considered for the case when the
frequency of photon was much greater than the cyclotron frequency. The
effect is possible due to the dependence of Compton scattering forward
amplitudes on the relative direction of spins of photon and electron. The
effect is important in studying white dwarfs and neutron stars, namely,
their magnetic fields and the structures of their atmospheres.

∗E-mail:alexey sery@mail.ru
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2 The contribution of Faraday effect

Baryshevsky-Lubositz effect differs from another type of rotation of the
plane of polarization of photons known as Faraday effect. The main dif-
ferences between 2 effects are presented in Table 1.

Table 1 - The difference between Faraday and Baryshevsky-Lubositz effect.

Effect Faraday Baryshevsky-Lubositz
Based on Zeeman effect the dependence of Comp-

ton scattering forward am-
plitude on the directions of
electron and photon spins

Spectral region radio and visible hard X and gamma
Can electrons be re-
garded as free

no yes

Is spin polarization
of electrons necessary

no yes

The conditions for Faraday effect change significantly in the atmospheres
of white dwarfs and neutron stars in comparison with terrestrial conditions
because the atomic structure of matter can be destroyed by strong mag-
netic fields. The meaning of the term ”Faraday effect” also changes (see
Table 2 for details).

Table 2 - Different variants of Faraday effect.

Variant Classic Non-classic
1. Atomic structure exists doesn’t exist
2a. Electron energy levels are discrete discrete-

continuous
2b. Quantizing Bohr-like Landau
3. Spin degrees of freedom are not involved are not involved
4. Ionization at B ≪ 109 Gs is to be low is to be high
5a. Can the effect take place
at B ≥ 109 Gs

no because condi-
tion 1 is not fulfilled

yes

5b. That’s why at B ≥ 109

Gs Baryshevsky-Luboshitz
effect

is the only type of
rotation

exists together
with Faraday
effect
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In non-classic case, it’s hard to consider 2 effects separately at h̄ω ≈ 2µBB,
but Baryshevsky-Luboshitz effect dominates far from resonances (see also
Table 3). The general meaning of the term ”Faraday effect” includes both
classic and non-classic cases.

Table 3 - Baryshevsky-Lubositz effect at different conditions.

Photon energy h̄ω ≫ 2µBB h̄ω ≈ 2µBB
The influence of mag-
netic field on the effect

can be neglected is considerable

Spin polarization of
electrons is

less then 8% in
iron (experiments
of 1970s)

expected to be almost
100% in astrophysics in
strong magnetic fields

The order of perturba-
tion theory on e2/ (h̄c)

2 1

Baryshevsky-Lubositz effect has also some similar aspects with Baryshevsky-
Podgoretsky effect [1] (see Table 4 for details).

Table 4 - Baryshevsky-Lubositz and Baryshevsky-Podgoretsky effects.

Effect Baryshevsky-Lubositz Baryshevsky-
Podgoretsky

Particle photon neutron
Moving in spin-polarized electron

gas
among spin-polarized
nuclei

Is spin polariza-
tion necessary

yes yes

What takes place rotation of the plane of
linear polarization of the
photon

spin precession of the
neutron

Based on the dependence of Comp-
ton scattering forward
amplitude on the direc-
tions of electron and pho-
ton spins

the dependence of scat-
tering forward ampli-
tude on the directions
of neutron and nuclear
spins

Interaction electromagnetic strong (nuclear)
At resonances the
value of

rotation changes its sign precession changes its
sign
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3 General formula

In [5, 6], using the approach of [7], a formula was obtained for the calcula-
tion of Baryshevsky-Lubositz rotation angle of the plane of linear polariza-
tion of photons per unit path in electron gas with total spin polarization
of electrons (p0e = 1). After some simple rearrangements it can be written
in the form:

dφ

dl
=

πnecαε0
ω(ε0 + h̄ω)

(E(+)−E(−))Re

 +∞∫
−∞

+∞∫
−∞

dx1dx2Ψ̄0(ξ1)QµνΨ0(ξ2)

 , (1)

where

E(±) = e(±)
µ e′(±)∗

ν , ε20 = m2c4 + p2zc
2, e(±) =

1√
2

[
0 ∓i cos θ − sin θ

]T
,

Ψ0(x) =
i
√
Be√

2ε0(ε0 +mc2)
√
Bech̄

exp(−x2

2
)
[
0 −mc2 − ε0 0 pzc

]T
,

α =
e2

h̄c
, jk(p) =

√
eB

h̄c
(xk +

cp

eB
), ξk = jk(py), ρk = jk(g2), ηk = jk(f2),

Qµν = γνGB(g, ρ)γµ + γµGB(f, η)γν , β1 =
1

2
(1 + iγ2γ1), β2 =

1

2
(1− iγ2γ1),

cg0 = ε0 + h̄ω, cg3 = pzc+ h̄ω cos θ, cf0 = ε0 − h̄ω, cf3 = pzc− h̄ω cos θ,

Y = γ0λ0 − γ3λ3 +mc,GB(λ, x) =

√
Be

ch̄

∞∑
n=0

h̄c2

c2λ2
0 − ε2nλ

D,

D = Un(x1)Un(x2)Y β1 + (1− δ0n)Un−1(x1)Un−1(x2)Y β2 +

+(1− δ0n)i

√
2neBh̄

c
(Un−1(x1)Un(x2)γ1β1 − Un(x1)Un−1(x2)β1γ1),

εng ≈
√
m2c4 + 2neh̄Bc+ g23c

2 − i
8(2n− 1)α(µBB)2

3mc2
,

εnf ≈
√
m2c4 + 2neh̄Bc+ f 2

3 c
2 (2)

Here ne is electron density, m, pz are electron’s mass and momentum along
z axis, respectively; µB is Bohr magneton, e is electric charge, h̄ω is pho-
ton’s energy, B⃗ is magnetic field strength, θ is the angle between the wave
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vector of photon k⃗ and B⃗. Transposing is denoted by T . Dirac matrices
γk (k = 0, 1, 2, 3) are in standard presentation. εnλ is energy of virtual
electron on intermediate nth Landau level.

4 Summation over µ, ν

Nonzero contributions in (1) correspond to 2 cases: 1) µ = 1, ν = 2 and
µ = 2, ν = 1; 2) µ = 1, ν = 3 and µ = 3, ν = 1. Only the first case was
considered in [6] with the following result:

dφ

dl
=

(πh̄c)2neα cos θ

h̄ω(ε0 + h̄ω)
exp

(
−ϕ

2

) ∞∑
n=1

ϕn−1Re(Ξn(g)− Ξn(f)),

ϕ =
h̄ω2 sin2 θ

cBe
,Ξn(λ) =

cλ0ε0 − λ3pzc
2 −m2c4

c2λ2
0 − ε2nλ

. (3)

Considering both cases, one obtains:

dφ

dl
=

(πh̄c)2neα

h̄ω(ε0 + h̄ω)
exp

(
−ϕ

2

) ∞∑
n=1

ϕn−1Re(Ξ(+)
n (g, θ)− Ξ(−)

n (f, θ)),

Ξ(±)
n (λ, θ) =

(cλ0ε0 −m2c4) cos θ − pzc(cλ3 cos θ ±
√
2nh̄ω sin2 θ)

c2λ2
0 − ε2nλ

. (4)

The numerical results for (3) and (4) coincide at pz = 0 approximation.

5 Averaging over momenta at T=0 K

The result (3) was averaged over electron momenta pz at T=0 K in [6].
The same averaging of (4) gives:

dφ

dl
=

e2mµBB

4h̄3ω
exp

(
−ϕ

2

) ∞∑
n=1

ϕn−1(Rn − Sn),

Rn =

w1∫
−w1

f1(w)
(
f2(w) cos θ − 2

√
2nw sin2 θ

)
dw

f3(w)

(
f 2
1 (w) +

Γ2
n

h̄2ω2

(
1 + 4n

µBB

mc2
+ (w + tcosθ)2

)) ,

Sn =

w1∫
−w1

(
−f2(w) cos θ + 2

√
2nw sin2 θ

)
dw

f3(w) (Qn − f2(w))
, Qn = tsin2θ − 4n

µBB

h̄ω
,
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f1(w) = Qn + f2(w) +
Γ2
n

4h̄ωmc2
, f2(w) = 2(

√
1 + w2 − wcosθ),

f3(w) =
√
1 + w2 + t, t =

h̄ω

mc2
, w =

pz
mc

,w1 =
π2(h̄c)3ne

(mc2)2µBB
. (5)

Similarly to [6], the integrals can be taken numerically or analytically. The
following notations will be used:

ξn = − 4cosθ

2 +Qn

, qn =
2−Qn

2 +Qn

, νn = 4y21 − ξ2n, µn = 4qn − ξ2n,

τn± = ξn ± 2y1, y1 =
w1 +

√
1 + w2

1 − 1

w1 +
√
1 + w2

1 + 1
,

Yn =

arctan
 τn+√

|µn|

− arctan

 τn−√
|µn|

 θ̃(µn) +

+ ln

∣∣∣∣∣∣∣
(
2y1 −

√
|µn|

)2
− ξ2n(

2y1 +
√
|µn|

)2
− ξ2n

∣∣∣∣∣∣∣ θ̃(−µn) (6)

Here θ̃(η) is Heaviside function. Then for Sn-terms one obtains (analytical
expressions for Rn-terms are very complicated):

Sn =

√
2n

cos θ

(
Ĩ1n sin

2 θ + 2Ĩ2n − (Qn + 2t) In sin
2 θ
)
+

+
(
Ĩ1n −QnIn

)
cos θ,

Ĩ1n = 2 ln
(
w1 +

√
w2

1 + 1
)
− 4t√

1− t2
arctan

y1
√
1− t

1 + t

,
Ĩ2n = −1 + cos2 θ

2 cos θ
ln

∣∣∣∣∣1− y1cosθ

1 + y1cosθ

∣∣∣∣∣− ln

∣∣∣∣∣1 + y1
1− y1

∣∣∣∣∣ , Qn = −2;

Ĩ2n =
8y1
νn

(
2 sin2 θ

2 +Qn

+ qn

)
− ln

∣∣∣∣∣1 + y1
1− y1

∣∣∣∣∣
−4ξny1

νn
cos θ − ln

∣∣∣∣∣τn+τn−

∣∣∣∣∣ cos θ,Qn ̸= −2, µn = 0;

Ĩ2n =

(
ξn cos θ − 2

(
2 sin2 θ

2 +Qn

+ qn

))
Yn√
|µn|

− ln

∣∣∣∣∣1 + y1
1− y1

∣∣∣∣∣−
−1

2
ln

∣∣∣∣∣y21 + ξny1 + qn
y21 − ξny1 + qn

∣∣∣∣∣ cos θ,Qn ̸= −2, µn ̸= 0. (7)
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The expressions for In were presented in [6].

6 Numerical results

Some numerical results are compared in Table 5.

Table 5 - The angle of rotation calculated: I) according to (3) and (4)
in pz = 0 approximation; II) according to (5) at ne = 1022 cm−3.

B = 1013 Gs B = 4 · 1013 Gs
θ, deg h̄ω, MeV I II h̄ω, MeV I II
30 0.1125 -609.8 -609.4 0.4168 -16.3 -16.2
45 0.1097 -490.4 -490.3 0.3864 -13.4 -13.3
60 0.1072 -342.1 -342.0 0.3629 -9.5 -9.4

The difference between the result for (5) and the corresponding result
in [6] is less than 10−10 rad/cm, i.e. much less than the accuracy of the
results obtained in the first order of perturbation theory on α.

7 Summary. The main results

In the framework of tree approximation a correction is obtained to the
formula for Baryshevsky-Lubositz rotation of the plane of linear polariza-
tion of a photon in electron gas with high degree of spin polarization of
electrons in magnetic field. The frequency of photon is considered to be
of the same order as the cyclotron frequency. The numerical difference
between the pz = 0 approximation and the averaging on pz is small. The
numerical contribution of µ = 1, ν = 3 and µ = 3, ν = 1 is negligibly small
in comparison with the contribution of µ = 1, ν = 2 and µ = 2, ν = 1.
The research was done according to the suggestion of V.G. Baryshevsky
and V.V. Tikhomirov.
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Hadron as Coherent State on the Horosphere
of the Lobachevsky Momentum Space

Y.A. Kurochkin ∗, Y.A. Kulchitsky, S. Harkusha
Institute of Physics, National Academy of Sciences of Belarus

N.A. Russakovich
Joint Institute for Nuclear Research, Dubna, Russian Federation

Abstract

A model of hadron (proton) as a coherent state of transverse ex-
citations in momentum space identified with partons is presented.
The features of multiparticle production resulting from the exis-
tence of theoretical and experimental constants characterizing the
processes with high multiplicity at the LHC are investigated.

The investigation of the multiparticle production processes at high en-
ergies is designed to provide important information about the properties of
the fundamental interactions. In this regard, the new results presented by
ATLAS and CMS collaborations require a theoretical understanding both
in terms of existing models and theories and search of new approaches.

Typical sizes that characterize the processes of pions production, i.e.,
mainly processes due to the strong interaction in the collision of two
hadrons at centre-of-mass energy

√
S have the following values

r0S =
h

mπc
= 1.46 fm,

r0 ∝ 2.33 fm,

r ∝ hc√
S
,

√
S = 7TeV,

reff ≤ r0S lnP (S).

(1)

∗E-mail:y.kurochkin@dragon.bas-net.by
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Figure 1: The dependence of the correlation radius of the pion pairs on
the multiplicity of charged particles. It is evident that since the average
multiplicity of charged particles 60 there is saturation - correlation radius
does not change with increasing average multiplicity [1].

where r0S is the radius of the strong (nuclear) interaction i.e. the Comp-
ton wavelength of a pion, r0 is the experimental value of the correlation
radius of the charged pions produced in the proton-proton collision (see
figure 1), which can be regarded as the distance at which the strong inter-
actions are weak enough for the secondary hadrons formation, r is the de
Broglie wavelength corresponding to the energy of the colliding particles,
the last inequality is a limit on the possible increase in the effective radius
of interaction in the strong interactions of hadrons, which follows from the
general principles of quantum field theory, where P (S) is a polynomial of
degree less than 2 [2].

The main goal of this work is to develop a model of a hadron as a
coherent state of its excitations interpreted as partons and to establish
restrictions on the average multiplicity of produced particles resulting from
the model based on the values (1).

Let us note that there are quite a number of physical models that de-
scribe more or less various aspects of multiparticle production processes
[3]. The hydrodynamic model of multiparticle production, proposed by
L.D. Landau and S.Z. Belenky in [4] indicates to one characteristic dimen-
sion r0S. Indeed, the hydrodynamic description of a system of particles

164



is the approximation followed from the kinetic equations and essentially
depends on the characteristic linear dimension L of the existing problem
in the study.

In this paper we suppose that the radius of nuclear forces (Compton
length of the pion) L = 1.46× 10−15m is the characteristic size of investi-
gated system.

Infinitesimal volumes used for the formulation of integral relations in
hydrodynamics, thus, have to be much smaller than L3 and much larger
than the mean free path of the particles. From (1) it follows that the
energy of the LHC since 7 TeV and above satisfies this condition.

Let us consider the collision of two hadrons at high energy, for example,
proton-proton collision in the Large Hadron Collider. We suppose that
colliding protons have a 4-momenta

p1 = (p01, ~p1), p2 = (p02, ~p2),
p2

1 = ~p1
2 − p2

01 = ~p2
2 − p2

02 = −m2
p,

(2)

where mp is the proton mass. We use a system of units where c = h = 1.
The collision is carried out at centre-of-mass energy

√
S which is de-

termined as

S = −(p2
1 + p2

2) = −P 2 = −P 2
x − P 2

y − P 2
z + P 2

0

= −(px1 + px2)2 − (py1 + py2)2 − (pz1 + pz2)2 + (p01 + p02)2, (3)

where

P = (~P , iP0) = [px1 + px2, py1 + py2, pz1 + pz2,+i(p01 + p02)]. (4)

It should be noted that in the laboratory frame (the rest system of the
second proton)

P = (~P , iP0) = [px, py, pz, i(p0 +mp)], (5)

where p = (px, py, pz, i(p0)) = (~p, ip0) is four-momentum of the incident
proton.

We introduce quasi-Cartesian coordinates in Lobachevskii space real-
ized on the upper sheet of the hyperboloid (3) in the momentum space [5]
as
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Pz =

√
S

2
[e2qz/

√
S + (

q2
x + q2

y

S
− 1)e−qz/

√
S],

Px = qxe
−qz/

√
S,

Py = qye
−qz/

√
S,

P0 =

√
S

2
[e2qz/

√
S + (

q2
x + q2

y

S
+ 1)e−qz/

√
S].

(6)

The formula inverse to formula (6) are

qx =
Px
√
S

P0 − Pz
,

qy =
Py
√
S

P0 − Pz
, (7)

qz =
√
S ln

√
S

P0 − Pz
.

The metric element has the form

dS2 = e−2qz/
√
S(dq2

x + dq2
y) + dq2

z (8)

and the volume element is

dVm =
√
gdqxdqydqz = e−2qz/

√
Sdqxdqydqz. (9)

The introduced quasi-Cartesian coordinates (6) allow us to separate
variables qx, qy, and qz. That is impossible in four-dimensional space (3).
Therefore we can consider the physics in the plane of the variables qx, qy
only.

In addition, considering that Euclidean plane geometry is realized on
horosphere of Lobachevsky space, the Fourier transformation F of the
function φ1(qx, qy)φ2(qz) defined on that plane (horosphere) defines the
function in the coordinate plane also with the Euclidean geometry. That
is not correct for the variable qz as it is evident from (9).

Ψ1(x, y)Ψ2(z)↔ Fφ1(qx, qy)φ2(qz) (10)

We note that quasi-Cartesian coordinates (6) and (7) automatically
ensure the scale invariance of the theory in the plane of qx, qy i.e. invariance
under following transformations
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P
′

x = λPx, P
′

y = λPy, P
′

z = λPz, P
′

0 = λP0 (11)

which is valid for any
√
S.

The fundamental role of scale invariance in processes of multiparticle
production has been pointed out by V.A. Matveev, R.M. Muradyan and
A.N. Tavkhelidze in [6,7].

Let us build the quantum mechanics of the system described by four-
momentum (6).

Since horosphere of three-dimensional Lobachevsky space includes the
geometry of the two-dimensional Euclidean space we can introduce conju-
gate coordinates in momentum space in the standard way [8]

qx, x = −ih ∂

∂qx
,

qy, y = −ih ∂

∂qy
.

(12)

There is a Heisenberg-Weyl algebra

[x, qx] = [y, qy] = ihI,
[x, y] = [qx, qy] = 0,
[x, I] = [y, I] = [qx, I] = [qy, I] = 0,

(13)

where I is the identity operator.
The expressions (12) and (13) allow us to construct quantum coherent

states on the horosphere.
The extra dimensional constant characterizing the system is required

to lead the coordinates and momenta (12) to the same dimension. It is
needed for the construction of creation and annihilation operators. It is
natural to take the size of hadron (proton) as such constant. This size
provides, due to the uncertainty relation, nonzero components x, y, even
for a hadron moving along the axis z, which in turn implies the existence
of nonzero components qx, qy in accordance to (7).

Then the creation and annihilation operators can be witten in the fol-
lowing manner

ax =
Rqx + i x

R√
2

, a+
x =

Rqx − i xR√
2

,

ay =
Rqy + i y

R√
2

, a+
y =

Rqy − i yR√
2

.
(14)
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Heisenberg-Weyl algebra in terms of the creation and annihilation opera-
tors is

[ak, a
+
l ] = δklI, [a

+
k , a

+
l ] = [ak, al] = [ak, I] = [a+

k , I] = 0, (15)

where k, l = 1,2 correspond to x or y and h = 1. Coherent states are
known to be defined as a state of its own annihilation operators with
complex eigenvalues

ax|z1 >= z1|z1 >,
ay|z2 >= z2|z2 > .

(16)

The coherent states (16) satisfy the following conditions

< z1|z1 >= e|z1|
2

,

< z2|z2 >= e|z2|
2

.
(17)

The expression for the total space of coherent states of two-dimensional
problem on the horosphere is the tensor product of states that are con-
structed using operators of the same mode. These coherent states are
determined by the formula

|z1, z2〉 = ez1a
+
x ez2a

+
y |0, 0〉, (18)

where the vacuum state |0, 0〉 is determined by the condition

ax|0, 0〉 = ay|0, 0〉 = 0. (19)

There is the completeness criterion for coherent states which for the
states on horosphere (18) has the form∫

|z1, z2〉〈z1, z2|dµ(z1, z2) =
∫
|z1〉〈z1|dµ(z1)

∫
|z2〉〈z2|dµ(z2) = I (20)

and the uncertainty relations are

∆x∆qx =
h

2
,∆y∆qy =

h

2
. (21)

Thus if the uncertainty of x or y of the order R then the uncertainty of
momentum will be h/2R.

As you know, in the laboratory frame the incident particle (hadron) is
flattened in the direction of the movement due to the Lorentz contraction.
In this case, transverse degrees of freedom (x and y) are important since
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at high energies the kinetic energy of the hadron constituents (partons) is
much larger than the energy of their interaction.

Therefore hadron moving at a speed close to the speed of light can be
seen as a set of almost free partons. Since components of hadron move in
unison before collision therefore this state of a hadron can be considered
as a coherent state of its transverse excitations i.e. partons.

The main hypothesis is that the incident particle is a coherent state of
partons i.e. transverse excitations of a hadron.

It should be noted that expressions mentioned above are covariant.
Let us write expressions of coherent states in the occupation-number

representation as

a+
x |z1 >= a+

x

∑ zn1
1√
n1!
|n1 >=

∑ n1z
n1−1
1√
n1!
|n1 >,

a+
y |z2 >= a+

y

∑ zn2
2√
n2!
|n2 >=

∑ n2z
n2−1
2√
n2!
|n2 > .

(22)

The average number of quanta of excitation in each coherent state is defined
by (see [9])

n̄1 = e−|z1|
2

< z1|a+
x ax|z1 >= |z1|2,

n̄2 = e−|z2|
2

< z2|a+
y ay|z2 >= |z2|2.

(23)

The total average number of excitations in both degrees of freedom is

n̄ = n̄1 + n̄2 = e−z
2
1−z

2
2 < z1z2|a+

x ax + a+
y ay|z2z1 >= |z1|2 + |z2|2 (24)

and the distribution of the number of excitations for each of the degrees
of freedom obeys a Poisson law

P (n) =
e−n̄n̄n

n!
, (25)

where n̄ = n1 or n̄ = n2.
Therefore the number of excitations corresponding to coherent state of

hadron (25) is a Poisson distribution and coincides with the multiplicity
distribution in the multi-peripheral model [3].

The coordinate representation of a coherent state is given by (see [10])

< x, y|z1, z2 >∝ e
i
√
2

R
(β1x+β2y) × e

−1

2R2 [(x−
√

2Rα1)2+(y−
√

2Rα2)2]. (26)

The density distribution of the coordinates is

| < x, y|z1, z2 > |2 ∝ e
−1

R2 [(x−
√

2Rα1)2+(y−
√

2Rα2)2]. (27)
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The corresponding momentum representation has the form

< qx, qy|z1, z2 >∝ eiR
√

2(α1qx+α2qy) × e
−R2

2
[(qx−

√
2

R
β1)2+(qy−

√
2

R
β2)2] (28)

and therefore the density distribution is

| < qx, qy|z1, z2 > |2 ∝ e−R
2[(qx−

√
2

R
β1)2+(qy−

√
2

R
β2)2], (29)

where the following notation is used

z1 = α1 + iβ1, α1 = |z1| cos θ1, β1 = |z1| sin θ1,
z2 = α2 + iβ2, α2 = |z2| cos θ2, β2 = |z2| sin θ2.

(30)

According to the Gaussian distribution in (21)
√

2Rα1 and
√

2Rα2 are
the average coordinates of the particles. We note that in this case the
coordinates characterize the size of hadron. Let us estimate minimal value
of n̄ assuming n = n1 in (25). Using the size of the proton 0,84 fm (see.
[11]) and the following relation

√
2Rα1 =

√
2R|z1| cos θ1 =

√
2nR cos θ1 = r0 (31)

we get the minimum value n̄ ≈ 4 for cosθ1 = 1. We can obtain the number
of excitations (partons) arbitrarily large varying cosθ1.

At this stage, restrictions on the phase change can be offered only on
the basis of heuristic arguments, for example, the symmetry. We consider
θ1 = π/4 based on assumption of symmetry between the coordinate and
momentum representations which follows from the explicit expressions (27)
and (29). Then cosθ1 = sinθ2 = 1/

√
2 and we obtain n̄ ≈ 7.5

If using the following expression
√

2nR cos θ1 = r0S instead of (31)
at the same θ1, θ2 we get n̄ = 3. It is obvious that θ1,2 → π/2 at high
multiplicity n and correspondingly high energy.

Thus we constructed model of hadron as coherent state of excitations
on the horosphere of the Lobachevsky momentum space identified with
partons and hadron structure functions which depend on number of par-
tons.

The authors would like to thank V.G. Baryshevsky and V.V. Andreev
for useful discussions.
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The QCD analysis of the F3 structure
function within the analytic approach based
on the inverse Mellin transform method

A. V. Sidorov ∗

Bogoliubov Laboratory of Theoretical Physics, JINR

O. P. Solovtsova †

Sukhoi State Technical University of Gomel

Abstract

We discuss the application of the analytic approach called the
fractional Analytic Perturbation Theory (APT) to the QCD anal-
ysis of the non-singlet structure function xF3(x,Q

2). The inverse
Mellin transform method applied for the fit of experimental data
and for the Jacobi polynomial method accuracy estimates in ex-
traction of values of the scale parameter ΛQCD and the form of the
xF3 structure function. Our estimates give the accuracy of the Ja-
cobi polynomials method for the x-shape of the structure function
about 10% and for the scale parameter ΛQCD ∼ 4%.

1 Introduction

Recently application of the analytic approach proposed by Shirkov and
Solovtsov [1, 2], the so-called analytic perturbation theory (APT), to the
QCD analysis of the nucleon structure function data with use of the well
known method of the expansion of structure functions in a set of the sys-
tem of orthogonal Jacobi polynomials (see Refs. [3–5]) was done [6–10].

∗E-mail: Sidorov@theor.jinr.ru
†E-mail: olsol@theor.jinr.ru
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The key point of APT constructions—the analytic properties of some func-
tions (the two-point correlator of the quark currents, the moments of the
structure functions and so on). A overview of the analytic approach to
QCD can be found in Ref. [11]. In the framework of the APT in contrast
to the infrared behavior of the perturbative (PT) running coupling, the an-
alytic coupling has no unphysical singularities. At low Q2 scales, instead
of a rapidly changing Q2 evolution as occurs in the PT case, the APT ap-
proach leads to a slowly changing functions (see, e.g., Refs. [12, 13]). In the
asymptotic region of large Q2 the APT and the PT approaches coincide. It
should be noted that the moments of the structure functions should be an-
alytic functions in the complex Q2 plane with a cut along the negative real
axis (see Ref. [14] for more details), the ordinary PT description violates
analytic properties due to the unphysical singularities of the PT coupling.
On the other hand, the APT support these analytic properties.

The data on the xF3 structure function provides a possibility for the
precise test of the perturbative QCD predictions for the Q2 evolution of the
structure function. The analysis of xF3 structure function experimental
data simplified because one do not need to parameterize gluon and sea
quark contributions and could parameterize the shape of the xF3 structure
function itself at some value Q2

0. In this work, we apply the inverse Mellin
transform method [15] to the QCD analysis of the xF3 data. The inverse
Mellin transform method rather precise and gets an accuracy about five
significant digits in our case. We compare the results of both methods in
order to estimate the accuracy of the Jacobi polynomial method results.
In our analysis, we focus on values of the scale parameter ΛQCD and the
form of the xF3(x,Q

2) structure function. It should be noted that the
application of the APT to the QCD analysis of the DIS data required
a generalization of the APT on the case of non-integer power of QCD
running coupling. Such a generalization was proposed in Refs. [16] (see
also [17, 18]).

2 Description of the methods

Let us brifely discuss the inverse Mellin transform method and the method
base on the expansion of the structure function on a set of the Jacobi poly-
nomials. These methods are widely used in the deep-inelastic scattering
data analysis.
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2.1 Jacobi polynomials method

In this method, one can express a shape of the structure function on the
x-space to values of the Mellin moments of the structure function. Then
the xF3 structure function can be presented as [4]

xFLT Nmax
3 (x,Q2) =

=xα(1− x)β
Nmax∑
n=0

Θα,β
n (x)

n∑
j=0

c
(n)
j (α, β)M3

(
j + 2, Q2

)
for PT , (1)

=xα(1− x)β
Nmax∑
n=0

Θα,β
n (x)

n∑
j=0

c
(n)
j (α, β)M3

(
j + 2, Q2

)
for APT . (2)

Here Θα,β
n are the Jacobi polynomials, α = 0.7 and β = 3.0 fix the weight

function of the Jacobi polynomials.
The perturbative renormalization group Q2 evolution of the Mellin mo-

ments is well known (see, e.g., Ref. [19]) and in the leading order reads
as

MpQCD
3 (N,Q2) =

[αs(Q
2)]ν

[αs(Q2
0)]

ν
M3(N,Q

2
0), N = 2, 3, ... , (3)

ν(N) = γ
(0),N
NS /2β0 , (4)

where αs(Q
2) is the QCD running coupling, γ

(0),N
NS are the non-singlet

one-loop anomalous dimensions, β0 = 11− 2nf/3 is the first coefficient of
the renormalization group β-function, and nf denotes the number of active
flavors (nf = 4 in our analysis).

In the framework of the APT, the expression (3) is converted to:

MAPT
3 (N,Q2) =

Aν(Q2)

Aν(Q2
0)
M3(N,Q

2
0) , (5)

where the analytic function Aν is derived from the spectral Källén–Leh-
mann representation and corresponds to the discontinuity of the ν-th power
of the PT running coupling.
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In the leading order (LO), the analytic function Aν has a rather simple
form (see, e.g., Ref. [18])

ALOν (Q2) =
[
αLOPT

]ν − (4π

β0

)ν
Liδ(t)

Γ(ν)
, (6)

Liδ(t) =
∞∑
k=1

tk

kδ
, t =

Λ2

Q2
, δ = 1− ν , (7)

where the PT running coupling αLOPT = 4π/[β0 ln(Q2/Λ2
PT)] and Liδ is the

polylogarithm function. Note that the function Aν=1(Q
2) defines the APT

running coupling, αAPT(Q2) [20].
Unknown quantity M3(N,Q

2
0) in Eq. (3) could be parameterized as the

Mellin moments of the structure function xF3 at some point Q2
0:

M3(N,Q
2
0) =

∫ 1

0

dxxN−2xF3(x,Q
2
0) =

∫ 1

0

dxxN−2Axa(1− x)b(1 + γx) .

(8)
In our analysis we taken into account the higher twist (HT) contribution

and therefore

xF exp
3 (x,Q2) = xFLT Nmax

3 (x,Q2) +
h(x)

Q2
, (9)

where h(x) is a shape of the HT in the x space.

2.2 The inverse Mellin transform method

One can calculate the structure function at some Q2-value using the inverse
Mellin transform [15]:

xF3(x,Q
2) =

1

2πi

∫ c+i∞

c−i∞
dn x−nM3(n,Q

2) , PT , (10)

=
1

2πi

∫ c+i∞

c−i∞
dn x−nM3

(
n,Q2

)
, APT . (11)

In the PT, it is well known the analytic continuation of the anomalous
dimensions on the complex plane of Mellin moments, n. In the APT case,
we calculate the function Aν(Q2) for the complex Mellin moments by the
numerical summation of the set in Eq. (7). The path of integration for the
inverse Mellin transform lies to the right of all singularities of the analytic
continuation of moments M3(n,Q

2) or M3(n,Q
2).
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Table 1: The results of the QCD fit for the scale parameter ΛQCD obtained
in the framework of the PT and APT approaches using different methods.

Method of analysis ΛPT (MeV) ΛAPT (MeV)

Inverse Mellin transform 378± 49 422± 77

Jacobi polynomials expansion 363± 49 407± 74

3 Results of fit and discussion

The results of QCD fit by using different methods are presented in Table
1 and Figs. 1–4 for Q2

0 = 3 GeV2, nf = 4, and Nmax = 11. The shape of
the function h(x) in Eq. (9) as well as the parameters A, a, b, γ in Eq. (8),
and the scale parameter ΛQCD are found by fit of a combined set of the
xF3-data. The kinematic region of this set is 0.5 GeV2 < Q2 < 196 GeV2

(see details in Ref. [9]). The description of the fitting procedure can be
found in Ref. [21]. The target mass corrections are taken into account up
to the terms M2

N/Q
2 [22].

Figure 1 shows the difference in the x-space between fitting results for
xF3 structure function data by using the inverse Mellin transform (M) and
the Jacobi polynomials expansion (J) methods. The difference ∆xFM−J

3 =

0.01 0.1 1

-0.01

0.00

0.01

0.02

0.03

 APT 
 PT 

 

  

xFM
3

(x) - xFJ
3
(x)

x

Q2   3 GeV2

Figure 1: The difference between
fitting results for the xF3 structure
function data by using the inverse
Mellin and Jacobi methods for the
APT and PT approaches.
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 Jacobi 

 

  

xFAPT
3

(x) - xFPT
3

(x)

x

Q2   3 GeV2

Figure 2: The difference for the
xF3 structure function form in the
APT and PT approaches by using
the inverse Mellin and the Jacobi
methods.
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Figure 3: Result for the HT shape
in the PT by using the inverse
Mellin and the Jacobi methods.
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Figure 4: Result for the HT shape
in the APT by using the inverse
Mellin and the Jacobi methods.

xFM
3 − xF J

3 presented for the APT as the solid line and for the PT as
the dashed line. One can see that a value of ∆xFM−J

3 < 0.025, which
corresponds to the accuracy of the Jacobi method better then 10% for
both theoretical approaches. This estimation is in qualitative agreement
with the result obtained for the non-singlet xF2 structure function [10].

Figure 2 shows the difference for the xF3-shape obtained in the APT
(solid line) and the PT (dashed line) approaches using the inverse Mellin
transform and the Jacobi polynomials methods: ∆xFAPT−PT

3 = xFAPT
3 −

xFPT
3 . As can be seen from this figure, the Jacobi method gives the same

difference with the Mellin one at both theoretical approaches, the APT
and the PT. However at small x, the Jacobi method is not sensitive to
the difference of results in APT and PT approaches, while the inverse
Mellin transform method reveals this difference. We found that at low
Q2 = 1 GeV2 the accuracy of the Jacobi method in the APT is two times
better in comparison to the PT.

Figures 3–4 demonstrate results for the x-shape of the HT contribution.
One can see, for both theoretical approaches, the APT and the PT, there is
good agreement between results by using the inverse Mellin and the Jacobi
methods (the exception for the lowest point in the PT).

In conclusion we stress, that the Jacobi polynomials method is fast,
but gives about 10% accuracy for x-shape of the structure function and
4% accuracy for the scale parameter ΛQCD.
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Abstract

We investigate target mass corrections to the unpolarized struc-
ture functions of the deep-inelastic scattering by using the tradi-
tional Georgi–Politzer method and another approaches. The recent
methods for solving the ‘threshold’ problem arisen in the limit as
the Bjorken variable x tends to unity are discussed. We present re-
sults of a new approach and demonstrate that, in the large-x region,
target mass corrections to structure functions calculated by using
this method noticeably differ that other approaches give.

1 Introduction

To compare correctly QCD predictions with experimental data of the deep-
inelastic scattering at low Q2 scales, Q2 . 1 − 2 GeV2, it is important
to take into account in the analysis additional power terms are known
as target mass corrections (TMCs) arising from purely kinematic effects
associated with finite mass of the nucleon target. In the QCD analysis of
the deep-inelastic scattering data the operator product expansion (OPE)
method is widely used. However the OPE was derived in the massless limit
and if a finite mass of the nucleon target is included, then the TMCs arise.
Many years ago, the OPE was used to include TMC effects systematically
via the Nachtmann ξ variable [1] by Georgi and Politzer (GP) [2]. The GP
method, named also as ξ-scaling method, showed the importance of the

∗E-mail: solovtsova@gstu.gomel.by
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accounting of TMCs. However within this method there was a problem to
describe the structure functions behavior as the Bjorken variable x tends
to unity. This problem was widely discussed in the literature ever since its
appearance and continues to be discussed until now (see, e.g., [3–5]).

In the present work we extend our previous analysis [5] and analyze
several frameworks for the TMCs in order to improve a knowledge of TMC
effects for the unpolarized proton structure functions.

2 Target Mass Corrections

The inclusive cross section of the deep-inelastic scattering process can be
written as dσ ∼ LµνWµν in terms of leptonic and hadronic tensors, Lµν

and Wµν . The hadronic tensor Wµν is parameterized by structure functions
which is defined via structure functions Fi=1,2,3(x,Q

2).1

2.1 Operator product expansion: GP approach

According to the GP approach the structure functions are given by [6]

F1(x,Q
2) =

x

ξρ
F 0
1 (ξ,Q2) +

εx2

ρ2
h2(ξ,Q

2) +
2ε2x3

ρ3
g2(ξ, q

2) , (1)

F2(x,Q
2) =

x2

ξ2ρ3
F 0
2 (ξ,Q2) +

6εx3

ρ4
h2(ξ,Q

2) +
12ε2x4

ρ5
g2(ξ, q

2) , (2)

h2(ξ,Q
2) =

1∫
ξ

F 0
2 (y,Q2)

y2
dy, g2(ξ,Q

2) =

1∫
ξ

dy

1∫
y

F 0
2 (z,Q2)

z2
dz ,

F3(x,Q
2) =

x

ξρ2
F 0
3 (ξ,Q2) +

2εx2

ρ3
h3(ξ, q

2) , h3(ξ,Q
2) =

1∫
ξ

F 0
3 (y,Q2)

y
dy .

(3)
Here x = Q2/2ν = Q2/2(q · P ) is the Bjorken scaling variable, ξ is the
Nachtmann variable [1]

ξ =
2x

1 +
√

1 + 4εx2
=

2x

1 + ρ
, (4)

1Other structure functions, i = 4, 5, 6, are proportional to the lepton mass and are
therefore negligible for the kinematics of the deep-inelastic region.

181



ρ =
√

1 + 4εx2, ε = M2/Q2, M is the target mass, the functions F 0
i (ξ,Q2)

= lim
M→0

Fi(x,Q
2)x=ξ.

The expressions (1)–(3) are known to suffer from the “threshold prob-
lem”, in which the target mass corrected structure functions do not vanish
as x→ 1, and are in fact nonzero in the kinematically forbidden x > 1 re-
gion. A numerous of attempts have been made to ameliorate the threshold
problem using various prescriptions.

2.2 Known approximations

Recently, Kulagin and Petti (KP) [7] showed that by expanding the target
mass corrected structure functions to leading order in 1/Q2, the resulting
functions have the correct x→ 1 limits (see also Ref. [8]).
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R

x

Q2   1 GeV2

Figure 1: Left panel: The behavior of the structure function F2 obtained vs
the Bjorken variable x. The solid (red) line corresponds to result of 1/Q2

KP approximation, the dash-dotted (blue) line – 1/Q4 approximation, the
dashed (black) line – the GP result, and dotted (green) line – without tar-
get mass corrections. Right panel: Ratio of the target mass corrected F2

structure function by using the 1/Q2 (solid, red) and 1/Q4 (dash-dotted,
blue) the KP approximation, and GP approximation (dashed, black) com-
pared with the structure function without target mass corrections.

While avoiding the threshold problem, this prescription, however, raises
the question of whether the 1/Q2 approximation is sufficiently accurate
for structure functions near x ≈ 1 at moderate Q2. To test the conver-
gence of the 1/Q2 expansion at large x, we further expand the GP result to
include O(1/Q4) corrections. Figure 1 illustrates the accuracy of the KP
approach. In order to isolate the target mass effect from the specific form
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of the structure function parametrization we take for simplicity the form
F2 ∼ (1− x)3. One can see that both the 1/Q2 and 1/Q4 approximations
are found to reproduce the GP result well up to x ≈ 0.6, but significant
deviations are visible at larger x. The reliability of a low order 1/Q2 ex-
pansion is therefore questionable at large x values, and hence their efficacy
in removing the x→ 1 threshold problem.

An alternative approach to TMCs relies on the collinear factorization
(CF) formalism [9–11], which makes use of the factorization theorem to re-
late the hadronic tensor for lepton–hadron scattering to that for scattering
from a parton. Here parton distributions are formulated directly in mo-
mentum space, avoiding the need to perform an inverse Mellin transform
to obtain the PDF from its moments. The first study of TMCs within CF
was made by Ellis, Furmanski, and Petronzio (EFP) [9]. Using the same
notation as above, the EFP results for the target mass corrected structure
functions are given by

FEFP
1 (x,Q2) =

2

1 + ρ
F 0
1 (ξ,Q2) +

(ρ2 − 1)

(1 + ρ)2
h2(ξ,Q

2) , (5a)

FEFP
2 (x,Q2) =

1

ρ2
F 0
2 (ξ,Q2) +

3ξ(ρ2 − 1)

ρ2(1 + ρ)
h2(ξ,Q

2) , (5b)

FEFP
3 (x,Q2) =

1

ρ
F 0
3 (ξ,Q2) +

2(ρ2 − 1)

ρ(1 + ρ)2
h3(ξ,Q

2) , (5c)

where again the F 0
i refer to the uncorrected structure functions. Because

the massless functions F 0
i are evaluated at ξ, the target mass corrected

structure functions will suffer from the same threshold problem as in the
OPE result in Eqs. (1)–(3). So, in both the EFP and OPE treatments of
TMCs, the resulting structure functions are nonzero for x > 1.

Other approach for target mass corrected structure functions is the ap-
proach of Steffens and Melnitchouk (SM) [3] which effectively corresponds
to use of a new variable

ξSM = x
1 +
√

1 + 4x2

1 +
√

1 + 4εx2
, (6)

and the modified moments A(SM)
n ≡

∫ ξ0

0

dξ ξn F (ξ, ξ0) , with ξ0 ≡ ξ(x =

1) = 2/(1 +
√

1 + 4ε) < 1 ( see Refs. [5] for more details).
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2.3 JLD-approach

Let us now pass to new approach which based on the Jost-Lehmann-Dyson
(JLD) integral representation [12, 13]. As it was shown by Solovtsov [14]
that the threshold problem is a similar to the problem that appears for
an invariant charge in quantum chromodynamics, when the violation of
the general principles of the theory, which are reflected in the Källén–
Lehmann representation, leads to unphysical singularities. A solution of
this problem was proposed proposed by Shirkov and Solovtsov2 [15] (see
Ref. [16] as review). By using the JLD integral representation it was shown
[14] that the natural scaling variable is a new variable ξS,

ξS = x

√
1 + 4ε√

1 + 4εx2
, (7)

which leads to the moments Mn(Q2) that are analytic functions. In this
case, the spectral property for the structure functions is satisfied automat-
ically, and no problem arises in the limit as the Bjorken variable x tends
to unity (see, e.g. Refs. [5]). Note the proof of the JLD representation is
based on the most general principles of the theory, such as the covariance,
Hermiticity, spectrality, and causality.

According to JLD-approach, instead of the function F 0
i (ξ) we must use

F 0
i (x,Q2) =

F
0
i (ξ−)− F 0

i (1) , 0 6 x < x ,

F 0
i (ξ−)− F 0

i (ξ+) , x 6 x 6 1 ,
(8)

where x = 1/
√

1 + 4ε2,

ξ∓(x) =
x
√

1 + 4εx2

1 + 4εx2 + 4ε2x2
·
[
1 + 2ε∓ 2ε ·

√
1− x2√

1 + 4εx2

]
. (9)

Follow this recipe, we transform Eqs. (1)–(3) and, for example, for the
structure function F3 it turns out:
for x 6 x

F S
3 (x,Q2) =

x · F (0)
3 (ξ−(x), Q2)

ξ−(x)(1 + 4εx2)
+

2εx2√
(1 + 4εx2)3

h3(ξ−(x), Q2), (10a)

F S
3 (x,Q2) =

x

(1 + 4εx2)

[
F

(0)
3 (ξ−(x), Q2)

ξ−(x)
− F

(0)
3 (ξ+(x), Q2)

ξ+(x)

]
+(10b)

2This analytic approach called the Analytic Perturbation Theory (APT).
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+
2εx2√

(1 + 4εx2)3

[
h3(ξ−(x), Q2)− h3(ξ+(x), Q2)

]
for x 6 x 6 1.

3 Numerical result

In our calculations we take the distributions of light u, d and s quarks and
anti-quarks from Ref. [17], where was fixed the next to leading (NLO) value
of the parameter ΛQCD = 0.248 GeV. We have verified that distributions
provided in other papers, for example, in Refs. [18] in the region of x > 0.2,
for which become essential the TMCs, very close to distributions given in
Ref. [17].
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Figure 2: The behavior of the proton structure function F1 (left panel) and
F2 (right panel) vs the Bjorken variable x at Q2=1 GeV2. The solid (red)
line corresponds to our result obtained by using the JLD-approach, the
dashed (blue) curve reflects the result obtained by standard GP method,
and the dotted (green) line is the initial proton distribution [17].

Figure 2 shows the behavior of the proton structure function at Q2=1
GeV2 for the structure functions F1 (left panel) and F2 (right panel). One
can see that target mass corrections to these structure functions calculated
by using the JLD-approach are noticeably differ, in the large-x region, that
the traditional GP method gives. The same we obtain for the proton struc-
ture function F3 of the neutrino nucleon deep inelastic scattering obtained
by using the expressions (3) and (10) (see Ref. [19] for more details).
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4 Conclusion

In this report we have sought to discuss the the ‘threshold’ problem in the
standard TMC analysis. Historically it has been argued that the problem
in the threshold region exists because at low Q2 the higher twist contribu-
tions cannot be neglected. The inclusion of target mass corrections in the
fits of deep-inelastic scattering data is important as change the magnitude
of the higher twist terms needed to describe the experimental data.

We discussed available to target mass corrections approaches and sug-
gested to use the new JLD-approach. We observed that at low Q2 ∼
1÷ 2 GeV2 the TMCs to structure functions calculated by using the JLD-
approach noticeably differ from the standard GP-method or another ap-
proaches results. We believe that the JLD-approach including target mass
effects will be useful in extracting the magnitude of the structure func-
tions from the experimental data and to precisely extract the higher twist
contribution.
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A Spin-dependent Dipole Polarizabilities and
Characteristics of the Nucleon, Related with

Parity Violation

Andreev V.V ∗, Deryuzhkova O.M. †, Maksimenko N.V.‡

F.Skorina Gomel State University

1 Introduction

An important role in the understanding of the interaction of electromag-
netic fields with hadrons play low-energy theorems as they are based on
general principles of quantum theory and decomposition of Compton scat-
tering amplitudes for the photon energy [1]. Currently, one of the most
effective methods of investigation of electrodynamic processes is to use
the effective Lagrangian obtained in the framework of field-theoretic ap-
proaches and consistent with the low-energy theorems [2]. With the devel-
opment of the Standard Model of electroweak interactions in recent years
introduced a new electroweak characteristics of hadrons, related to viola-
tion of P -parity [3, 4, 5] .

Effective relativistic-invariant Lagrangians possible to obtain not only
the physical interpretation of electromagnetic and electroweak characteris-
tics of hadrons, but also information on the mechanisms of electromagnetic
and electroweak photon-hadron interactions. For a more reliable determi-
nation of polarizabilities and the characteristics of hadrons associated with
parity violation, use a wide class of electrodynamic processes in which the
dispersion is realized real and virtual photons, as well as two-photon pro-
duction in hadron-hadron interactions. The solution of such problems is

∗E-mail: vik.andreev@gsu.by
†E-mail: dom@gsu.by
‡E-mail: maksimenko@gsu.by
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possible to perform in the framework of the relativistic field-theoretical
approach, describe the interaction of electromagnetic fields with hadrons
with regard to their electromagnetic and electroweak characteristics [6, 7].

In [8] for the construction of an effective relativistic invariant Lagran-
gian of the interaction of electromagnetic fields with the particles with
constant electric and magnetic dipole moments introduced antisymmetric
tensor of the dipole moments, which is independent of the electromagnetic
field tensor Fµν = ∂µAν − ∂νAµ.

In this paper, a relativistic quantum field-invariant Lagrangian to [8, 9],
which defines the tensor induced dipole moments. Also provided is a vari-
ant of relativistic-invariant definition of spin dipole polarizabilities of the
nucleon, which is based on the construction of the covariant induced dipole
moments and phenomenological effective interaction Lagrangians of the
electromagnetic field with these moments. On the basis of the relativistic
properties of P -transformation, as well as cross-symmetry set covariant
spin structure of the amplitude of the Compton scattering, consistent with
the low-energy theorems. It is shown that the proposed model and the
characteristics of the spin polarizability of the nucleon connected with
parity nonconservation, contribute to the expansion of the amplitude of
Compton scattering from the third order with respect to the photon en-
ergy.

2 The scattering amplitude of the electro-

magnetic field of the spin 1/2 particle in

the dipole approximation

To get the low-energy scattering amplitude of the electromagnetic field on
the spin of particles with polarizabilities will follow [10]. However, the

determination of the induced electric ~d and magnetic ~m dipole moments

of the vectors of electric
→
E and magnetic

→
H electromagnetic field strengths

using the relations [11, 12]:

→
d = 4π

∧
α
→
E, (1)

→
m = 4π

∧
β
→
H, (2)
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where
∧
α and

∧
β- the matrices, the matrix elements which are tensors of elec-

tric and magnetic polarizabilities. The diagonal elements of these matrices
are expressed through the scalar electric and magnetic polarizability:

αij = α1δij,

βij = β1δij.

Using (1) and (2) low-energy scattering amplitude of the electromagnetic

field can be expressed through matrixes
∧
α and

∧
β as follows [13]:

M
(
→
n2

)
= 4πω2

{(
→
e
(λ2)∗∧

α
→
e
(λ1)
)

+

(
→
n2
→
e
(λ1)
) (

→
n1

∧
β
→
e
(λ2)∗

)
+

+

(
→
n1
→
e
(λ2)∗

)(
→
e
(λ1)∧

β
→
n2

)
−
(
→
e
(λ2)∗→

e
(λ1)
)(

→
n1

∧
β
→
n2

)
−
(
→
n1
→
n2

)
×

×
(
→
e
(λ1)∧

β
→
e
(λ2)∗

)
+

[(
→
n2
→
n1

)(→
e
(λ2)∗→

e
(λ1)
)
−
(
→
n2
→
e
(λ1)
)(

→
n1
→
e
(λ2)∗

)]
×

×Sp
(
∧
β

)}
.

(3)

In expression (3) we have introduced the following notation:
→
e
(λ1)

and
→
e
(λ2)

– polarization vectors,
→
n1 and

→
n2 – single vectors of the falling and scattered

radiation, ω – radiation frequency.

From definition
→
d and

→
m it agrees (1) and (2) follows,

∧
α and

∧
β satisfy

to the hermiticities condition.
In this case, as shown in work [14], tensors can αij and βij be presented

as follows:
αij = α1δij + iα2εijkCk,

βij = β1δij + iβ2εijkCk,

where α1, α2, β1 and β2 – the real values, εijk– a tensor Levi-Civita, Ck –
pseudo-vector components.

In case of a spin particle as such pseudo-vector it is possible to choose a

pseudo-vector – operator of the spin particle

∧
→
S . If to consider that matrixes

∧
α and

∧
β depend from

∧
→
S , using algebra of operators 1/2-spin:[

∧
Si,

∧
Sj

]
= iεijk

∧
Sk,
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∧
Si
∧
Sj =

1

4
δij +

i

2
εijk

∧
Sk,

these tensors can be presented as follows

αij = α1δij + iα2εijk
∧
Sk, (4)

βij = β1δij + iβ2εijk
∧
Sk. (5)

Substituting (4) and (5) in the equation (3), we will obtain:

M
(
→
n2

)
= 4πω2χ+

f

{
α1

(
→
e
(λ2)∗→

e
(λ1)
)

+β1

([
→
e
(λ2)∗ →

n2

]
·
[
→
e
(λ1)→

n1

])
+

+iα2

( ∧
→
S·
[
→
e
(λ2)∗→

e
(λ1)
])

+ iβ2

(∧
→
S ·
[[
→
e
(λ2)∗ →

n2

]
·
[
→
e
(λ1)→

n1

]])}
χi ,

(6)
where χi and χf – spinor of an initial and final particle.

If the amplitude (6) require the condition of crossing symmetry, the
equation (6) will be only the first two terms

M
(
→
n2

)
= 4πω2

{
α1

(
→
e
(λ2)∗→

e
(λ1)
)

+ β1

([
→
e
(λ2)∗ →

n2

]
·
[
→
e
(λ1)→

n1

])}
, (7)

which is consistent with the spin structure of the amplitude of the low-
energy Compton scattering with the electric and magnetic polarizabilities
[15]. In the case of Compton forward scattering amplitude has a total spin
structure of the form [16]

M = g (ω)

(
→
e
(λ2)∗→

e
(λ1)
)

+ ih (ω)

(
→
S ·
[
→
e
(λ2)∗→

e
(λ1)
])

. (8)

In this definition, the amplitude of the scalar function g (ω) is even,
and h (ω) - with respect to cross-odd symmetry. Consequently, since the
polarizability contribute to the amplitude (8) starting from the second-
order and higher, the spin structure of the second term in (8) is determined
by the contributions polarizabilities from the third-order.

We now define the Lagrangian and the Compton scattering amplitude
in the covariant representation of the dipole.
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3 Amplitude of low-energy Compton scat-

tering in covariant dipole representation

In [8] for the construction of an effective relativistic invariant Lagrangian
of the interaction of electromagnetic fields with the particles with constant
electric and magnetic dipole moments introduced antisymmetric tensor
of the dipole moments, which is independent of the electromagnetic field
tensor Fµν :

Gµν = (dµuν − uµdν) + εµνρσmρuσ, (9)

where dµ and mµ – the components of the electric and magnetic moments
presented in a covariant form; uµ – particle 4-speed components, εµνρσ –
4-dimensional tensor Levi-Civita.

An effective Lagrangians interaction of an electromagnetic field with
particles with the constant dipole moments is represented as follows:

L = −1

2
(eµd

µ + hµm
µ) , (10)

where eµ = Fµνu
ν , hµ = F̃µνu

ν , F̃µν = 1
2
εµνρσF

ρσ.
We are assuming that the form of a tensor (9) can be given and for

the induced dipole moments. We will write down in a covariant form
taking into account conservation law of parity and definition of a vector of
Paulie-Lyubansky W µ components of vectors of the electric and magnetic
moments

dµ = 4παµνeν + 4πκµνδ (∂δ) eν , (11)

mµ = 4πβµνhν + 4πκ̃µνδ (∂δ)hν . (12)

In equations (11) and (12) introduced the notation:

αµν = α1g
µν , κµνδ = εµνρεWρ ,

βµν = β1g
µν , κ̃µνδ = ε̃µνρδWρ .

In case of a particle the spin 1/2 vector
∧
W µ has the form:

∧
W µ = − 1

2m
γ5
(
γµ
∧
p− pµ

)
,

where
∧
p = γµp

µ, pµ– a particle 4-momentum, γµ – the matrixes satisfying
to permutable ratios γµγν + γνγµ = 2gµν . Equations (11) and (12) follows
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from expressions, dµ as mµ consist of symmetric and antisymmetric parts
of the permutation of indexes µ and ν. As will be shown below, this pre-
sentation is consistent with the condition of crossing symmetry amplitude
Compton scattering.

The Lagrangian (10), with which you can get the Compton scattering
amplitude and align it with the low-energy theorems, within the field-
theoretical covariant approach has the form [17]:

L (x) =
iπ

4m
×

×
[
Ψ̄γν

∧
Lνσ

↔
∂σΨ + Ψ̄

∧
Lνσγ

ν
↔
∂σΨ + Ψ̄γσ

∧
Lνσ

↔
∂νΨ + Ψ̄

∧
Lνσγ

σ
↔
∂νΨ

]
, (13)

where Ψ (x) is the bispinor of Dirac field,
↔
∂ν =

→
∂ν −

←
∂ν , shooters specify

the directions of action of derivatives.

As was it is shown in work [13] tensor
∧
Lνσ in expression (13) has to be

is presented definitely that Lagrangian L (x) satisfied to parity conserva-
tion law, and spin structures of amplitude of Compton scattering – cross
symmetry:

∧
Lνσ =

∧
L
(α1)

νσ +
∧
L
(β1)

νσ +
∧
L
(κ)

νσ +
∧
L
(κ̃)

νσ . (14)

In turn, the tensor of (14) are consistent with the definitions (11) and
(12) are as follows:

∧
L
(α1)

νσ = Fνµ
∧
α
µρ

(α1)Fρσ, (15)

∧
L
(κ)

νσ = Fνµ
↔
∂δFρσ

∧
κ
µρδ

(κ) , (16)

where have introduced the following notations αµν = α1g
µν , κµνδ (κ) =

εµνρε
∧
W ρ. The derivative

↔
∂δ operate only to tensors of an electromagnetic

field Fµν , and the operator
∧
W ρ operate to wave functions Ψ and Ψ̄.

If in tensors (15) and (16) to make replacement Fµν → F̃µν , we will

receive expressions for
∧
L
(β1)

νσ and
∧
L
(κ̃)

νσ . Thus, effective relativistic-invariant
Lagrangian, allowing to consider scalar electric and magnetic dipole polar-
izabilities of a nucleon, it is possible to present in the form:

L(α1) + L(β1) =
2π

m

(
α1FνµF

µ
σ + β1F̃νµF̃

µ
σ

)
θνσ, (17)
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where θνσ = i
2
Ψ̄γν

↔
∂
σ

Ψ.
Amplitude of Compton scattering taking into account a Lagrangian

(17) has the form [18]

M (α1) +M (β1) =
(
2π
m

) [
α1

(
F

(2)
νµ F

(1)µ
σ + F

(1)
νµ F

(2)µ
σ

)
+

+β1

(
F̃

(2)
νµ F̃

(1)µ
σ + F̃

(1)
νµ F̃

(2)µ
σ

)]
Ū (r2)

(→
p 2

)
γνP σU (r1)

(→
p 1

)
.

(18)

In the equation (18) have introduced the notations:

F (n)
µν =

(
k(n)µe

(λn)
ν − k(n)νe(λn)µ

)
,

F̃
(n)
µν = 1

2
εµνρσF

(n)ρσ, parameter n has the values 1 and 2, e
(λ1)
µ and e

(λ2)∗
µ are

vectors of polarization of initial and final photons, P = 1
2

(p1 + p2), k1, p1
and k2, p2 are four-momenta of initial and final photons and nucleons,

U (r1)
(→
p 1

)
and Ū (r2)

(→
p 2

)
are bispinors of initial and final nucleons.

Follows from (18) a ratio that the part of amplitude of Compton scat-
tering caused by electric α1 and magnetic β1 scalar polarizabilities meets
a condition of cross symmetry and makes a contribution, since the second
order on energy of photons. In system of rest of a target and in the second
order on energy of photons from (18) the ratio follows:

M (α1) +M (β1) =

= 4πω1ω2χ
+
f

[
α1

(
→
e
(λ2)∗→

e
(λ1)
)

+ β1

([
→
e
(λ2)∗ →

n2

]
·
[
→
e
(λ1)→

n1

])]
χi ,

which will be coordinated with (7).

4 Dipole spin polarizabilities and the char-

acteristics of a nucleon, connected with

violation parity

The electromagnetic characteristics of hadrons connected with not preser-
vation of parity [3, 4] possess properties of the giration used in optics
[11]. In this section we will consider relativistic-invariant determination of
dipole spin polarizabilities and the giration of a nucleon connected with
parity not preservation, and also we will pay attention to distinction of
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their deposits to amplitude of Compton scattering. Follows from (14) a
ratio that effective Lagrangian, corresponding to deposits of spin dipole
polarizabilities κ and κ̃, has an appearance:

L(κ) + L(κ̃) =
iπ

4m

(
εµρκδ

) [
κFνµ

↔
∂δFρσ + κ̃F̃νµ

↔
∂δF̃ρσ

]
×

×Ψ̄

[(
γν

∧
Wκ +

∧
Wκγ

ν

)
↔
∂σ +

(
γσ

∧
Wκ +

∧
Wκγ

σ

)
↔
∂ν
]
Ψ .

(19)

The part of amplitude of Compton scattering calculated on the basis
of this Lagrangian is defined as follows:

M (κ) +M (κ̃) =
iπ

4m2

(
εµρκδ

)
(k1 + k2)δ

[
κ
(
F

(2)
νµ F

(1)
ρσ − F (2)

σρ F
(1)
µν

)
+

+κ̃
(
F̃

(2)
νµ F̃

(1)
ρσ − F̃ (2)

σρ F̃
(1)
µν

)]
Ū (r2)

(→
p 2

)
γ5[(δντ γκ − δνκγτ )P σ+

+ (δστ γκ − δσκγτ )P ν ]PτU
(r1)
(→
p 1

)
.

(20)

Expression (20) is testified of an invariant of cross symmetry. The
contribution of spin polarizabilities κ also κ̃ begins with the third order on
energy of photons. If determine amplitude (20) in the rest frame and to
neglect an impulse of return of a nucleon, we will obtain

M (κ) +M (κ̃) = 4πi (ω1 + ω2) (ω1ω2)

{
κ

(
→
S

[
→
e
(λ2)∗→

e
(λ1)
])

+

+κ̃

(
→
S

[[
→
e
(λ2)∗ →

n2

]
·
[
→
e
(λ1)→

n1

]])}
.

(21)

According to from the equations (19) and (21) Lagrangian by means of
which the contribution of spin dipole polarizabilities κ and κ̃ to amplitude
of Compton scattering is considered is even concerning inversion of space.

By analogy with Lagrangian (19) we will construct new Lagrangian
by which we will define contributions of girations (the characteristics con-
nected with parity not preservation) to amplitude of Compton scattering.

For this purpose it is enough in (19) to make replacement
∧
Wκ → 1/m

↔
∂κ.

As a result we will obtain:

L =
iπ

2m2

(
εµρκδ

) [
δEFνµ

↔
∂δFρσ + δM F̃νµ

↔
∂δF̃ρσ

]
×

×Ψ̄
[(
γν
↔
∂κ
↔
∂σ + γσ

↔
∂κ
↔
∂ν
)]

Ψ ,
(22)
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where δE and δM are electric and magnetic girations.
Amplitude of Compton scattering which is obtained on the basis of a

Lagrangian (22), in system of rest of a target and in neglect an impulse of
return of a target, is defined so

M = 4πω1ω2χ
+
f

{
δE

((→
k 1 +

→
k 2

)
·
[
→
e
(λ2)∗→

e
(λ1)
])

+

+δM

((→
k 1 +

→
k 2

)
·
[→
Σ2

→
Σ1

])}
χi ,

(23)

where
→
Σ2 =

[
→
e
(λ2)∗ →

n2

]
,

→
Σ1 =

[
→
e
(λ1)→

n1

]
.

The ratio (23) will be coordinated with low-energy determination of
amplitude (3) if to present tensors of polarizabilities through δE and δM
[11]

αij = α1δij + iδEεijk∂k ,

βij = β1δij + iδMεijk∂k ,

where the derivative ∂κ action to vectors of an electromagnetic field.
Thus, from the equations (21) and (23) follows:

1) in both amplitudes the condition of cross symmetry is satisfied;

2) if in the ratio (21) the invariance condition concerning inversion of space
is satisfied, in the ratio (23) this condition is violated;

3) deposits of a giration and spin dipole polarizabilities to amplitude of
Compton scattering on a nucleon begins with the third order on
energy of photons.

5 Conclusion

In this work the proposal relativistic-invariant definition of spin dipole
polarizabilities and girations which foundation on covariant build of the
induced dipole moments and phenomenological effective Lagrangians of
interaction of an electromagnetic field with these moments of a structural
particle a spin 1/2 is offered. It is shown that in the offered model tak-
ing into account cross symmetry, gauge-invariant and properties of a La-
grangian to inversion of space spin dipole polarizabilities and a giration
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make a contribution to decomposition of amplitude of Compton scatter-
ing since the third order on energy of photons according to low-energy
theorems of Compton scattering on a nucleon.

This work was supported by the Belarusian Republican Foundation for
Basic Research (grants N F14-035 and N F15D-009).
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Form Factor of the Relativistic Two-particle
System in the Relativistic Quasipotential

Approach: The Case of Arbitrary Masses and
Vector Current

Yu.D. Chernichenko,
Sukhoi State Technical University of Gomel

Abstract

A new relativistic form factor for a bound two-particle system
was obtained for the case of a vector current. The present consider-
ation was performed within the relativistic quasipotential approach
based on the covariant Hamiltonian formulation of quantum field
theory by going over to the three dimensional relativistic configu-
ration representation for the case of interaction between two rela-
tivistic spinless particles of arbitrary mass.

1 Introduction

The study of hadrons electromagnetic form factors allows to obtain the
information about spatial hadrons structure. The idea of the composite
quark nature of hadrons and suggestion about scale invariant behavior in
the region of large momentum transfers has allowed to reveal regularity of
the elastic hadrons form factors behavior [1]. To describe the behavior of
the form factors the different pole vector-dominance models (VDM) were
used. These models successfully reproduce the behavior of the pion form
factor as in space-like, so and at time-like regions [2], and behavior of
the nucleon form factor in the space-like regions [3]. However the models
VDM fail in description experimently of the observed for large importances
of the momentum transfer of the system −t = Q2 the quick decrease of
electromagnetic form factor at time-like region according to the law of
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dipole ∼ t−2. The reason is that the model VDM assume that the virtual
photon flying in the nucleon “sees” only the vector mesons which there
are the quark-antiquark bound-states while the structure of nucleon study
at small distances where the momentum transfer of the system there is
enough large value and quarks move quasifree (the asymptotic freedom).

However the problem of covariant description of form factor in the
whole, rather then only in asymptotic region energy within the framework
of relativistic quark model taking into account differences of their masses,
continues remain interesting and at present. For this we must know the
dynamics of the interacting quarks more in detail, in particular, we must
know the covariant wave functions their of relative motion.

Within the quantum field theory the covariant wave functions of the
relative motion can be obtained using the relativistic covariant two-particle
quasipotential equations of Logunov–Tavkhelidze [4] and Kadyshevsky [5,
6]. The using of three-dimensional relativistic quasipotential (RQP) equa-
tion of Logunov-Tavkhelidze for description of the form factors of compos-
ite systems was executed in [7–11]. However, use of the equation Logunov-
Tavkhelidze for wave function in the momentum representation has not
allowed to research the behavior of the form factor in broad interval of im-
portances of the momentum transfer of the relativistic two-particle bound
system. The other model of the account of the contribution small the dis-
tances in form factor of the proton was considered in [12]. This model is
based on invariant description of the structure of the particles in relativis-
tic configurational space that was carried in [13] in the case of interaction
between two relativistic spinless particles that have equal masses m in
which the Compton wavelength of particle plays role of the natural scale.
In this model is taken into account both the contribution to the proton
form factor of vector mesons and the contribution from its the central part
having radius of the Compton wavelength. The method of transition to
the relativistic configurational representation in the case of interaction be-
tween two relativistic spinless particles with equal masses proposed in [13]
was used in [14] to construct the three-dimensional covariant formalism
for the description of relativistic two-particle systems. Within the frame-
work of this formalism the expressions for the form factors of relativistic
two-particle systems [15, 16] were obtained.

The aim of this work is to obtain the expression for the elastic form
factor of relativistic two-particle system in the case of vector current on the
basis of covariant Hamiltonian formulation of quantum field theory [5, 6] by
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transition to the three-dimensional relativistic configurational representa-
tion for the interaction of two relativistic spinless particles having arbitrary
masses m1,m2 [17, 18].

2 Equation for the wave function

In the case of interaction between two relativistic particles with arbitrary
masses m1 and m2, the RQP approach developed in [17, 18] permitted in-
troducing the concept of an effective relativistic particle whose mass is
m′ =

√
m1m2 and which plays the role of a bound two-particle system.

Whereby one reduces the two-body problem in question to a one-body
problem treated in terms of the RQP wave function ΨMQ(∆p′,m′λQ) de-
scribing the effective relativistic particle and satisfying the fully covariant
RQP Kadyshevsky equation in angular momentum space with the velocity
4-vector λQ = (λ0

Q;λQ); 1) that is,

(2∆0
q′,m′λQ

− 2∆0
p′,m′λQ

)ΨMQ(∆p′,m′λQ) = (1)

=
2µ

m′
1

(2π)3

∫
dΩ∆k′,m′λQ

Ṽ (∆p′,m′λQ ,∆k′,m′λQ ; ∆0
q′,m′λQ

)ΨMQ(∆k′,m′λQ),

where µ = m1m2/(m1 +m2) is the ordinary reduced mass of two particles
that have arbitrary masses and dΩ∆k′,m′λQ

= m′d∆k′,m′λQ/∆
0
k′,m′λQ

is the

relativistic three-dimensional volume element in Lobachevsky space, all
4-momenta now belonging to the upper sheet of the mass hyperboloid:

∆02
k′,m′λQ

−∆2
k′,m′λQ

= m′2. (2)

This sheet, embedded in 4-dimensional momentum space, serves as a model
of relativistic non-Euclidean momentum space. On the mass-hyperboloid
sheet (2), the Lorentz group is the motion group for this space. Upon
choosing the pure Lorentz transformation (boost) Λ−1

λQ
corresponding to

the composite particle 4-velocity λQ, Λ−1
λQ
Q = (MQ; 0), the 4-vector com-

ponents ∆k′,m′λQ from the Lobachevsky space assume the form

∆0
k′,m′λQ

= (Λ−1
λQ
k′)0 = k′0λ

0
Q − k′ · λQ =

√
m′2 + ∆2

k′,m′λQ
, (3)

∆k′,m′λQ = Λ−1
λQ

k′ = k′(−)m′λQ = k′ − λQ

(
k′0 −

k′ · λQ
1 + λ0

Q

)
.

1)We use the system of units where ~ = c = 1.
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Equation (1) can be considered as a direct relativistic generalization of
the Schrödinger equation in the spirit of Lobachevsky geometry arising on
the upper mass-hyperboloid sheet (2). This equation describes scattering

on the quasipotential Ṽ (∆p′,m′λQ ,∆k′,m′λQ ; ∆0
q′,m′λQ

) for an effective rela-
tivistic particle that plays the role of a two-particle system, has a mass
m′ and a relative 3-momentum ∆q′,m′λQ , and carries the total energy of
two free relativistic particles of arbitrary mass. This energy

√
sq = MQ is

proportional to the energy ∆0
q′,m′λQ

for one effective relativistic particle of
mass m′; that is,

√
sq =

√
(q1 + q2)2 =

m′

µ
∆0
q′,m′λQ

, ∆0
q′,m′λQ

=
√
m′2 + ∆2

q′,m′λQ
. (4)

In the equation (1) it is convenient to expand over the complete system of
functions [17, 18]

ξ(∆p′,m′λQ , r) =

(
∆0
p′,m′λQ

−∆p′,m′λQ · n
m′

)−1−ir/λ′

, (5)

which realize the principal series of unitary irreducible representations of
the Lorentz group, i.e. the group of motions of the Lobachevsky space
momentum, realized on upper sheet of the mass hyperboloid (2). The
group parameter r in (5) plays the role of the modulus of the relativistic
relative coordinate r (r = rn, |n| = 1), and λ′ = 1/m′ is the Compton
wavelength associated with the effective relativistic particle of mass m′ [13,
18]. This parameter enumerates the eigenvalues of the invariant Casimir
operator of the Lorentz group ĈL = (1/4)MµνM

µν (Mµν = pµ∂/∂p
ν −

pν∂/∂p
µ are the group generators):

ĈLξ(∆p′,m′λQ , r) =

(
1

m′2
+ r2

)
ξ(∆p′,m′λQ , r), 0 ≤ r <∞, (6)

and, therefore, it is a relativistic invariant.
The functions in (5) obey the following conditions of completeness and

orthogonality [18]:

1

(2π)3

∫
dΩ∆p′,m′λQ

ξ(∆p′,m′λQ , r)ξ∗(∆p′,m′λQ , r
′) = δ(r′ − r), (7)

1

(2π)3

∫
drξ(∆q′,m′λQ , r)ξ∗(∆p′,m′λQ , r) =

∆0
q′,m′λQ

m′
δ(∆p′,m′λQ −∆q′,m′λQ),
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and these the functions satisfy the equation in terms of finite differences [18]

(2∆0
p′,m′λQ

− Ĥ0)ξ(∆p′,m′λQ , r) = 0. (8)

Here

Ĥ0 = 2m′
[
cosh

(
iλ′

∂

∂r

)
+
iλ′

r
sinh

(
iλ′

∂

∂r

)
− λ′2

2r2
∆θ,ϕ exp

(
iλ′

∂

∂r

)]
(9)

is the operator of the free Hamiltonian, while ∆θ,ϕ is its angular part.
The wave RQP-functions in the momentum space and the r-representa-

tion, called the relativistic configuration representation [17, 18], are related
by

ψMQ(r) =
1

(2π)3

∫
dΩ∆p′,m′λQ

ξ(∆p′,m′λQ , r)ΨMQ(∆p′,m′λQ), (10)

ΨMQ(∆p′,m′λQ) =

∫
drξ∗(∆p′,m′λQ , r)ψMQ(r).

For the local quasipotential

Ṽ (∆p′,m′λQ ,∆k′,m′λQ ; ∆0
q′,m′λQ

) ≡ Ṽ
(
(∆p′,m′λQ(−)∆k′,m′λQ)2; ∆0

q′,m′λQ

)
(11)

square of the vector of momentum transfer in the Lobachevsky space
∆p′,k′ = p′(−)k′ is the Loretz invariant that allows to present it in the
form

∆2
p′,k′ =

(
∆0
p′,k′

)2 −m′2 =
(
∆p′,m′λQ(−)∆k′,m′λQ

)2
= ∆2

∆p′,m′λQ
,∆k′,m′λQ

.

Thus, the quasipotential (11) depends on the invariant quantity the square
of vector of difference in the Lobachevsky space of two momentum vectors
∆∆p′,m′λQ

,∆k′,m′λQ
= ∆p′,m′λQ(−)∆k′,m′λQ . With this quasipotential, the

right-hand side of equation (1) represents a convolution in the Lobachevsky
space that allows to use the expansion over the matrix elements of group
of motions of this space, i.e. transformations (10). By using transforma-
tions (10) and eq. (8), equation (1) with the quasipotential (11) local in
the Lobachevsky space takes the form

(2∆0
q′,m′λQ

− Ĥ0)ψMQ(r) =
2µ

m′
V (r; ∆0

q′,m′λQ
)ψMQ(r), (12)
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where the quasipotential V (r; ∆0
q′,m′λQ

) is given in terms of the same rela-
tivistic plane waves as

V (r; ∆0
q′,m′λQ

) =
1

(2π)3

∫
dΩ∆p′,k′

ξ(∆p′,k′ , r)Ṽ
(
(∆p′,k′)

2; ∆0
q′,m′λQ

)
.

For spherically symmetric potentials, expanding the quasipotential wave
RQP-function ψMQ(r) in the Legendre functions P ν

µ (z) of the first kind as

ψMQ(r) =
∞∑
`=0

(2`+ 1)i`
ϕ`(r, χ)

r
P`

(
∆q′,m′λQ · r
|∆q′,m′λQ |r

)
, (13)

we obtain equation for the partial wave function in the form[
cosh

(
iλ′

d

dr

)
+
λ′2`(`+ 1)

2r(r + iλ′)
exp

(
iλ′

d

dr

)
−X(r)

]
ϕ`(r, χ) = 0, (14)

where

X(r) =
µ

m′2
(MQ − V (r;χ)) ,

and χ is the rapidity related with the relative 3-momentum and energy of
effective relativistic particle by the formulas

∆q′,m′λQ = m′ sinhχn∆q′,m′λQ
, |n∆q′,m′λQ

| = 1,

MQ =
m′

µ
∆0
q′,m′λQ

, ∆0
q′,m′λQ

= m′ coshχ.

3 Form factor of the relativistic two-particle

system

For simplicity we consider here only the case of spinless field when the
Hamiltonian density is given by the expression

H(x) = −z1ϕ
+
1 (x)ϕ1(x)A(x)− z2ϕ

+
2 (x)ϕ2(x)A(x). (15)

In ref. [15] founded on refs. [7–11], the form factor of two-particle system
was defined as the matrix element of the local current operator between
bound states with the 4-momentum P ,Q through the covariant wave RQP-
functions satisfying eq. (1). Then, as follows from refs. [15, 16], the invari-
ant expression in the momentum representation for the matrix element of
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the local vector-current operator near poles of bound states for the inter-
action of two relativistic spinless particles with arbitrary masses m1,m2

has the form

< P|Jν |Q >=
z1

(2π)3

∫
dτPdτQd

(4)k2d
(4)k1d

(4)k′1θ(k20)δ(k2
2 −m2

2)× (16)

×Γ+
P (k′1, k2;λPτP)

(k1 + k′1)ν
(τP + iε)(τQ − iε)

ΓQ (k1, k2;λQτQ) θ(k10)δ(k1
2 −m2

1)×

×θ(k′10)δ(k′21 −m2
1)δ(4)(−Q+ k1 + k2 + λQτQ) δ(4)(P − k2 − k′1 − λPτP)+

+(1↔ 2),

where all the momenta of the particles belong to the mass shells

k2
i = k2

i0 − k2
i = m2

i , i = 1, 2. (17)

As a vectors λP and λQ, it is convenient to choose the 4-velocities of the sys-
tem: λP = P/

√
P2,P2 = (p1 + p2)2 = sp = M2

P and λQ = Q/
√
Q2,Q2 =

(q1 + q2)2 = sq = M2
Q. This expression answers the diagram on fig. 1.

Here follows to emphasize that because of transition to different own time-
ses of the system before (τQ = λQX,X = x1 + x2) and after interaction
(τP = λPX) the diagram on fig. 1 differ from diagrams, which appear in
approach of the Kadyshevsky for S-matrix. The 4-velocities of the com-

Figure 1: The diagram for the matrix element of the local current operator
between bound states with the 4-momentum P ,Q for the interaction of two
relativistic spinless particles with arbitrary masses.

posite particle before, λQ, and after interaction, λP , will differ also.
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In the case of equal quark masses (m1 = m2 = m) and for real-valued
wave functions, expression (16) for the matrix element of the vector-current
operator satisfies the transverseness condition

(P −Q)ν < P|Jν |Q >= 0, (18)

This circumstance was used in [16]. In the case of unequal quark masses
(m1 6= m2), expression (16) for the matrix element of the vector-current
operator features additionally its transverse component, which breaks the
transverseness condition in (18). Therefore, the 4-vector in expression (16)
can be represented in the form

< P|Jν |Q >= F (+)(t)(P +Q)ν + iF (−)(t)(P −Q)ν . (19)

In the case of unequal masses (m1 6= m2), expression (16) for the matrix
element of the local vector-current operator can be reduced to a one-body
problem. The respective expression will be the convolution of the RQP
wave functions for a single effective relativistic particle in this space. Thus,
it is necessary to multiply expression (16) by (P±Q)ν and to consider that,
at Q2 = M2

Q, P2 = M2
P , the following relation holds:

t=(P−Q)2=−Q2=M2
Q+M2

P−2PQ, 2PQ= (20)

=M2
Q+M2

P−t, (P+Q)2=2(M2
Q+M2

P)−t. (21)

Performing integration with respect to dk20, dk10, dk
′
10 and taking into ac-

count Eqs. (19) and (20), we obtain the following expressions for the
form-factor components:

F (+)(t) =
z1

(2M2
Q + 2M2

P − t)(4π)3

∫
dτPdτQdk2dk1dk

′
1√

m2
2 + k2

2

√
m2

1 + k2
1

√
m2

1 + k′21
×

(22)

×Γ+
P (k′1, k2;λPτP)

(P +Q)(k1 + k′1)

(τP + iε)(τQ − iε)
ΓQ (k1, k2;λQτQ)×

×δ(4)

[(
−1 +

τQ
MQ

)
Q+ k1 + k2

]
δ(4)

[(
1− τP

MP

)
P − k2 − k′1

]
+

+(1↔ 2),
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F (−)(t) ==
z1

it(4π)3

∫
dτPdτQdk2dk1dk

′
1√

m2
2 + k2

2

√
m2

1 + k2
1

√
m2

1 + k′21
× (23)

×Γ+
P (k′1, k2;λPτP)

(P −Q)(k1 + k′1)

(τP + iε)(τQ − iε)
ΓQ (k1, k2;λQτQ)×

×δ(4)

[(
−1 +

τQ
MQ

)
Q+ k1 + k2

]
δ(4)

[(
1− τP

MP

)
P − k2 − k′1

]
+(1↔2).

Within this approach, for the bounded system of spinless particles
which are found in the motion with moment J = 0 the vertex func-
tions ΓQ (k2, k1;λQτQ) and ΓP (k2, k

′
1;λPτP) when λQ � Q and λP � P

will depend each only on one the Lorentz invariant scalar parameter, as
which we choose accordingly Qk2 and Pk2. According to Eqs. (3), these
parameters are invariant under the pure Lorentz transformations Λ−1

λQ,P
:

Λ−1
λQ
Q = (MQ; 0), Λ−1

λP
P = (MP ; 0); therefore, we have

Qk2 = Λ−1
λQ

(Qk2) = MQ∆0
k2,m2λQ

,Pk2 = Λ−1
λP

(Pk2) = MP∆0
k2,m2λP

.

Moreover, the application of the Lorentz transformation Λ−1
λQ,P

to the con-
servation laws

−Q+ k1 + k2 + λQτQ = 0,P − k2 − k′1 − λPτP = 0, (24)

yields

τQ = MQ −∆0
k2,m2λQ

−∆0
k1,m1λQ

,∆k1,m1λQ = −∆k2,m2λQ ; (25)

τP = MP −∆0
k2,m2λP

−∆0
k′1,m1λP

,∆k′1,m1λP = −∆k2,m2λP .

From Eqs. (24) and (25), it also follows that

k1 + k′1 = λQ
√
s∆k2,m2λQ

+ λP
√
s∆k2,m2λP

− 2k2,

where we have used the invariance of the total energy under Lorentz trans-
formations; that is,

√
sk=

√
(k2 + k1)2 =

√
s∆k2,m2λQ

=
√
m2

1 + ∆2
k2,m2λQ

+
√
m2

2 + ∆2
k2,m2λQ

,

(26)

√
sk′ =

√
(k2 + k′1)2 =

√
s∆k2,m2λP

=
√
m2

1 + ∆2
k2,m2λP

+
√
m2

2 + ∆2
k2,m2λP

.
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Taking into account Eq. (20), we find from here that

(P ±Q)(k1 + k′1) =
M2
Q +M2

P − t
2MQ

√
s∆k2,m2λQ

± (27)

±
M2
Q +M2

P − t
2MP

√
s∆k2,m2λP

± (m2
1 −m2

2)MQ√
s∆k2,m2λQ

+
(m2

1 −m2
2)MP

√
s∆k2,m2λP

.

Now in (22) and (23) we execute the integrations respecting of k1,k
′
1,τP ,τQ.

For that we execute the pure Lorentz transformations Λ−1
λQ

and Λ−1
λP

by
formulas (3) in the integrals with respect to k1 and k′1 accordingly, and take
into account Eq. (27) and the invariance of the delta functions involved
and the integration measures dΩki = midki/

√
m2
i + k2

i , i = 1, 2 on the
mass hyperboloids (17) under Lorentz transformations. Expressions (22)
and (23) for the form-factor components can then be recast into the form

F (+)(t) =
z1(

2M2
Q + 2M2

P − t
)

(4π)3

∫
d∆k2,m2λQ√
m2

2 + ∆2
k2,m2λQ

× (28)

×
Γ+
MP

(∆k2,m2λP )√
m2

1 + ∆2
k2,m2λP

(
MP −√s∆k2,m2λP

+ iε
)[M2

Q +M2
P − t

2MQ

√
s∆k2,m2λQ

+

+
M2
Q +M2

P − t
2MP

√
s∆k2,m2λP

+
(
m2

1 −m2
2

)( MQ√
s∆k2,m2λQ

+

+
MP

√
s∆k2,m2λP

)]
ΓMQ

(
∆k2,m2λQ

)√
m2

1 + ∆2
k2,m2λQ

(
MQ −

√
s∆k2,m2λQ

− iε
) + (1↔ 2),

F (−)(t) =
z1

it(4π)3

∫
d∆k2,m2λQ√
m2

2 + ∆2
k2,m2λQ

× (29)

×
Γ+
MP

(∆k2,m2λP )√
m2

1 + ∆2
k2,m2λP

(
MP −√s∆k2,m2λP

+ iε
)[M2

Q +M2
P − t

2MQ

√
s∆k2,m2λQ

−

−
M2
Q +M2

P − t
2MP

√
s∆k2,m2λP

−
(
m2

1 −m2
2

)( MQ√
s∆k2,m2λQ

−

− MP
√
s∆k2,m2λP

)]
ΓMQ

(
∆k2,m2λQ

)√
m2

1 + ∆2
k2,m2λQ

(
MQ −

√
s∆k2,m2λQ

− iε
) + (1↔ 2),
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where we have introduced the notation ΓQ (k1, k2;λQτQ)=ΓMQ

(
∆k2,m2λQ

)
,

ΓP (k′1, k2;λPτP)=ΓMP (∆k2,m2λP ).
Within the RQP approach being considered, the two body problem

under study reduces to a one-body problem formulated in terms of the RQP
wave function ΨMQ(∆k′,m′λQ) describing an effective relativistic particle
and satisfying the fully covariant RQP Kadyshevsky equation (1) in the
angular-momentum space. The 4-vector k′ is chosen as

k′ = (k′0; k′) =

√
K2

K2
⊥
K⊥, (30)

where K = (m1k2 −m2k1)/(m1 + m2), the vector K⊥ = K − λK(λKK) is
the Wightman–Gording vector, and λK = (k1 + k2)/

√
sk = λQ. Signifies,

(λKK⊥) = 0, but from (30) we find:

k′2 = k0
′2 − k′2 = K2 =

m1m2

(m1 +m2)2

[
(m1 +m2)2 − sk

]
. (31)

Under the Lorentz transformations (3) follows that

Λ−1
λQ

K⊥ = (0; ∆k2,m2λQ), (32)

Λ−1
λQ

K =

m1

√
m2

2 + ∆2
k2,m2λQ

−m2

√
m2

1 + ∆2
k2,m2λQ

m1 +m2

; ∆k2,m2λQ

 .

Then from (26), (31) and (32) we get expression (Λ−1
λQ
k′0 = 0)

∆2
k′,m′λQ

=−(Λ−1
λQ
k′)2 =−(Λ−1

λQ
K)2 =

m1m2

(m1 +m2)2

[
s∆k2,m2λQ

−(m1 +m2)2
]
.

As direction of the vector ∆k′,m′λQ in correspondence to (30) and (32), we
choose the direction of the vector ∆k2m2λQ :

∆k′,m′λQ =

√√√√ (Λ−1
λQ

K)2

(Λ−1
λQ

K⊥)2
(Λ−1

λQ
K⊥) =

∆k2,m2λQ

|∆k2,m2λQ |
×

×

∆2
k2,m2λQ

−

m1

√
m2

2 + ∆2
k2,m2λQ

−m2

√
m2

1 + ∆2
k2,m2λQ

m1 +m2

2


1/2

.

(33)
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The inverse transformation have the form

∆k2,m2λQ = ∆k′,m′λQ

m′

2µ

√
4µ2 + ∆2

k′,m′λQ

m′2 + ∆2
k′,m′λQ

. (34)

Farther, in expression (28) and (29) we shall perform the change of vari-
ables according to Eqs. (33), (34) and take into account Eq. (4). The
expressions for the components of the elastic form factor (MP = MQ = M)
then takes the form

F (+)(t) =
(z1 + z2)(2M2 − t)
M(4M2 − t)(2π)3

2µ

m′

∫
dΩ∆k′,m′λQ

Ψ∗M(∆k′,m′λP )× (35)

×
[
f+(∆k′,m′λP ) + f−(∆k′,m′λP )

2f(∆k′,m′λP )

](
∆0
k′,m′λP

+ ∆0
k′,m′λQ

)
ΨM(∆k′,m′λQ)+

+
(z1 − z2)(m2

1 −m2
2)M

2(4M2 − t)(2π)3

(
2µ

m′

)3 ∫
dΩ∆k′,m′λQ

Ψ∗M(∆k′,m′λP )×

×
[
f+(∆k′,m′λP ) + f−(∆k′,m′λP )

2f(∆k′,m′λP )

](
∆0
k′,m′λP

+ ∆0
k′,m′λQ

∆0
k′,m′λP

∆0
k′,m′λQ

)
ΨM(∆k′,m′λQ),

F (−)(t) =
(z1 + z2)(2M2 − t)
iM(−t)(2π)3

2µ

m′

∫
dΩ∆k′,m′λQ

Ψ∗M(∆k′,m′λP )× (36)

×
[
f+(∆k′,m′λP ) + f−(∆k′,m′λP )

2f(∆k′,m′λP )

](
∆0
k′,m′λP

−∆0
k′,m′λQ

)
ΨM(∆k′,m′λQ)+

+
(z1 − z2)(m2

1 −m2
2)M

2i(−t)(2π)3

(
2µ

m′

)3 ∫
dΩ∆k′,m′λQ

Ψ∗M(∆k′,m′λP )×

×
[
f+(∆k′,m′λP ) + f−(∆k′,m′λP )

2f(∆k′,m′λP )

](
∆0
k′,m′λP

−∆0
k′,m′λQ

∆0
k′,m′λP

∆0
k′,m′λQ

)
ΨM(∆k′,m′λQ),

where

f±(∆k′,m′λQ) =

√
m′2 + ∆2

k′,m′λQ

m′2 + ∆2
k′,m′λQ

±m′
√
m′2 − 4µ2

,

f(∆k′,m′λQ) =

√
4µ2 + ∆2

k′,m′λQ

m′2 + ∆2
k′,m′λQ

,
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and we have defined the wave function for the system in the angular-
momentum space as

ΨM(∆k′,m′λQ) =
f(∆k′,m′λQ)ΓM(∆k′,m′λQ)

23/2
√
m′
(

2µM
m′ − 2∆0

k′,m′λQ

) ,
and are introduced the notations

ΓMQ(∆k2,m2λQ) = ΓM(∆k′,m′λQ),ΓMP (∆k2,m2λP ) = ΓM(∆k′,m′λP ).

It should be noted that the factor [f+ + f−]/2f(∆k′,m′λP ) possible to
be simplified to the form

f+(∆k′,m′λP ) + f−(∆k′,m′λP )

2f(∆k′,m′λP )
≈ 1 +

m′2 − 4µ2

2∆02
k′,m′λP

,

m′
√
m′2 − 4µ2

∆02
k′,m′λP

< 1,
m′2 − 4µ2

∆02
k′,m′λP

< 1,

and the vector ∆k′,m′λP from the Lobachevsky space arising on the upper
mass-hyperboloid sheet (2) can be represented in the form

∆k′,m′λP = Λ−1
λP

k′ =
(
Λ−1
λP

ΛλQΛ∆P,Q

) (
Λ−1

∆P,Q
∆k′,m′λQ

)
=

= V (ΛλQ ,P)∆k′,m′λQ(−)
m′

M
∆P,Q. (37)

Here ∆P,Q = Λ−1
λQ
P is the 4-momentum transfer in the Lobachevsky space;

that is,

∆P,Q = Λ−1
Q P = P − Q

M

(
P0 −

P ·Q
Q0 +M

)
= M sinhχ∆n∆, (38)

∆0
P,Q =

(
Λ−1
Q P

)0
=
P0Q0 −P ·Q

M
=
PQ
M

= M coshχ∆,

P = M sinhχPnP , Q = M sinhχQnQ,

P0 = M coshχP , Q0 = M coshχQ,

|nP | = |nQ| = |n∆| = 1, ∆02
P,Q −∆2

P,Q = M2,
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where V (ΛλQ ,P) = Λ−1
λP

ΛλQΛ∆P,Q is Wigner’s rotation matrix and χ∆, χP ,
χQ are the respective rapidities . From Eqs. (3) and (38), it follows that

∆0
k′,m′λP

&
m′2∆0

P,Q

2M∆0
k′,m′λQ

, (39)

and the square of the 4-momentum transfer, Q2 = −t = −(P − Q)2, is
related to the 3-momentum transfer ∆P,Q by the equation

Q2 = −t = −2M2 + 2M
√
M2 + ∆2

P,Q = 2M2 (coshχ∆ − 1) . (40)

Consequently, the components F (±)(t) of the elastic form factor in (35) and
(36) can be considered as functions of the invariant variable ∆2

P,Q, which
is the square of the momentum-transfer vector in the Lobachevsky space.
Then, taking into consideration Eqs. (3), (3) and (39), they are convolu-
tions of the wave functions in this space. It follows that, by employing the
Shapiro transformation in (10), the addition theorem for relativistic plane
waves (5) in the form [18]∫
dωnξ

(
∆k′,m′λQ(−)

m′

M
∆P,Q, r

)
=

∫
dωnξ(∆k′,m′λQ , r)ξ∗

(
m′

M
∆P,Q, r

)
,

(41)

the completeness condition in (7), equation (8), and the Hermitian of op-
erator of the free Hamiltonian (9), one can recast expressions (35) and
(36) into the form of relativistic Fourier transforms of covariant RQP wave
functions in the coordinate representation2):

F (+)(Q2) ≈ (42)

≈
{

(z1 + z2)(2M2 +Q2)

M(4M2 +Q2)

2µ

m′
+

2M3(z1 − z2)(m2
1 −m2

2)

m′2(4M2 +Q2)(2M2 +Q2)

(
2µ

m′

)3}
×

×
{∫

drξ∗
(
m′

M
∆P,Q, r

)
Re
[
ψ∗M(r)Ĥ0ψM(r)

]
+

+
2M4(m′2 − 4µ2)

m′4(2M2 +Q2)2

∫
drξ∗

(
m′

M
∆P,Q, r

)
Re
[ (
Ĥ0ψM(r)

)∗
Ĥ2

0ψM(r)
]}
,

2) A similar expression for the case of two particles of equal mass was obtained
in [16].
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F (−)(Q2) ≈ (43)

≈
{

(z1 + z2)(2M2 +Q2)

MQ2

2µ

m′
+

2M3(z1 − z2)(m2
1 −m2

2)

m′2Q2(2M2 +Q2)

(
2µ

m′

)3}
×

×
{∫

drξ∗
(
m′

M
∆P,Q, r

)
Im
[
ψM(r)

(
Ĥ0ψM(r)

)∗]
+

+
2M4(m′2 − 4µ2)

m′4(2M2 +Q2)2

∫
drξ∗

(
m′

M
∆P,Q, r

)
Im
[ (
Ĥ0ψM(r)

) (
Ĥ2

0ψM(r)
)∗]}

,

where possibility to applicability of the addition theorem (41) follows from
independence of the wave RQP-function ψM(r) in the case of J = 0 from
direction of the vector r.

We note that, if the RQP wave function ψM(r) is a real-valued function
of the variable r and corresponds to a real-valued quasipotential V (r), then,

according to Eq. (12), the quantity ψM(r)
(
Ĥ0ψM(r)

)∗
is also real-valued.

It follows that, in this case and at equal masses (m1 = m2 = m), the trans-
verse component F (−)(t) of the elastic form factor vanishes. For s-state
(` = 0) the radial wave function ϕ0(r, χn) corresponding to a real-valued

quasipotential V (r) is real-valued, the quantities
ϕ∗0(r, χn)

r
Ĥ0,`=0

ϕ0(r, χn)

r

and

(
Ĥ0,`=0

ϕ0(r, χn)

r

)∗
Ĥ2

0,`=0

ϕ0(r, χn)

r
are also real-valued. It follows

that, in this case, the transverse component F (−)(t) of the elastic form
factor for the s-wave state vanishes even for unequal masses (m1 6= m2).

For s-state (` = 0) of the composite system the integrations in (42)
respecting of angular variables gives

F
(+)
`=0(Q2)= (44)

=

{
8πµ(z1 +z2)(2M2+Q2)

m′M(4M2 +Q2)
+

8πM3(z1 − z2)(m2
1 −m2

2)

m′2(4M2 +Q2)(2M2 +Q2)

(
2µ

m′

)3}
χ∆

sinhχ∆

×

×
{ ∞∫

0

dr
r sin(rm′χ∆)

m′χ∆

Re

[
ϕ∗0(r, χn)

r
Ĥ0,`=0

ϕ0(r, χn)

r

]
+

2M4(m′2 − 4µ2)

m′4(2M2 +Q2)2
×

×
∞∫

0

dr
r sin(rm′χ∆)

m′χ∆

Re

[(
Ĥ0,`=0

ϕ0(r, χn)

r

)∗
Ĥ2

0,`=0

ϕ0(r, χn)

r

]}
,
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where are used decompositions (13) for wave function ψM(r) and the ex-
pansion for the relativistic plane wave (5) in the form

ξ(p′, r) =
∞∑
`=0

(2`+ 1)i`p`(r, coshχp′)P`

(
p′ · r
p′r

)
.

Here the rapidity χn corresponds to the level n bound state with energy
M = Mn = (m′2/µ) coshχn; the function

p`(ρ, coshχp′) =

√
π

2 sinhχp′

(−1)`+1

ρ
(−ρ)(`+1)P

−1/2−`
−1/2+iρ(coshχp′), ρ = rm′,

is a solution of the equation (8), where the function (−ρ)(l+1) = il+1Γ(l +
1 + iρ)/Γ(iρ) is called the generalized power [18], and Γ(z) is a gamma
function.

4 Root-mean-square radius and form factor

for the Coulomb interaction

Now let us consider the expression for the invariant root-mean-square
radius of a composite system, which has the group-theoretical meaning of
an eigenvalue of the Casimir operator of the Loretz group and according
to Eqs. (6) and (44) has the form

< r2
0 >=

=
6∂F

(+)
`=0(t)/∂t|t=0

F
(+)
`=0(0)

=
1

M2
+

(
m′

M

)2

∞∫
0

drr2
(
r2 − 3

2m′2

) (
R1 + m′2−4µ2

2m′4 R2

)
∞∫
0

drr2
(
R1 + m′2−4µ2

2m′4 R2

) +

+

3(m′2 − 4µ2)
∞∫
0

drr2R2

m′4M2
∞∫
0

drr2
(
R1 + m′2−4µ2

2m′4 R2

)+
3(z1 − z2)(m2

1 −m2
2) (2µ/m′)2

m′2M2

[
z1+z2+

(z1−z2)(m2
1−m2

2)(2µ/m′)2

2m′2

] ,
where

R1 =Re

[
ϕ∗0(r, χ)

r
Ĥ0,`=0

ϕ0(r, χ)

r

]
, R2 =Re

[(
Ĥ0,`=0

ϕ0(r, χ)

r

)∗
Ĥ2

0,`=0

ϕ0(r, χ)

r

]
.
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Thus, it is necessary to consider the composite particle as a dipole and that
the wave function of s-state describes not all structure of the composite
particle, but only the region which be upon distances that larger its of the
Compton wavelength 1/M . The root-mean-square radius of the composite
system includes not only the central sphere of radius r0 = 1/M , where
the relative motion of the quarks forming this system proceeds, but also
terms generated by the difference in the masses of the quarks and in their
coupling constants. At m1 = m2, these terms vanish.

As example, we consider the form factor in the case of the attractive
Coulomb field

V (r) = −α
r
, α > 0. (45)

The radial wave function of exact solution of the RQP-equation (14) with
interaction (45) for the s-state and ground level (n = 0) with the energy
M0 has the form [19–21]

ϕ0(r, iκ0) = N0,0(κ0)rm′ exp

[
−rm′κ0 +

iα̃κ0

2 sinκ0

]
,

where α̃ = 2µα/m′,M0 = (m′2/µ) cosκ0, κ0 defines by the following quan-
tization condition α̃/(2 sinκ0) = 1, 0 ≤ κ0 < π/2, and N2

0,0(κ0) = m′κ3
0/π

is the normalization factor.
The form factor (44) for the ground level of the bound s-state with the

energy M0 then assumes the form

F
(+)
`=0,n=0(Q2) =

16µκ3
0 sinκ0(2M2

0 +Q2)

M0(4M2
0 +Q2)χ∆ sinhχ∆

× (46)

×

[
z1 + z2 +

2(z1 − z2)M4
0 (m2

1 −m2
2)

m′2(2M2
0 +Q2)2

(
2µ

m′

)2
]{

1

1 + (2κ0/χ∆)2
+

+
4κ0

χ2
∆ tanκ0 (1 + (2κ0/χ∆)2)2 +

4πM4
0 (m′2 − 4µ2)χ∆ sin 2κ0

m′2(2M2
0 +Q2)

2 ×

×
[
1− 2

π
arctan

2κ0

χ∆

+
3

πχ∆ tanκ0 (1 + (2κ0/χ∆)2)
+

+
4κ0

πχ3
∆ tan2 κ0 (1 + (2κ0/χ∆)2)2

]}
.
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For large Q2 the rapidity χ∆ ≈ ln(Q2/M2
0 ) and, consequently, the leading

behavior of form factor (46) gives by expression

F
(+)
`=0,n=0(Q2) ≈ 8(z1 + z2)

(
2µ

m′

)2
κ3

0 tanκ0

(Q/M0)2 ln(Q/M0)2
, (47)

i.e. either as in [16]. Such behavior of the form factor under large t = −Q2

differs from prediction of the nonrelativistic model based on the Coulomb
potential, which gives the dipole decrease of the pion form factor: Fπ ∼
t−2. However, the nonrelativistic result contradicts the prediction of the
dimensional quark counting rules [1], which gives the decrease of the pion
form factor under the law Fπ ∼ t−1.

5 Conclusions

For the case of a vector current, the new covariant expressions for the
components of the elastic form factor for a bound system of two relativistic
spinless particles of arbitrary masses m1 and m2 are obtained. The compo-
nents of the elastic form factor are functions of the invariant variable ∆2

P,Q,
which is the square of the momentum-transfer vector in the Lobachevsky
space. The consideration is conducted within the framework of relativistic
quasipotential approach on the basis of covariant Hamiltonian formula-
tion of quantum field theory [5, 6] by transition to the three-dimensional
relativistic configurational representation in the case of two interacting
relativistic spinless particles of arbitrary masses m1,m2 [17, 18]. In this
approach, the invariant relativistic relative coordinate r is conjugated to
the rapidity m′χ∆, and it is the distance in the Lobachevsky space.

It has been shown that expressions (35) and (36) for the form-factor
components are convolutions of the RQP wave functions in the space of
Lobachevsky angular momenta. This makes it possible to express them in
terms of relativistic Fourier transforms of covariant RQP wave functions in
the configuration representation [expressions (42)–(44))]. It has also been
found that, for a real-valued RQP wave function ψM(r), corresponding to
a real-valued quasipotential V (r) and in the case of equal masses (m1 =
m2 = m), the transverse component F (−)(t) of the elastic form factor
vanishes. Under the same real-valued conditions for the s-state (` = 0) of
the radial wave function ϕ0(r, χn) and the quasipotential, the transverse

component F
(−)
`=0(t) of the elastic form factor also vanishes even in the case

of unequal masses (m1 6= m2).
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Using of the three-dimensional relativistic configurational representa-
tion for the system of two relativistic spinless particles with arbitrary
masses has allowed to install that the wave function of s-state describes
not whole structure of the composite particle, but only the region which
be upon distances that larger its of the Compton wavelength 1/M . The
executed analysis has shown, that the leading contribution to structure
of the composite particle from the central sphere of radius r0 = 1/M is
proportional to χ∆/ sinhχ∆ and that the correction terms correspond to
the dipole contribution associated with the difference in the masses of the
particles constituting this system and in their coupling constants. In the
nonrelativistic limit this the relativistic geometric factor go to 1, while the
correction terms in expression (44) under m1 = m2 vanish.

As example, the expression (46) for the longitudinal component of
the form factor for relativistic two-particles bound system that have arbi-
trary masses and in the case of Coulomb quasipotential was obtained. It
is installed that the covariant wave RQP-function of attractive Coulomb
quasipotential for larges Q2 gives the decrease for this form factor under
the law Fπ ∼ t−1, which predicts the dimensional quark counting rules [1].
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The Quark Potential Model in Theory of
Resonances

Mikhail N. Sergeenko∗

Gomel State Medical University

Abstract

The potential approach is used to study meson resonances as
relativistic quasi-bound states. The interaction of quarks in the
bound state is described by the QCD motivated funnel-type po-
tential with the distance-dependent value of the strong coupling.
Two exact asymptotic solutions of the relativistic quasi-classical
wave equation for the modified Cornell potential are used to derive
the resonance’s complex-mass formula. The resonances’ masses of
some light and heavy mesons are calculated.

Introduction

Hadron data listed in the Particle Data Group tables [1] represent the pu-
rest imprint of the hadron world. A thorough understanding of the physics
summarized by the PDG is related to the concept of a resonance. The num-
ber of known hadrons is constantly increasing with the growing energies of
accelerators and proposed experiments on LHC [2, 3].

At the present time, there is no fundamental dynamic theory of hadron
resonances. Calculations of hadron properties are frequently carried out
with the help of phenomenological quark models [4]; one of the simplest
among them is the Regge method. All mesons and baryons in this approach
are associated with Regge poles which move in the complex angular mo-
mentum J plane. Moving poles are described by the Regge trajectories,

∗E-mail:msergeen@usa.com
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α(s), which are the functions of the invariant squared mass s = W 2 (Man-
delshtam’s variable), where W = E∗ is the c. m. rest energy. Hadrons and
resonances populate their Regge trajectories which contain all the dynam-
ics of hadron interaction.

Apparent form of the quarkonium Regge trajectories as analytic func-
tions of s was obtained in [5, 6]. It was shown that trajectories are the
analytic nonlinear “saturating” at large negative s functions. In this work,
two exact asymptotic solutions of the relativistic quasi-classical (QC) wave
equation for the Coulomb-type and linear terms of the modified Cornell
potential are considered. On this basis, we obtain the interpolating mass
formula for the masses of Qq̄ meson resonances. The mass spectra of some
meson resonances are calculated.

1 Resonances and their definitions

Impressive successes of the quark potential models in quarkonium physics
require a strict relativistic consideration of the potential approach in the
theory of resonances. There is the lack of a precise definition of what
is meant by mass and width of a resonance. There are two well-known
definitions of these resonance’s parameters, both widely used in hadron
physics [7]. One definition, known as the conventional approach, is based
on the behavior of the resonance’s phase shift δ(E) as a function of the en-
ergy, while the other, known as the pole approach, is based on the pole
position of the resonance and includes several approaches [8].

In particle physics resonances arise as unstable intermediate states
with complex masses [9]. Resonances in quantum field theory are de-
scribed by the complex-mass poles of the scattering matrix [10]. The rig-
orous quantum-mechanical definition of a resonance requires determining
the pole position in the second Riemann sheet of the analytically continued
partial-wave scattering amplitude in the complex Mandelstam s variable
plane [11]. A Riemann surface M = ±

√
s is obtained by replacing the

s-plane with a surface made up of two sheets R0 and R1, each cut along
the positive real axis [12]. The resonance positions are symmetrically lo-
cated in the RiemannM-surface (Fig. 1): ifMp = Mp− iΓTOT

p /2 is a pole
in the fourth quadrant of the surface ±

√
s, then Mp = −Mp − iΓTOT

p /2
is also a pole, but in the third quadrant (antiparticle) [9], where the total
width, ΓTOT

p = −2ImMp, is given by the imaginary-part of the invariant
mass Mp. The formula for ΓTOT

p is related to the particle’s decay rate
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Figure 1: The two-sheet Riemann surfaceM = ±
√
s. The lower edge of the slit

in R0 is joined to the upper edge of the slit in R1, and the lower edge of the slit

in R1 is joined to the upper edge of the slit in R0.

by the optical theorem [10]. The complex eigenmasses correspond to a
first-order pole of the S-matrix.

There are two basic problems in quantum physics: the scattering prob-
lem and bound state problem. Resonances are usually studied in scat-
tering experiment, for example, potential scattering. But, resonances are
quasi-bound states in the s-channel at s > 0; this means that one can use
another approach to consider resonances, i. e., the bound state problem in
the potential approach.

2 The modified Cornell potential

The Cornell potential [13] incorporates the basic physical quantities of the
strong interaction: one-gluon exchange at small distances and the string
tension at large ones. The potential is fixed in an extremely simple man-
ner in terms of very small number of parameters. This potential, if con-
sidered in the complex-mass scheme, results in the resonance’s complex
eigenmasses [14].

However, the strong coupling αS in the Cornell potential is a free pa-
rameter. This potential can be modified by introducing the αS(r) depen-
dence [15]:

VQCD(r) = −4

3

αS(r)

r
+ σr, αS(r) =

1

b0 ln[1/(Λr)2 + (2µg/Λ)2]
. (1)

where b0 = (33 − 2nf )/12π, nf is number of flavors, µg = µ(q2) — gluon
mass at q2 = 0, Λ is the QCD scale parameter. The running coupling
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αS(r) in (1) is frozen in soft regime (r → ∞) and is in agreement with
the asymptotic freedom properties [αS(r → 0) → 0]. The spin-dependent
corrections to the potential (1) can also be included [6]. In this work,
the modified funnel-type potential (1) is considered to be Lorentz-scalar
in order to confine quarks and gluons inside hadrons.

3 The relativistic QC equation

Relativistic description of two-body systems is usually based on the four-
dimensional covariant Bethe-Salpeter equation [16]. It is a problem to find
the analytic solution of this equation for the potential (1). Instead, we
solve the QC wave equation [17, 18]. For two equal-mass bound particles
(quarkonia, glueballs) in the c.m. rest frame this gives the complex-mass
formula (h̄ = c = 1) [14, 19]:

M2
N = 4

[(√
2σÑ +

iα̃n

N

)2

+
(
m− i

√
2α̃nσ

)2]
≡ 4

[
(πn)2 + µ2

]
, (2)

which has the form of the squared mass of two free relativistic particles
with the complex eigenmomenta πn and complex mass µ. Here in (2)
α̃n = 4

3
αS(r) = 2

3
[b0 ln(2µg/Λ)]−1 at r →∞, Ñ = N+nr+

1
2
, N = nr+l+1;

nr and l are the radial and orbital quantum numbers. The real part of (2)
exactly coincides with the universal mass formula obtained independently
with the use of the two-point Padé approximant [5, 6].

In case of different quark masses, the relativistic two-particle QC wave
equation in the c.m. rest frame is [17, 18]:{

3∑
i=1

(
∂

gii∂qi

)2

+
s−m2

−
s

[
s

4
−
(
m+

2
+ Vr

)2
]
− M2

l

r2

}
ψ̃(~r) = 0, (3)

where the canonical operator given by the sum in (3) is expressed via
the elements of the metric tensor, gii. In the spherical coordinates, for
our case, qi = r, θ, ϕ; m+ = m1 + m2, m− = m1 − m2, Vr = VQCD(r)
(1), Ml = l + 1

2
are the angular momentum eigenvalues, which are found

from solution of the angular QC equation [17, 18]. The eigenvalues Ml are
universal for all central potentials and not any Langer-type corrections are
required.
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4 Solution of the QC equation

The problem for the potential (1) has four turning points and cannot be
solved analytically by standard methods. However, the QC equation (3)
can be solved by the QC method in the complex plane. The QC quanti-
zation condition appropriate to (3) in the complex plane is [17, 18]:

I =
∮
C

√√√√s−m2
−

s

[
s

4
−
(
m+

2
+ Vr

)2
]
− M2

l

r2
dr = 4π

(
nr +

1

2

)
. (4)

The phase integral (4) is considered separately at small distances, where
the Coulomb term in (1) dominates, and large distances for the linear term.

The Coulomb-term contribution. The QC wave equation (3) for
the Coulomb term in (1) has two turning points. The phase-space in-
tegral (4) is found in the complex plane with the use of the method of
stereographic projection [14]; the QC quantization condition is:

I = 2π

{
α̃nm+

[
s−m2

−
s(−s+m2

+)

]1/2
−Ml

}
= 2π

(
nr +

1

2

)
, (5)

which gives, for the eigenmasses (vN = α̃n/N , N = nr + l + 1):

sN = W 2
N =

m2
+

2

[(
1− v2N

)
+
√

(1− v2N)
2

+ (2m−vN/m+)2
]
. (6)

In the case of equal quark masses (m− = 0), we have, from (6): W 2
N =

4m2(1− v2N), which is the well known result for quarkonia.
The linear-term contribution. Large distances in hadron physics

are related to the problem of confinement. The problem has four turning
points, i. e., two cuts between these points. The phase-space integral (4) is
found by the same method of stereographic projection as above; this results
in the cubic equation: s3+a1s

2+a2s+a3 = 0, where a1 = 16α̃nσ−m2
−, a2 =

64σ2
(
α̃2
n − Ñ2 − α̃nm

2
−/4σ

)
, a3 = −(8α̃nσm−)2, Ñ = N+nr+ 1

2
. The first

root of this equation gives the physical solution (complex eigenmasses),
sN ≡ W 2

N = W 2
1 (N), for the squared invariant mass. The real part of

the root, Re{W 2
N}, contributes in the centered mass and the imaginary

part, Im{W 2
N}, contributes in the total widths, ΓTOT

N = −2 ImWN , of
the resonance [14, 19].
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5 The masses of Qq̄ meson resonances

Two exact asymptotic solutions, i. e., (6) and the first root of the cubic
equation above, are used to derive the resonance’s mass formula. The in-
terpolation procedure for these two solutions is used [5, 6] to derive the res-
onance’s mass formula:

W 2
N =

m2
+

2

[(
1− v2N

)
+
√

(1− v2N)
2

+ (2m−vN/m+)2
]

+ Re{W 2
N}. (7)

To demonstrate its efficiency we calculate the leading-state masses of the ρ
and D∗ meson resonances (see tables, where masses are in MeV). The free

Table 1: The masses of the ρ±(ud̄)-meson resonances

Meson JPC Eex
n Eth

n Parameters in (7)

ρ (1S) 1−− 776 776 Λ = 500 MeV
a2(1P ) 2++ 1318 1314 µg = 416 MeV
ρ3(1D) 3−− 1689 1689 σ = 0.139 GeV2

a4(1F ) 4++ 1996 1993 md = 276 MeV
ρ (1G) 5−− 2255 mu = 129 MeV
ρ (2S) 1−− 1717 1682
ρ (2P ) 2++ 1990
ρ (2D) 3−− 2254

Table 2: The masses of the D∗±(cd̄)-meson resonances

Meson JPC Eex
n Eth

n Parameters in (7)

D∗(1S) 1−− 2010 2010 Λ = 446 MeV
D∗

2(1P ) 2++ 2460 2464 mg = 416 MeV
D∗

3(1D) 3−− 2845 σ = 0.249 GeV2

D∗
4(1F ) 4++ 3178 mc = 1163 MeV

D∗
5(1G) 5−− 3478 md = 271 MeV

D∗(2S) 1−− 1820 2821
D∗(2P ) 2++ 2011 3166
D∗(2D) 3−− 3471

fit to the data show a good agreement for the light and heavy Qq̄ me-
son resonances. Note, that the gluon mass in the independent fitting is

224



the same, mg = 416 MeV. Besides, it is the same for glueballs [15]. The d
quark effective mass is also practically the same, i. e., md ' 273 MeV, for
the light and heavy resonances.

Conclusion

The constituent quark picture could be questioned since potential models
have serious difficulties because the potential is non-relativistic concept.
However, in spite of non-relativistic phenomenological nature, the potential
approach is used with success to describe mesons as bound states of quarks.

We have modeled meson resonances to be the quasi-bound states of
two quarks interacting by the QCD-inspired funnel-type potential with
the coordinate dependent strong coupling, αS(r). We have shown here
the results only for unflavored and charmed meson resonances, however,
we have obtained a good description for strange and beauty mesons as
well. The mass formula (7), if considered in the complex-mass scheme, can
be generalized to the complex eigenmasses,i. e. centered masses and total
widths. These calculations will be considered elsewhere.

I would like to thank Yu.A. Kurochkin for support.
This work was done in the framework of investigations for the experi-

ment ATLAS (LHC), code 02-0-1081-2009/2013, “Physical explorations at
LHC” (JINR-ATLAS).
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Interactions of Strange Mesons at Low
Energies
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Abstract

Analytical expressions for the vector and scalar form factors of
semileptonic decays Kl3 have been obtained in the Quark Confine-
ment Model.The contribution from the direct diagrams, as well as
that one from the intermediate vector states in the form factors
are examined.The performed investigation proofs that the semilep-
tonic kaon decays can be successfully described in the framework
of QCM. We need no additional parameters and assumptions for
adequate description of this kind of decays. Well known CTMOP
relation, obtained in the current algebra approach,is reproduces in
QCM with 10% accuracy.Numerical values for slope parameters
λ′+ = 0.031 and λ′0 = 0.0165 are in satisfactory agreement with
experimental data.We also study the radiative decays of neutral
kaons K0

L,S → γγ in the framework of effective weak lagrangian

approach. It is shown that the dominant contribution to K0
L → γγ

amplitude is given by the weak transitions of kaons into π, η and
η′ mesons. It should also be noted that the amplitudes associated
with the operator O5,are strengthened in comparison with other.
Decay K0

S → γγ is completely described by graphs with interme-
diate scalar states .Recived values Br(K0

L → γγ) = 5.58 × 10−4

and Br(K0
S → γγ) = 2.083 × 10−6 are in a good agreement with

experimental data.

∗E-mail:mikot@tut.by
†E-mail:avakyan@tut.by

227



1 Introduction

Study of kaon decays has attracted the attention of researchers for decades.
The reason is that kaon decays involve an intricate interplay between weak,
electromagnetic and strong interactions.This decays are of extraordinary
interest as a source of information about a New Physics beyond Standard
Model. From this point of view it is very important to have trustworthy
quantitative estimations of parameters of mentioned decays in the frame-
work of Standard model. The problem is that calculation of hadronic
matrix elements in the most of theoretical approaches needs a great num-
ber of additional parameters and model assumptions . Kaon decays have
been treated in several reviews and lecture notes during the past 20 years
[1].

Pure leptonic and semileptonic decays are among the theoretically
cleanest K decays. From this point of view it is very important to have
trustworthy quantitative estimations of parameters of mentioned decays in
the framework of Standard model.

The aim of this work is theoretical study of semileptonic and electrom-
fgnetic interactions of kaons by means of effective Lagrangians proposed
in [2], [3],[4]. The calculation of hadronic matrix elements are performed
in the Quark Confinement Model (QCM) [5]. This model based on the
certain assumptions about nature of quark confinement and hadroniza-
tion allows to describe the electromagnetic,strong and weak interactions of
light (nonstrange and strange)mesons from a unique point of view. Basic
low-energy properties of kaons in QCM were considered by us in [6]. The
undoubtful dignity of model is that further study of kaon decays doesn’t
need no more additional assumptions and no more additional parametres.

2 Quark Interactions

The hadronic interactions will be described in the QCM.This model is
based on the following assumptions [5]:

The hadron fields are assumed to arise after integration over gluon
and quark variables in the QCM generating function. The transition of
hadrons to quarks and vice versa is given by the interaction Lagrangian.
In particular necessary interaction Lagrangians for π±andK mesons look
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like:
LM =

gM√
2
Mq̄aΓλmqa (1)

where Γ- Dirak matrix,λm - is a corresponding SU(3)-matrix,q- quark vec-
tor

qaj =

 ua

da

sa


In order to quantify the mixing in the η, η′ system, one have to define ap-
propriate mixing parameters, which can be related to physical observables.
In the [8] the best agreement with experimental data was achieved with
the

ϕ = 39.3◦ (2)

The properties of scalars are not well established and its description
needs an additional assumptions. We use the Lagrangian with additional
interaction with derivative [9]:

LS =
gs√

2
s(x)q(x)(I − iH

Λ
(
←−
∂̂ −

−→
∂̂ ))λSq(x) (3)

with

λS =

diag(1,−1, 0)⇒ a0(980)

diag(cos δs, cos δs,−
√

2 sin δs)⇒ σ(600)

diag(− sin δs,− sin δs,−
√

2 cos δs)⇒ f0(980)

We use the values of additional parameters H, δs fixed in [9]:

H = 0.54; δS = 17◦ (4)

The coupling constants gM for meson-quark interaction are defined from so-
called compositeness condition. It us convenient to use interaction constant
in a form:

hM =
3g2

M

4π2
= − 1∏̃′

M(mM)
(5)

instead of gM in the further calculations. All hadron-quark interac-
tions are described by quark diagrams induced by S matrix averaged over
vacuum backgrounds.
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The confinement ansatz in the case of one-loop quark diagrams consists
in following replacement:∫

dσV ACTr|M(x1)S(x1, x2|BV AC)...M(xn)S(xn, x1|BV AC)| −→∫
dσvTr|M(x1)Sv(x1 − x2)...M(xn)Sv(xn − x1)|, (6)

where

Sv(x1 − x2) =

∫
d4p

i(2π)4
e−ip(x1−x2) 1

vΛq − p̂
(7)

The parameter Λq characterizes the confinement rang of quark with flavor
number q = u, d, s. The measure dσv is defined as:∫

dσv
v − ẑ

= G(z) = a(−z2) + ẑb(−z2) (8)

The function G(z) is called the confinement function. G(z) is independent
on flavor or color of quark. G(z) is an entire analytical function on the
z-plane.G(z) decreases faster then any degree of z in Euclidean region.The
choice of G(z),or as the same of a(−z2) andq b(−z2), is one of model
assumptions.In the note [5] a(−z2) and b(−z2) are chosen as:

a(u) = a0e
−u2−a1u

b(u) = b0e
−u2−b1u (9)

The request of satisfaction of Ward anomaly identity in QCM gives
the additional correlation between a(0) and b(0): b(0) = −a′(0), a(0) = 2.
Using a(u) and b(u) as (9), one can receive: a0 = 2, a1 = b0

4
. So, the

free parameters of the model are Λq, b0, b1. The model parameters for
nonstrange quarks were fixed by fitting the well-established constants of
low-energy physics in [6]

Λu = 460 MeV, ΛS = 506 MeV,

b0 = 2, b1 = 0.2,

a0 = 2, a1 = 0.5. (10)

We put Λu = Λd in the most of decays.
Semileptonic transitions are mediated by the effective Lagrangian

Leff = −GF√
2
S

1/2
EW [l̄γµ(1− γ5)νl][ūiγ

µ(1− γ5)Vijdj] + h.c. (11)
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where Vij denotes the ij element of CKM matrix [10], GF = 1.1663788(7)×
10−5GeV −2 [11] is the Fermi constant as extracted from muon decay. The
universal short distance factor

SEW = 1 +
2α

π
(1− αs

4π
) ln

MZ

Mρ

+O(
ααs
π2

) = 1.0223± 0.0005 (12)

encodes electroweak corrections not included in GF and small QCD effects
[12].

Electromagnetic quark interaction is described in the standard form:

Lemq = eAµqQγ
µq. (13)

the notation is adopted

q =

 u
d
s


Q =

 2/3 0 0
0 −1/3 0
0 0 −1/3


The quark weak interaction is described by effective Lagrangian Leffw for
∆S = 1 -transitions (the K+ → γγ decays are of this type). This La-
grangian is a sum of usual four-quark operators [3] :

Leffw =
GF

2
√

2
VudV

∗
us

6∑
i=1

ciOi (14)

where four-quark local operators Oi are chosen in following way:

O1 = (dOµ
Ls)(uO

µ
Lu)− (dOµ

Lu)(uOµ
Ls) (15)

O2 = (dOµ
Lu)(uOµ

Ls) + (dOµ
Ls)(uO

µ
Lu) + 2(dOµ

Ls)(dO
µ
Ld) + 2(dOµ

Ls)(sO
µ
Ls)

O3 = (dOµ
Lu)(uOµ

Ls) + (dOµ
Ls)(uO

µ
Lu)− (dOµ

Ls)(sO
µ
Ls)

O4 = (dOµ
Lu)(uOµ

Ls) + (dOµ
Ls)(uO

µ
Lu)− (dOµ

Ls)(dO
µ
Ld)

O5 = (dOµ
Lλ

as)
∑

q=u,d,s

(qOµ
Rλ

aq)

O5 = (dOµ
Ls)

∑
q=u,d,s

(qOµ
Rq)
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Figure 1: Graphs define Kl3 matrix element. Indexes a and b indicate the
contributions of direct graph (a) and graph with intermediate K∗ reso-
nanse(b).

Here Oµ
R,L = γµ(1 ± γ5), λa-Gell-Mann matrices, acting in colour space.

The numerical values of ci depend on QCD parameters µs αs [4]. In
this note we use the set of coefficients ci corresponding µs = 0.25 GeV,
αs = 0.45 :

c1 = −1.97 c2 = 0.12 c3 = 0.093 c4 = 0.47 c5 = −0.036 (16)

3 Kl3 Decay

Matrix element of Kl3 decay is determined by graphs shown in Figure 1.
and can be written as

Mµ = F+(t)(p1 + p2)µ + F−(t)(p1 − p2)µ (17)

where

F+(t) = F a
+(t) + F b

+(t)

F−(t) = F a
−(t) + F b

−(t)

t = (p1 − p2)2 (18)

Contribution from graph (1a) have been obtained in following form:

F a
+(t) =

√
2hKhπF

−
V PP (t,m2

K ,m
2
π,Λs,Λu,Λu)

F a
−(t) =

√
2hKhπF

+
V PP (t,m2

K ,m
2
π,Λs,Λu,Λu) (19)

where hK , hπ- K, π-quark interaction constants calculated by (5).
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F±V PP (t,m2
K ,m

2
π,Λs,Λu,Λu)-loop integrals for triangle graph, describ-

ing V → PP transition:

F+
V PP (p2, k2

1, k
2
2,Λ1,Λ2,Λ3) = (20)

=
∆p2

16Λ2

∫ u∆

0

duub(− p2

4Λ2
)

√
1− u+ (

∆u

2
)2+

+
1

2

∫ ∫ ∫ 1

0

dα1dα2dα3δ(1− α1 − α2 − α3)×

×P · [(α1 − α2)(Λ1 − Λ2)(Λ2 − Λ3) + Λ3(Λ1 − Λ2)] + α1k
2
1 + α2k

2
2

α1Λ2
1 + α2Λ2

2 + α3Λ2
3

F−V PP (p2, k2
1, k

2
2,Λ1,Λ2,Λ3) = (21)

=
1

2

∫ ∞
0

dub(u) +
p2

8Λ2

∫ u∆

0

dub(− p2

4Λ2
)

√
1− u+ (

∆u

2
)2+

+
1

2

∫ ∫ ∫ 1

0

dα1dα2dα3δ(1− α1 − α2 − α3)×

×P · [(α1 + α2)(Λ1 − Λ3)(Λ2 − Λ3) + Λ3(Λ1 + Λ2 − Λ3)] + α1k
2
1 + α2k

2
2

α1Λ2
1 + α2Λ2

2 + α3Λ2
3

The following notations have been introduced:

Λ2 =
1

2
(Λ2

1 + Λ2
2) (22)

∆ =
Λ2

2 − Λ2
1

Λ2
1 + Λ2

2

u∆ =
2

1 +
√

1−∆2

P =
α1α2p

2 + α1α3k
2
1 + α2α3k

2
2

α1Λ2
1 + α2Λ2

2 + α3Λ2
3

For sequential account of the intermediate vector meson the contribution
the so-called chain approximation have been used for its propagator:

hVG
µν(p2) =

1

Π1(p2)− Π1(m2
V )
{−gµν +

pµpνΠ2(p2)

Π1(p2)− Π1(m2
V ) + p2Π2(p2)

}

(23)
where Π1,2(p2) are transverse and longitudinal parts of vector polarization
operator.

233



So, after standard transformations, we obtain the following expressions
for F b

±(t):

F b
+(t) = −F b

+(t)
t

Π1(t)− Π1(m2
K∗)

FV V (t) (24)

F b
−(t) = F b

−(t)
m2
k +m2

π

Π1(t)− Π1(m2
K∗)

FV V (t)

FV V (t) is a loop integral, corresponding the transverse part of vector po-
larization operator.

The very simple relationship between F+(m2
K) and F−(m2

K) was es-
tablished by C.G. Callan and S.B.Treiman [13],V.Mattur, S.Okubo and
L.Pandit [14] by means of current algebra:

F+(m2
K) + F−(m2

K) = fk/fπ (25)

In QCM we can obtain analogous relationship without any additional with-
out any additional assumptions. So after calculating F+(t) and F−(t) with
t = m2

K , (m
2
π = 0), one obtains

F+(m2
K) + F−(m2

K) = 0.9fk/fπ (26)

i.e. QCM with 10% accuracy reproduces CTMOP relation. One have to
mention the cancelation of resonance graphs.

The vector form factor F+(t) deined in (17 ) represents the p-wave
projection of the crossed-channel matrix element 〈0|sγµu|Kπ〉 whereas the
s-wave projection is described by the scalar form factor [15]

F0(t) = F+(t) +
t

m2
K −m2

π

F−(t) (27)

It is convenient to normalize all the form factors to F+(0), so

f+,0(t) =
F+,0(t)

F+(0)
(28)

In the analysis of experimental data form factors usually parameterized in
the form [16]

f+,0(t) = 1 + λ′+,0
t

m2
π

+
1

2
λ′′+,0(

t

m2
π

)2 + . . . (29)
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Slope parameters can be calculated as follows:

λ′+,−,0 = m2
πf
′
+,−,0(0) (30)

For Ke3decays, recent measurements of the quadratic slope parameters of
the vector form factor (λ′, λ′′) from (refeq:tey ) are available from KTeV
[17], KLOE [18], ISTRA+ [19], and NA48 [20]. Calculated values for slope
parameters λ′ and averaged experimental data are displayed in table 1

Table 1.

λ′ QCM Experiment
λ′+ × 10−3 31 25.2± 0.9
λ′− × 10−3 3 0
λ′0 × 10−3 16.5 11.7± 1.4

4 K(p)→ γ∗γ∗ Transition

The amplitude of a transition

K → γ∗(q1)γ∗(q2) (31)

can be written in the general form compatible with gauge invariance as
[15]

Mµν = [gµν − qµ1 q
ν
1

q2
1

− qµ2 q
ν
2

q2
2

+
q1 · q2

q2
1q

2
2

qµ1 q
ν
2 ]m2

Kf1(q2
1, q

2
2) + (32)

+[qµ2 q
ν
1 − q1 · q2(

qµ1 q
ν
1

q2
1

+
qµ2 q

ν
2

q2
2

− q1 · q2

q2
1q

2
2

qµ1 q
ν
2 )f2(q2

1, q
2
2) +

+iεµνρσq1ρq2σf3(q2
1, q

2
2)

When one of the photons is on-shell (q2
1 = 0 for instance) Mµν is described

by two invariant amplitudes

Mµν = (qµ2 q
ν
1 − q1 · q2g

µν)f2(0, q2
2) + iεµνρσq1ρq2σf3(0, q2

2) (33)

The (33)remains valid for both photons on-shell.
The K0

L → γγ decay produces photons with perpendicular polarisation
(εµνρσF

µνF ρσ) and then only f3(0, 0) in (33)contributes to the width.Let
denote it as

f3(0, 0) = M(K0
L → γγ)
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Amplitude of the studied decay can be written in the form:

M(K0
L → γγ) =

GF

2
√

2
VudV

∗
us

6∑
i=1

ci[T
i
K0
Lγγ

+
∑

P=π,η,η′

T iKPDP (m2
K)gPγγ(m

2
K)]

(34)
The following notation has been adopted:

T iK0
Lγγ

=

∫
dydx1dx2dx3e

ip1x1+ip2x2+ip3x3〈0|T (Lemq (x1)Lemq (x2)LK(x3)Oi(y))|0〉
(35)

T iKP =

∫
dydx1dx2e

ip1x1+ip2x2〈0|T (LP (x1)LK(x2)Oi(y))|0〉 (36)

Lemq (x), LP (x) are defined by (13) and (1 ) correspondingly. We use the
chain approximation for propagator of pseudoscalar meson P DP (m2

K):

hPDP (p2) =
1

ΠP (p2)− ΠP (m2
P )
. (37)

where ΠP (p2)-mass operator of P .
gPγγ(m

2
K) -form factor of P → γγ decay:

gPγγ(x) =
1

Λ

√
3hP
9π

FPV V (
x

Λ2
)Tr{λPQ2} (38)

FPV V ( x
Λ2 ) is the loop integral (20) with p2 = x, q2

1 = q2
2 = 0,Λ1 = Λ2 =

Λu.
Analytical expressions for invariant amplitudes T i

K0
Lγγ

and T iKP ob-

tained in the QCM are given in the Table 2 and the numerical values
are shown in Table 3.

The table 3 shows that the dominant contribution is given by the weak
transitions of kaons into π, η and η′ mesons. This is consistent with [15].
It should also be noted that the amplitudes associated with the operator
O5,are strengthened in comparison with other.
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T Analytical expression

T 1
K0
Lγγ

−16
3

√
hK
6

α
3π2 ΠPA(m2

K ,Λu,Λs)FAV V (m2
K)√

hK
6

α
3π2 [Λ3

u+Λ3
s

2Λ2 · (FPV V I(m2
K ,Λs,Λs,Λs,Λu)+

T 5
K0
Lγγ

FPV V I(m
2
K ,Λs,Λs,Λs,Λu) + FPV IV (m2

K ,Λs,Λs,Λu,Λu))−
−Λs

4
3
ΠPA(m2

K ,Λu,Λs)FPV V (
m2
K

Λ2
u

)+

+ Λ2
s

Λu
4
27

ΠPP (m2
K ,Λu,Λs)FPV V (

m2
K

Λ2
u

)]

T 1
K0
Lπ

√
hπhK

2
/π2ΠPA(m2

K ,Λu,Λs)FP (
m2
K

Λ2
u

)m2
KΛu

√
Λ2
u + Λ2

s

T 5
K0
Lπ

√
Λ2
u+Λ2

s

π2
16
3

[ΠPP (m2
K ,Λu,Λs)ΠPP (m2

K ,Λu,Λu)
Λ2
u(Λ2

u+Λ2
s)

2
+

+FIPP (0,m2
K ,m

2
π,Λu,Λu,Λs)(Λ

3
u + Λ3

s)C
(1)
A ]

T 1
K0
Lη
′

√
hη′hK/π

2ΠPA(m2
K ,Λu,Λs)FP (

m2
K

Λ2
u

)m2
KΛu

√
Λ2
u+Λ2

s

2
cosϕ

T 2
K0
Lη
′

√
hη′hK/π

2m2
K

√
Λ2
u+Λ2

s

2
ΠPA(m2

K ,Λu,Λs)×
×[−6 cosϕΛuFP (

m2
K

Λ2
u

) + 4
√

2 sinϕΛsFP (
m2
K

Λ2
s

)]

T 3
K0
Lη
′

√
hη′hK/π

2m2
K

√
Λ2
u+Λ2

s

2
ΠPA(m2

K ,Λu,Λs)×
×[−6 cosϕΛuFP (

m2
K

Λ2
u

)− 6
√

2 sinϕΛsFP (
m2
K

Λ2
s

)]√
hη′hK

π2
16
3

[cosϕ(Λ2
u

Λ2
u+Λ2

s

2
ΠPP (m2

K ,Λu,Λs)×
×ΠPP (m2

K ,Λs,Λs)+

T 5
K0
Lη
′ +FIPP (0,m2

K ,m
2
η′ ,Λu,Λu,Λs)(Λ

3
u + Λ3

s)C
(1)
A )−

−
√

2 sinϕ(Λ2
s

Λ2
u+Λ2

s

2
ΠPP (m2

K ,Λu,Λs))FPP (
m2
K

Λ2
s

)+

+FIPP (0,m2
K ,m

2
η′ ,Λs,Λs,Λu)(Λ

3
u + Λ3

s)C
(1)
A )]

T 1
K0
Lη

−
√
hηhK/π

2ΠPA(m2
K ,Λu,Λs)FP (

m2
K

Λ2
u

)m2
KΛu

√
Λ2
u+Λ2

s

2
sinϕ

T 2
K0
Lη

√
hηhK/π

2m2
K

√
Λ2
u+Λ2

s

2
ΠPA(m2

K ,Λu,Λs)×
×[6 sinϕΛuFP (

m2
K

Λ2
u

) + 4
√

2 cosϕΛsFP (
m2
K

Λ2
s

)]

T 3
K0
Lη

√
hηhK/π

2m2
K

√
Λ2
u+Λ2

s

2
ΠPA(m2

K ,Λu,Λs)×
×[sinϕΛuFP (

m2
K

Λ2
u

)− 6
√

2 cosϕΛsFP (
m2
K

Λ2
s

)]

Table 2: Analytical expressions for invariant amplitudes
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T Analytical expression√
hηhK

π2
16
3

[sinϕ(Λ2
u

Λ2
u+Λ2

s

2
ΠPP (m2

K ,Λu,Λs)ΠPP (m2
K ,Λu,Λu)−

T 5
K0
Lη

−FIPP (0,m2
K ,m

2
η′ ,Λu,Λu,Λs)(Λ

3
u + Λ3

s)C
(1)
A )+

+
√

2 cosϕ(Λ2
s

Λ2
u+Λ2

s

2
ΠPP (m2

K ,Λu,Λs))ΠPP (m2
K ,Λs,Λs)−

−FIPP (0,m2
K ,m

2
η′ ,Λs,Λs,Λu)(Λ

3
u + Λ3

s)C
(1)
A )]

T 5
K0
sa0

√
hkha0

π2
16
3

(ΠPP (m2
K ,Λu,Λs)ΠIS(

m2
K

Λ2
u

)Λ2
u

Λ2
u+Λ2

s

2
+

+FSPP (m2
a0
, 0,m2

K ,Λu,Λs,Λu)(Λ
3
s − Λ3

u)C
(1)
a )

√
hkhσ
π2

16
3

[cos δS(ΠPP (m2
K ,Λu,Λs)ΠIS(m2

K ,Λu,Λu)Λ
2
u

Λ2
u+Λ2

s

2
+

T 5
K0
sσ

+FSPP (m2
σ, 0,m

2
K ,Λu,Λs,Λu)(Λ

3
s − Λ3

u)C
(1)
a )−

−
√

2 sin δS(ΠPP (m2
K ,Λu,Λs)ΠIS(m2

K ,Λs,Λs)Λ
2
s

Λ2
u+Λ2

s

2
+

+FSPP (m2
σ, 0,m

2
K ,Λs,Λu,Λs)(Λ

3
s − Λ3

u)C
(1)
a )]

√
hkhσ
π2

16
3

[sin δS(ΠPP (m2
K ,Λu,Λs)ΠIS(m2

K ,Λu,Λu))Λ
2
u

Λ2
u+Λ2

s

2
+

T 5
K0
sf0

+FSPP (m2
f0
, 0,m2

K ,Λu,Λs,Λu)(Λ
3
s − Λ3

u)C
(1)
a )−

+
√

2 cos δS(ΠPP (m2
K ,Λu,Λs)ΠIS(m2

K ,Λs,Λs)Λ
2
s

Λ2
u+Λ2

s

2
+

+FSPP (m2
f0
, 0,m2

K ,Λs,Λu,Λs)(Λ
3
s − Λ3

u)C
(1)
a )]

Table 2: Analytical expressions for invariant amplitudes (continue)

T Numerical value T Numerical value
T 1
K0
Lγγ

−1.06 · 10−5 GeV T 5
K0
Lγγ

−1.43 · 10−4 GeV

T 1
K0
Lπ

9.69 · 10−3GeV 4 T 5
K0
Lπ

2.1 · 10−1GeV 4

T 1
K0
Lη
′ 5.49 · 10−3GeV 4 T 2

K0
Lη
′ −6.6 · 10−2GeV 4

T 3
K0
Lη
′ 1.71 · 10−2GeV 4 T 1

K0
Lη

6.3 · 10−3GeV 4

T 2
K0
Lη

−2.04 · 10−2GeV 4 T 3
K0
Lη

9.15 · 10−2GeV 4

T 5
K0
Lη

4.07 · 10−1GeV 4 T 5
K0
sa0

0.22GeV 4

T 5
K0
sσ

0.36GeV 4 T 5
K0
sf0

0.22GeV 4

Table 3: Numerical values for invariant amplitudes

The photons K0
S → γγ decay have parallel polarisation (FµνF

µν),so its
amplitude is determined by f2(0, 0) from (33)and, up to one loop, there is
no short- distance contribution due to Furry’s theoreme . We denote

fs(0, 0) = M(K0
S → γγ)

238



Matrix element of the studied decay can be written in the form:

M(K0
s → γγ) =

GF

2
√

2
VudV

∗
us · c5 ·

∑
S=a0,σ(600),f0(980)

T 5
KSDS(m2

K)gSγγ(m
2
K)

(39)
where gSγγ(m

2
K)-form factor of scalar radiative decay at m2

S = m2
K :

gsγγ
(
m2
s

)
= α

√
6hs(H)

1

Λ
Tr
{
Q2λs

} [
F 1
SV V

(
m2
s

)
+HF 2

SV V

(
m2
s

)]
(40)

F 1,2
SV V (m2

s) are defined in following way:

F 1
SV V

(
m2
s

)
=
x

4

∫ 1

0

dua
(
−ux

4

)
(1 + u) ln

(
1 +
√

1− u
1−
√

1− u

)
(41)

F 2
SV V

(
m2
s

)
=
x

4

∫ 1

0

dub
(
−ux

4

)
u ln

(
1 +
√

1− u
1−
√

1− u

)
(42)

Table 2 represents analytical expressions obtained in QCM for T 5
KS,while

the numerical value are displayed in Table 3.
The decay width of K0 → γγ decay is given by

Γ(K0 → γγ) =
m3
K

64π
|M((K0 → γγ)|2 (43)

Matrix elements M((K0 → γγ) is defined (34) and (39).Numerical value
of obtained in the QCM invariant amplitudes T i

K0
Lγγ

, T iKP and T 5
KS are

given in Tables 2,3. We use the set of coefficients ci (16) and numerical
values GF = 1.1664× 10−5GeV −2 for Fermi constant [11] ,|Vud| = 0.97425,
|Vus| = 0.2253 for CKM matrix elements [7].

Table 4 summarizes our values of branching ratios K0
L,S → γγ

Decay QCM Experiment[7]
K0
L → γγ 5.58× 10−4 (5.47± 0.04)× 10−4

K0
S → γγ 2.083× 10−6 (2.63± 0.17)× 10−6

Table 4: The values of branching ratios K0
L,S → γγ

The table shows that the obtained numerical values are in good agree-
ment with modern experimental data. It should be noted that intermediate
hadron states give the main contribution to the amplitude. We were able
to describe K0

S → γγ due to the correct account of the intermediate scalar
mesons.
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Low Energy Hadron Interaction of Tau
Lepton

E.Z.Avakyan∗, S.L.Avakyan†

Sukhoi State Technical University of Gomel

Abstract

Hadronic decays of τ -lepton have been investigated in the frame-
work of Quark Confinement Model.Branching ratios of τ decays
with one pseudoscalar, vector or axial vector meson and with two
pions in the final state have been calculated. The numerical results
are in a satisfactory agreement with experimental data.

1 Introduction

Since opening in 1975 [1] τ -lepton is an essential tool for testing the fun-
damental aspects of the electroweak interaction. In particular, due to the
large mass of τ -lepton hadronic decays are cinematically . This makes
it possible further study as a phenomenon related to the strong interac-
tion, as well as phenomena associated with the weak interaction. Unlike
a well-known process of hadrons, which gives an indication only of the
electromagnetic vector current, semi-leptonic decays lepton provide an op-
portunity to study both vector and axial currents.Unlike a well-known
process e+e− → γ and hadrons, which gives an indication only of the
electromagnetic vector current, semi-leptonic decays of τ -lepton provide
an opportunity to study both vector and axial currents.This kind of de-
cays were studied in different theoretical approaches [2] Currently hadron
decays of heavy lepton are studied by such collaborations as ALEPH
[3],BaBar[4],CLEO[5],BELLE[6]. The study of hadron decays requires at-
traction of additional models of strong interactions at low energies.In the

∗E-mail:mikot@tut.by
†E-mail:avakyan@tut.by
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present investigation we we study τ - lepton decays in Quark Confine-
ment Model (QCM) [7]. This model based on the certain assumptions
about nature of quark confinement and hadronization allows to describe
the electromagnetic,strong and weak interactions of light (nonstrange and
strange)mesons from a unique point of view.

2 Two particle τ-Decays with Pseudoscalar

Mesons in the Final State

The hadron fields in QCM are assumed to arise after integration over gluon
and quark variables in the QCM generating function. The transition of
hadrons to quarks and vice versa is given by the interaction Lagrangian.
In particular necessary interaction Lagrangians for πandK mesons look
like:

LP =
gM√

2
P q̄aiγ5λ

mqa (1)

λm - is a corresponding SU(3)-matrix,q- quark vector

qaj =

 ua

da

sa


The coupling constants gM for meson-quark interaction are defined from so-
called compositeness condition. It us convenient to use interaction constant
in a form:

hM =
3g2

M

4π2
= − 1∏̃′

M(mM)
(2)

instead of gM in the further calculations.
a)τ → πντ Decay
The matrix element of this decay can be written as

M(τ → πντ ) =
GF√

2
fπ cos θCp

µν̄(q̂)γµ(1− γ5)τ(k̂) (3)

where

fπ =

√
3ΛFP (µ2

π)

π
√

2FPP (µ2
π)

(4)

with µ2
π = m2

π

Λ2

Γ(τ → πντ ) =
1

16π
G2
Ff

2
π cos2 θCm

3
τ

(
1− m2

π

m2
τ

)2

(5)
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Structure integrals FP (x), FPP (x) has the following form

FP (x) =
∫ ∞

0
dua(u) +

x

4

∫ 1

0
dua

(
−ux

4

)√
1− u (6)

FPP (x) =
∫ ∞

0
dub(u) +

x

4

∫ 1

0
dub

(
−ux

4

)
1− u

2√
1− u

(7)

Functions a(u) and b(u) are QCM confinment functions:

a(u) = a0e
−u2−a1u

b(u) = b0e
−u2−b1u (8)

Decay width for τ → Pντ is written as:

Γ(τ → Pντ ) =
1

16π
G2
FgτνP

2V 2
ijm

3
τ

(
1− m2

P

m2
τ

)2

(9)

where Vij denotes the ij element of CKM matrix [8]. In case of τ → Pντ
Vij = Vud Branching ratio of this decay have been recieved

b)τ → Kντ Decay
To describe the interaction of heavy lepton with kaons it is necessary

to take into account the difference in the parameters of the non-strange
and strange quark. The matrix element of this decay can be written as

M(τ → Kντ ) =
GF√

2
gτνK sin θCp

µν̄(q̂)γµ(1− γ5)τ(k̂) (10)

Form factor gτνK have been recieved as

gτνK =
Λ

π

√
3hK

2
FP

(
µ2
K ,Λu,Λs

)
(11)

where hK is defined by (2) Loop integral FP in this case is:

FP
(
µ2
K ,Λu,Λs

)
=

δ

2
(
∫ ∞

0
dua(u) + s

∫ u∆

0
dua(−us)

√
1− u+

(
u∆

2

)2

) +

+
∆

4
δs2

∫ u∆

0
duua(−us)

√
1− u+

(
u∆

2

)2

(12)

The following notations in (12) have been introduced:

Λ2 =
Λ2
s + Λ2

u

2
; ∆ =

Λ2
s − Λ2

u

Λ2
s + Λ2

u

; δ =
√

1−∆ +
√

1 + ∆. (13)

The decay width τ → Kντ can be calculated by (9) with Vij = Vsd
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3 τ Lepton Interaction with Vector mesons

The study of τ - lepton decay in vector particles is very important due to
the fact that the ρ - mesons channel is the main channel of heavy lepton
decays. Interaction Lagrangians for ρandK∗ mesons in QCM is:

LV =
gV√

2
V µq̄aγµλ

mqa (14)

a)τ → ρντ Decay
The matrix element of this decay can be written in the following way:

Mµν =
[
gµνq2 − qµqν

]
Fτρν

(
q2
)

(15)

where

Fτρν
(
q2
)

=
GF√

2
VudΛ

2

√
3hρ

2π
Πρ

(
q2
)

(16)

Constant of ρ- quark interactions hρ can be calculated by (2). Form factor
Πρ(x) have been received as

Πρ(x) =
1

3Λ2

(∫ ∞
0
dub(u) +

x

4

∫ 1

0
dub

(
−ux

4

)√
1− u

)
(17)

b)τ → K∗ντ Decay
Matrix element of τ → K∗ντ decay can be written in a form similiar

to (15) and (16), with Vud changed to Vsd.

Mµν =
[
gµνq2 − qµqν

]
FτK∗ν

(
q2
)

(18)

FτK∗ν

(
q2
)

=
GF√

2
VsdΛ

2

√
3hK∗

2π
ΠK∗

(
q2
)

(19)

We have taken into account difference between nonstrange and strange
quarks, so form factor Π∗K(x) is written as

ΠK∗(x) =
(√

1−∆2 − 1
)
× (20)

×

∫ ∞
0
duub(u)−

(
x

4

)2 ∫ 1

0
duub

(−ux
4

)√
1− u+

(
u∆

2

)2
−

−
(
x∆

8

)2 ∫ 1

0
duu2b

(−ux
4

)√
1− u+

(
u∆

2

)2

+

+
4

3Λ2

∫ ∞
0

dub(u) +
x

4

∫ 1

0
duub

(−ux
4

)√
1− u+

(
u∆

2

)2

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The widthes of τ → V ντ can be calculated in standard way and can be
written using (15)-(17) and (18)-(20) as

Γ(τ → V ντ ) =
3G2

FV
2
ijhV Λ4

128π3m2
V

m3
τ

(
1− m2

V

m2
τ

)2 (
1 +

2m2
V

m2
τ

)
Π2
V

(
m2
V

)
(21)

4 Interaction of τ-Lepton with Axial a1 Me-

son

The study of τ - lepton interactions with axial vector meson is extremely
interesting from the point of view of studying its decay into (2n + 1)
meson, as well as a testing of model because the calculation of the decay
constants can not be linked with the phenomenological constants of the
low-energy physics, as is done in most of the approaches in the case of
final pseudoscalar and vector states.In the QCM axial vector meson-quark
interactions are described by

iγµγ5λ
mqa (22)

Matrix element for τ → a1ντ is writtten as

Mµν(τ → a1ντ ) =
GF√

2
VudΛ

2

√
3ha1

2π

[
gµνq2FA

1

(
q2
)
− qµqνFA

2

(
q2
)]

(23)

where form factors FA
1 (x) and FA

2 (x) have been obtained in a form

FA
1 (x) = (24)

= −2
∫ ∞

0
duub(u)− x

3

(∫ ∞
0
dub(u) +

x

4

∫ 1

0
dub

(
−ux

4

)
(2u− 1)

√
1− u

)

FA
2 (x) =

1

3Λ2

(∫ ∞
0
dub(u) +

x

4

∫ 1

0
dub

(
−ux

4

)√
1− u

)
(25)

The decay width is calculated by the formula:

Γ(τ → a1ντ ) =
3G2

FV
2
udha1Λ4

128π3m2
a1

m3
τ

(
1−

m2
a1

m2
τ

)2 (
1 +

2m2
a1

m2
τ

)(
FA

1

(
m2
a1

))2

(26)
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5 Three Particles Decays

Decay τ → ππντ is one of the main modes of heavy lepton decays. The
matrix element is defined by the contact graph and graphs with an inter-
mediate vector meson.

Contribution from the contact graph can be written as

Mµ
dir(τ → ππντ ) = GFVudhπ(q1 − q2)µF−

(
s, q2

1, q
2
2

)
(27)

where s = (pτ − pντ )2.
Form factor F− (s, q2

1, q
2
2) have been obtained as

F−
(
s, q2

1, q
2
2

)
=

1

2

(∫ ∞
0

dub(u) +
s

4Λ2

∫ 1

0
dub

(
− us

4Λ2

)√
1− u

)
+ (28)

+
1

2Λ2

∫ 1

0
d3α·δ

(
1−

3∑
i=1

αi

)(
sα1α2 + q2

1α1 (1 + α3) + q2
2 (1 + α3)

)
b (−Q)

where

Q =
sα1α2 + q2

1α1α3 + q2
2α2α3

Λ2
(29)

Intermediate vector meson contribution to the matrix element in the gen-
eral case can be written as

Mµ
int(τ → ππντ ) = Mµλ

τ→ρντ (s)Dλσ
ρ (s)(q1 − q2)σF−

(
s, q2

1, q
2
2

)
(30)

Mµλ
τ→ρντ (s) and F− (s, q2

1, q
2
2) are defined by (27) and (28).

Mµλ
τ→ρντ (s)Dλσ

ρ (s) contents hρD
µν
ρ (p2). Its analytical expression in

chain approximation have to be modified due of ρ−resonance. The fol-
lowing form have been used

hρD
µν
ρ

(
p2
)

=
1

Π1ρ (p2)− Π1ρ

(
m2
ρ

)
+ imρΓρ

×

×

−gµν + pµpν
Π2ρ (p2)

Π1ρ (p2)− Π1ρ

(
m2
ρ

)
+ p2Π2ρ (p2)

 (31)

where mρ and Γρ are mass and full width of ρ resonance. Matrix element
of τ → ππντ is a sum of mentioned above contributions. So it have been
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obtained in the form:

Mµ(τ → ππντ ) = GFVudhπ(q1 − q2)µF−
(
s, q2

1, q
2
2

)
×

×

 Π1ρ (p2)

Π1ρ (p2)− Π1ρ

(
m2
ρ

)
+ imρΓρ

− 1

 (32)

The width of the decay have been received under standard transformations
is written in the following way

Γ(τ → ππντ ) =
G2
Fh

2
πV

2
ud

64π3mτ

×

×
∫ m2

τ

4m2
π

ds

s
λ
(
s,m2

τ , 0
)
λ

3
2

(
s,m2

π,m
2
π

)(
1 +

2s

m2
τ

)
F 2
−

(
s, q2

1, q
2
2

)
(33)

6 Numerical Results

The following QCM parameters were used for calculation of numerical
values of matrix elements [9]

Λu = 460 MeV

Λs = 506 MeV

b0 = 2 b1 = 0.2

a0 = 2 a1 = 0.5 (34)

Branching rations calculated by

Br(τ →Mντ ) =
Γ(τ →Mντ )

Γtot
(35)

are given in Table.

τ -Decays Br (QCM) Br (Experiment) [10]
τ → πντ 11, 25% (10, 83± 0.06) %
τ → Kντ 7, 6 · 10−3 (7, 0± 0.1) · 10−3

τ → ρντ 23, 5% (25, 52± 0, 09) %
τ → K∗ντ 1, 68% (1, 20± 0, 07) %
τ → a1ντ 10, 4% -
τ → ππντ 23, 7% (25, 24± 0, 16) %

The table shows that our values are in reasonable agreement with the
experimental data.
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Standard Model





Some NNLO contribution to the Drell-Yan
differential cross section

Ya.Dydyshka V.Yermolchyk
J.Suarez Gonzalez

Institute for Nuclear Problems of Belarusian State University

Abstract

In this work we report our preliminary results in two-loop mixed
EW-QCD correction calculation. We hardly exploit computer al-
gebra systems and perform the two most time-consuming opera-
tions: traces and kinematics (with FORM) and scalar integral reduc-
tion (with FIRE). The third step is to evaluate master-integrals and
we made all essential preparations for this task.

Drell-Yan process is one of the most investigated and thus widely exploited
for precise measurements of the Standard Model parameters and for the
various detector calibrations. From the theoretical point of view mixed
electroweak (EW) and QCD effects are the only remaining source of un-
certainties of the perturbative nature and thus at present attract attention
of various groups [1, 2]. But most calculations were made in so-called
“pole-approximation” i.e. neglecting box-type diagrams. In this work we
do not make such simplifications.

Mixed EW-QCD contribution can be separated into two parts: con-
tribution with photon-gluon loops and with massive weak boson(MWB)-
gluon loops. Former part we denote as QED-QCD contribution and latter
as MWB-QCD.

Next, we separate 2-loop corrections onto contributions from weak-
and strong-connected diagrams. Weak-connected diagram contribution
needs calculation of product of two one-loop diagrams. In dimensional
regularization it is necessary to expand theese integrals to higher order in
ε = (4 − d)/2. Such expansion is known in most cases.
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For strong-connected diagrams needs calculation of the additional set
of integrals. We collect them according to number of propagators in loop.
It is known in advance that maximal number of propagators will be in
the integrals with maximal number of external (relative to loop) legs. For
Drell-Yan process maximal number of external legs is number of external
particles i.e. 4. We call integrals with 4 legs and maximal number of
propagators (which is 7) two-loop boxes. Diagrams with lower number of
legs and lower number of propagators can be obtained from two-loop boxes
by contraction of one or more propagator lines to a point (and merging their
vertexes). The only exception is two-loop corrections to the self-energies
of external and internal lines, but they are rather well-investigated[3, 4]

Let’s consider contribution from two-loop boxes:

dσBX
uū

dy
=
πα2

3s

α

4π

αs

4π
×

×2Re
[
2T1(s, t, u,MZ) + 2T1(s, u, t,MZ) + 2T1(s, u, t,MW )+

+ T2(s, t, u,MZ) + T2(s, u, t,MZ) + T2(s, u, t,MW )+

+ T3(s, t, u,MZ) + T3(s, u, t,MZ) + T3(s, u, t,MW )
]

(1)

where y = −t/s, and factors Ti(s, t, u,M) are determining all the dynamics
of the process and corresponds to diagrams 1,2,3 of Fig.1.

Figure 1: Diagrams for T1, T2 and T3.

Generic topology 2 has to be represented as union of three diagrams,
which are closed with respect to tensor reduction. They have chosen in
such a way that irreducible numerators from one diagram are coincide with
propagators from another which fixes them uniquely.

Introducing notations for combinations of coupling constants and inte-
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Figure 2: 2-loop box diagramm; momenta p1 and p2 - incoming, p3 and
p4 - outgoing.
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grals

Λ1 = gL(q)3gR(l)3 + gR(q)3gL(l)3 (2)

Λ2 = gL(q)3gL(l)3 + gR(q)3gR(l)3 (3)[
a1a3

a2a7a4
a6a9
a8a5

]
=

∫
ddq1d

dq2
1

[q2
1]a1

1

[(p1 + q1)2]a2
×

× 1

[q2
2 +M2

Z ]a3
1

[(k1 − q2)2]a4
1

[(p1 + p2 − q2)2 −M2
Z ]a5

×

× 1

[(p1 − q2)2]a6
1

[(q1 + q2)2]a7
1

[(p1 + p2 + q1)2]a8
1

[(k1 + q1)2]a9
(4)

we evaluate factors Ti(s, t, u,M) using FORM [5].

T1(s, t, u,MZ) =
sΛ1

2
(
s−M2

Z

)[(− [ 11
111
10
01

]
M2

Z +

[
01
111
10
01

]
−
[

10
111
10
01

]
+

[
11
101
10
01

])
t3+

+
((

2

[
11
011
10
01

]
+

[
11
110
10
01

])
M2

Z−
[

01
011
10
01

]
−
[

01
111
00
01

]
+2

[
01
101
10
01

]
−
[

01
111
11̄
01

]
+2

[
10
011
10
01

]
−
[

11
010
10
01

]
−
[

11
001
10
01

]
+

+ 2

[
11
011
11̄
01

]
+

[
10
110
10
01

]
−
[

11
100
10
01

]
−
[

11
111
01̄
01

]
−
[

11
101
11̄
01

])
t2+

+
((

−
[

11
010
10
01

]
+ 2

[
11
011
11̄
01

]
+

[
11
110
11̄
01

]
−
[

11
111
12̄
01

]
−
[

11
1̄11
10
01

])
M2

Z −
[

01
010
10
01

]
+

[
01
011
00
01

]
+

+

[
01
110
00
01

]
+

[
01
110
11̄
01

]
−
[

01
111
01̄
01

]
−
[

01
111̄
10
01

]
−
[

10
010
10
01

]
+ 2

[
10
011
11̄
01

]
−
[

11
010
11̄
01

]
−
[

11
011
01̄
01

]
+

[
11
011̄
10
01

]
+

+

[
10
110
11̄
01

]
−
[

10
111
12̄
01

]
−
[

11
110
01̄
01

]
+

[
11
111
02̄
01

]
−
[

10
1̄11
10
01

]
+

[
11
1̄10
10
01

])
t

]
+

sΛ2

2
(
s−M2

Z

)[ · · ·]
(5)

Expressions for T2 and T3 have similar form. All of them contains more

than 200 different expressions of the form

[
a1a3

a2a7a4
a6a9
a8a5

]
. But they are not in-

dependent and obey linear relations following from integration-by-parts
identities[6]. We use program FIRE [7] implementing Laporta’s algorithm
[8] to solve these relations.

256



As a result we obtain expressions like this

T1(s, t, u,MZ) =
Λ1

1 − z

[(
− y2

6ε4
−

−

(
3(7−8y)yz3 + ((51y−41)y − 4)z2 + (29−32y)y2z − 8(1−y)y2

)
y2

24(1 − y)
(
y2 + 2(1 − 2y)zy + z2

)
ε3

−

− y2

48(1 − y)
(
y2 + 2(1 − 2y)zy + z2

)
ε2

(
3(7 − 8y)yz3+

+ (16 − (61 − 51y)y)z2y2 + y(40 − (91 − 48y)y)z + 12(1 − y)y2
)

+

+
5
(
− 3(7 − 8y)z3 + (45 − 51y)z2 + (−(5 − 16y)y − 8)z + 4(1 − y)y

)
y3

48(1 − y)
(
y2 + 2(1 − 2y)zy + z2

)
ε

−

− y2

48(1 − y)
(
y2 + 2(1 − 2y)zy + z2

)(21(7 − 8y)yz3+

+ (32 − (347 − 357y)y)z2 + y(120 − (157 − 16y)y)z + 4(1 − y)y2
))

g1+

· · ·

+

(
· · ·

)
g21

]
+

Λ2

1 − z

[
· · ·

]
(6)

Functions g1 . . . g21 in this expression are master-integrals and shown
in Fig. 3.

For the analytical evaluation of the master-integrals we construct sys-
tem of the differential equations which they obey[9]. Then we are going
to solve it up to the desired order in ε. For the elimination of the typical
radicals at the threshold of the production of two massive bosons we apply
substitution z = (1 + x)(1 + 1/x).
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Figure 3: Diagrams for master-integrals. Solid dots denote squared prop-
agators.
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For example, master-integral g14 obey following differential equation

dg14

dx
= +g14

[
− 2

(x+ 1)3
(
x2y + 2xy − x+ y

) +
3ε
(
x2 + x− 1

)
2(x+ 1)3

+

+
−3x3ε− 9x2ε− 9xε− 3ε+ 4

2(x+ 1)3
((
x2 + 2x+ 1

)
y − x

)−
− ε

x(x+ 1)(y − 1)
− 3ε

2x(x+ 1)3
− 2(x+ 2)

(x+ 1)3
− 2

x(x+ 1)3

]
+

+ g15

[ (
x2 + x+ 1

)
ε

x(x+ 1)3(y − 1)(2ε− 1)
−

(
x2 + x+ 1

)
ε

2(x+ 1)2(2ε− 1)
((
x2 + 2x+ 1

)
y − x

)
+

(
x2 + x+ 1

)
ε

2x(x+ 1)5(2ε− 1)
+
x4(−ε) − 2x3ε− x2ε+ ε

2(x+ 1)5(2ε− 1)

]
+

+ g7

[
x2(−ε) − 4xε− ε

2x(2ε− 1)
((
x2 + 2x+ 1

)
y − x

) − ε

x(x+ 1)(y − 1)(2ε− 1)

]
+

+
g8

(
x2 + x+ 1

)
ε

2x(2ε− 1)
(
x2y + 2xy − x+ y

)+

+ g3

[
− 3ε

2(2ε− 1)
((
x2 + 2x+ 1

)
y − x

) − ε

x(x+ 1)(y − 1)(2ε− 1)
−

− (3x+ 5)ε

2x(x+ 1)(2ε− 1)

]
. (7)

To solve such system of equations we need initial conditions. They
can be obtained at special limits of the kinematic variables. Sometimes
it is useful to perform rescaling of master-integrals and multiply them by
some powers of ε so their expansion do not contain negative powers in this
parameter.
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Conclusion

Important intermediate results of the calculation of two-loop mixed EW-
QCD corrections was presented. Computer algebra systems were hardly
exploited to perform the two most time-consuming operations: evaluation
of Dirac traces with kinematic simplifications (by FORM) and reduction of
the scalar integrals to master-integrals (by FIRE). For the third step i.e.
evaluation of the master-integrals all essential preparations were made.
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Experimental Signatures of the Gauge-Higgs
Unification Models

A.A. Babich ∗

Sukhoi State Technical University of Gomel

Abstract

The phenomenological predictions of the 5D gauge-Higgs unifi-
cation models with SO(5) × U(1) gauge group, where the fifth di-
mension is compactified on an orbifold S1/Z2, are discussed. Shown
that the discovery of the two Z ′ bosons with close masses in ex-
periments at LHC would give strong support for the gauge-Higgs
unification and signal about the existence of extra dimensions.

1 Introduction

After the discovery of a Higgs boson at LHC [1]-[2] many fundamental
questions remains unresolved still now. One of such questions is the hi-
erarchy problem. Gauge-Higgs Unification (GHU) is one of the attractive
scenarios beyond the Standard Model, which provide a possible solution to
the hierarchy problem without supersymmetry. In this scenario, the SM
Higgs boson and the gauge fields are unified into higher dimensional gauge
fields. A remarkable fact is that the quantum corrections to Higgs mass
and potential are UV-finite and calculable due to the higher dimensional
gauge symmetry though the theory may be the non-renormalizable!

The fact that the Higgs boson ia a part of gauge fields implies that
Higgs interactions are governed by gauge principle and may provide specific
predictions in LHC physics.

∗E-mail:babich@gstu.gomel.by
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2 Realistic GHU models

The idea of the gauge-Higgs unification is rather old and the one was
proposed by Fairlie and by Forgacs and Manton in 1979 [3]-[6].

The first attempts have been based on embedding the SM electroweak
gauge group SU(2)L × U(1)Y to the large simple group G and thus gauge
fields live in spacetime with M4 × S2 topology. But unfortunately the
models in a simple variant were unrealistic as predicted too small higgs
boson mass and an incorrect the Weinberg angle θW (see Table 1).

G sin2 θW mW mZ mH

SU(3) 3/4 44 GeV 88 GeV 88 GeV

O(5) 1/2 54 GeV 76 GeV 76 GeV

G2 1/4 76 GeV 88 GeV 88 GeV

Table 1: Spectrum in the Gauge-Higgs Unification model by Manton.

New attempts of construction of realistic models are based on realiza-
tion of several key ideas, such as orbifolds, warped spacetime, Hosotani
mechanism of dynamical breaking gauge symmetry and some other.

Further we will shortly characterize the most promising realistic models
[7]-[11].

All of these models are formulated as 5D GHU models with SO(5) ×
U(1)X gauge group, where the fifth dimension is compactified on an orb-
ifold S1/Z2 with a compactification radius R. The models do not contra-
dict all precise electroweak experimental data and differ from each other
by structure of fermion sector.

The gauge group choice as SO(5)×U(1)X is caused by following reason.
At first, in the EW symmetry breaking SU(2)L × U(1)Y → U(1)EM the
Higgs field is an SU(2)L doublet in the fundamental representation. In the
Gauge-Higgs Unification scheme the Higgs field is a part of gauge fields
which are in the adjoint representation of the gauge group G. So this
implies that one needs to start with a larger gauge group G which contains
SU(2)L×U(1)Y as a subgroup. At second, group SO(5) is minimal group
which contain SM custodial symmetry group SO(4) ∼= SU(2)L × SU(2)R
as subgroup that allows to make control over the corrections to S and T
electroweak parameters. And at third, factor U(1)X allows to make control
over the correct value of Weinberg angle due to additional gauge coupling
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constant.
The models are defined in the 5D Rundull-Sundrum (RS) warped space

M4 × S1/Z2 with orbifold topology in the fifth dimension. The metric is
written as

ds2 = e−2σ(y)ηµνdx
µdxν + dy2, (1)

where ηµν = diag(−1, 1, 1, 1), σ(y) = σ(y + 2L) = σ(−y), and σ(y) = k|y|
for |y| ≤ L.

The RS space is viewed as bulk AdS space (0 < y < L) with AdS
curvature Λ = −6k2 sandwiched by the Planck (or UV) brane at y = 0 and
the TeV (or IR) brane at y = L. The warp factor zL = ekL � 1 is very large
( ∼ 1015). The KK mass scale is given by mKK = πk/(zL − 1) ∼ πkz−1

L .
In the fundamental region 0 ≤ y ≤ L the metric can be written in

terms of the useful conformal coordinate z = eky as

ds2 =
1

z2

(
ηµνdx

µdxν +
dz2

k2

)
. (2)

The 5D Lagrangian density has following structure:

L = Lgauge
bulk (A,B) + Lfermion

bulk (Ψa,ΨF , A,B)

+ Lfermion
brane (χ̂α, A,B) + Lscalar

brane(Φ̂, A,B) + Lint
brane(Ψa, χ̂α, Φ̂), (3)

where AM and BM are SO(5) and U(1)X gauge fields with the two asso-
ciated gauge coupling constants gA and gB, respectively; Ψa, a = 1, 2, 3, 4
are the 5D bulk fermions in the vector representation of SO(5) which con-
tains usual leptons and quarks; ΨF are nF the 5D bulk fermions in the
spinor representation of SO(5); χ̂α the Plank (y = 0) brane fermions in
the fundamental representation of SO(4) ∼= SU(2)L × SU(2)R (in par-
ticular with these brane fermions all 4D anomalies in SO(4) × U(1)X are
cancelled); Φ̂ are the Plank brane scalars which induces symmetry breaking
SU(2)R × U(1)X to U(1)Y on UV brane y = 0.

The explicit view of the all lagrangian density parts can be found in
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[7]-[11]. For example, the sum of the bulk matter parts can be written as

Lgauge
bulk + Lfermions

bulk = −Tr

(
1

4
F (A)MNF

(A)
MN +

1

2ξA
(f

(A)
gf )2 + L(A)

gh

)
−

−
(

1

4
F (B)MNF

(B)
MN +

1

2ξB
(f

(B)
gf )2 + L(B)

gh

)
+, (4)

+
∑
a

ΨaD(ca)Ψa +

nF∑
i=1

ΨFi
D(cFi

)ΨFi
,

D(c) = ΓAeA
M

(
∂M +

1

8
ωMBC [ΓB,ΓC ]−

−igAAM − igBQXBM))− cε(y) , (5)

where the gauge fixing and ghost terms are denoted as functionals with
subscripts gf and gh, respectively. The gauge field strengths are F

(A)
MN =

∂MAN − ∂NAM − igA
[
AM , AN

]
, F

(B)
MN = ∂MBN − ∂NBM . The gauge fix-

ing function is taken as f
(A)
gf = z2

{
ηµνDµAν + ξAk

2zDcz(Aqz/z)
}

with a
background field Acz (Az = Acz + Aqz), B

c
z = 0. In this paper we take

ξA = ξB = 1.
The SO(5) gauge fields AM are decomposed as

AM =
3∑

aL=1

AaLM T
aL +

3∑
aR=1

AaRM T aR +
4∑

â=1

AâMT
â, (6)

where T aL,aR(aL, aR = 1, 2, 3) and T â(â = 1, 2, 3, 4) are the generators of
SO(4) ' SU(2)L × SU(2)R and SO(5)/SO(4), respectively.

The electric charge satisfies to following equality

QEM = T 3L + T 3R +QX . (7)

In the fermion part we have Ψ = iΨ†Γ0, and ΓM matrices are given by

Γµ =

(
σµ

σ̄µ

)
, Γ5 =

(
1
−1

)
, σµ = (1, ~σ) , σ̄µ = (−1, ~σ) . (8)

The cε(y) term in the action, where ε(y) ≡ sign(y), gives a bulk kink
mass. The dimensionless parameter c plays an important role in controlling
profiles of fermions wave functions.
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The orbifold boundary conditions at y0 = 0 and y1 = L points are given
by following relations(

Aµ
Ay

)
(x, yj − y) = Pvec

(
Aµ
−Ay

)
(x, yj + y)P−1

vec ,(
Bµ

By

)
(x, yj − y) =

(
Bµ

−By

)
(x, yj + y),

Ψa(x, yj − y) = PvecΓ
5Ψa(x, yj + y),

ΨFi
(x, yj − y) = (−1)jPspΓ5ΨFi

(x, yj + y),

Pvec = diag (−1,−1,−1,−1,+1), Psp = diag (+1,+1,−1,−1). (9)

The Lagrangian density remains invariant under the parity transfor-
mations. The SO(5) symmetry is reduced to SO(4) ' SU(2)L × SU(2)R
by the orbifold boundary conditions. At this stage the four-dimensional
components Aµ of the five-dimensional gauge fields AM have zero modes
only in SO(4)× U(1)X block, whereas the extra-dimensional components
Ay have zero modes only in SO(5)/SO(4) block. The latter contains the
four-dimensional Higgs field, which is a doublet conserning both SU(2)L
and SU(2)R groups:

SO(5) : Ay =


φ1

φ2

φ3

φ4

−φ1 −φ2 −φ3 −φ4

 , Φ =

(
φ1 + iφ2

φ4 − iφ3

)
. (10)

After determination mass spectra of all boson and fermion fields we
can find Coleman–Weinberg effective potential. Should be note that 4D
Higgs field associated with nontrivial Wilson line phase. The Wilson line
phase for the zero modes is defined as

eiΘH/2 ∼ P exp

{
igA

∫ L

0

dy Ay

}
. (11)

At the tree level the value of the ΘH is not determined, as it gives van-
ishing field strengths. At the quantum level its effective potential Veff

becomes nontrivial. The value of ΘH is determined by the location of the
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minimum of Veff . Without loss of generality one can assume that (Ay)45

component develops a non-vanishing expectation value. Let us denote the
corresponding component of ΘH by θH . If θH takes a non-vanishing value,
the electroweak symmetry breaking takes place.

Futher for the extra-dimensional component Az = (kz)−1Ay, which
contains the four-dimensional Higgs field H(x), we can write down follow-
ing expansion

A4̂
z(x, z) =

{
θHfH +H(x)

}
uH(z) + · · · ,

uH(z) =

√
2

k(z2
L − 1)

z for 1 ≤ z ≤ zL . (12)

The value of θH is determined by the location of the global minimum of
the effective potential Veff(θH). The Higgs boson mass is given by

m2
H =

1

f 2
H

d2Veff

dθ2
H

∣∣∣∣
min

, fH =
2

gw

√
k

L(z2
L − 1)

. (13)

Let is consider the case in which all SO(5)-spinor fermions ΨFi
are

degenerate at the tree level, so cFi
= cF (i = 1, · · · , nF ). At the one-loop

level only the KK towers whose mass spectra depend on θH contribute
to the effective potential Veff(θH). These spectra are given for the gauge
W and Z tower, for the top and the bottom quark tower, and for D and
fermion F tower. Contributions of other quarks and leptons turn out
exponentially suppressed and negligible.

The relevant parameters of the model are k, zL, gA, gB, ct, µ̃/µ2, cF and
nF . Other brane mass parameters are irrelevant so long as µα, µ̃, w � mKK.
These eight parameters are chosen such that mZ , αw, sin2 θW , mt, mb, and
mH take the observed values. This procedure leaves two parameters zL
and nF free.

With those given parameters, the one–loop effective potential is given
by

Veff(θH , ct, rt, cF , nF , k, zL, θW ) = 4I[QW ] + 2I[QZ ] + 3I[QD]

−12{I[Qtop] + I[Qbottom]} − 8nF I[QF ] ,

I[Q(q; θH)] =
(kz−1

L )4

(4π)2

∫ ∞
0

dq q3ln{1 +Q(q; θH)} ,
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QW = cos2 θWQZ = 1
2
QD = 1

2
Q0[q; 1

2
] sin2 θH ,

Qtop =
Qbottom

rt
=

Q0[q; ct]

2(1 + rt)
sin2 θH ,

QF = Q0[q; cF ] cos2 1
2
θH ,

Q0[q; c] =
zL

q2F̂c− 1
2
,c− 1

2
(qz−1

L , q)F̂c+ 1
2
,c+ 1

2
(qz−1

L , q)
,

F̂α,β(u, v) = Iα(u)Kβ(v)− e−i(α−β)πKα(u)Iβ(v) , (14)

where rt = (µ̃/µ2)2 and Kα and Iα are modified Bessel functions.
The value θH = θ1 at the minimum is determined as θH(zL, nF ). All

other quantities such as the mass specta of all KK towers, gauge couplings
of all particles, and Yukawa couplings of all fermions are determined as
functions of zL and nF .

The example of profile Veff(θH) is depicted in Fig. 1 with red curves.
For comparison Veff in the case of nF = 0 is also plotted with a blue curve.
When nF = 0 and zL = 107, the minima are located at θH = ±1

2
π.

Figure 1: The effective potential Veff(θH) for zL = 107. U = 16π6m−4
KKVeff

is plotted. The red curves are for nF = 3 with mH = 126 GeV. Veff has
minima at θH = ±0.258 and mKK = 3.95 TeV. The blue curve is for nF = 0
in which case mH = 87.9 GeV and mKK = 993 GeV.

Determined values for θH , mKK, mZ(1) , etc. are tabulated in Table 2 in
the case of nF = 5.
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Table 2: Parameters and masses in the case of degenerate dark fermions
with nF = 5. All masses and k are given in units of TeV.
zL θH mKK k ct cF mF (1) m

Z
(1)
R

mZ(1) mγ(1)

109 0.473 2.50 7.97× 108 0.376 0.459 0.353 1.92 1.97 1.98
108 0.351 3.13 9.97× 107 0.357 0.445 0.502 2.40 2.48 2.48
107 0.251 4.06 1.29× 107 0.330 0.430 0.735 3.11 3.24 3.24
106 0.172 5.45 1.74× 106 0.292 0.410 1.11 4.17 4.37 4.38
105 0.114 7.49 2.38× 105 0.227 0.382 1.75 5.73 6.07 6.08
104 0.0730 10.5 3.33× 104 0.037 0.333 2.91 8.00 8.61 8.61

3 Phenomenological predictions

One of the distinctive predictions of the SO(5)×U(1) gauge-Higgs unifica-
tion is the existence of the KK excited modes of neutral gauge bosons and
photon. There are four kinds of neutral gauge bosons at the TeV scale.
They are the first KK mode of Z boson Z(1) (Z(0) ≡ ZSM), the first KK

mode of photon γ(1) (γ(0) ≡ γSM ), the Z
(1)
R boson (Z

(0)
R is not exist), the

A4̂ boson.
Among them the A4̂ boson does not couple to SM particles so that

it escapes from detection in the Z ′ search. Z(1), γ(1), and Z
(1)
R are the

candidates for Z ′ bosons.
To evaluate the production and decay rates of Z ′ bosons is needed

to know four-dimensional Z ′ couplings of quarks and leptons. They are
obtained from the five-dimensional gauge interaction terms by inserting
wave functions of gauge bosons and quarks or leptons and integrating over
the fifth-dimensional coordinate. The couplings of the photon, Z boson
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and Z
(1)
R boson KK towers can be written as

L ⊃
∑
n,i

Aγ(n)
µ

[
gγ

(n)

uiL
ūi
i

Lγ
µuiL + gγ

(n)

uiR
ūiRγ

µuiR + gγ
(n)

diL
d̄iLγ

µdiL + gγ
(n)

diR
d̄iRγ

µdiR

+gγ
(n)

eiL
ēiLγ

µeiL + gγ
(n)

eiR
ēiRγ

µeiR

]
+
∑
n,i

Z(n)
µ

[
gZ

(n)

uiL ū
i
Lγ

µuiL + gZ
(n)

uiR ū
i
Rγ

µuiR + gZ
(n)

diL d̄
i
Lγ

µdiL + gZ
(n)

diR d̄
i
Rγ

µdiR

+gZ
(n)

νiL ν̄
i
Lγ

µνiL + gZ
(n)

νiR ν̄
i
Rγ

µνiR + gZ
(n)

eiL ēiLγ
µeiL + gZ

(n)

eiR ēiRγ
µeiR

]
+
∑
n,i

Z
(n)
Rµ

[
g
Z

(n)
R

uiL
ūiLγ

µuiL + g
Z

(n)
R

uiR
ūiRγ

µuiR + g
Z

(n)
R

diL
d̄iLγ

µdiL + g
Z

(n)
R

diR
d̄iRγ

µdiR

+g
Z

(n)
R

νiL
ν̄iLγ

µνiL + g
Z

(n)
R

νiR
ν̄iRγ

µνiR + g
Z

(n)
R

eiL
ēiLγ

µeiL + g
Z

(n)
R

eiR
ēiRγ

µeiR

]
,

where the superscript i denotes the generation, i.e., (u1, u2, u3) = (u, c, t),
etc. The four-dimensional gauge couplings are obtained by overlapping
integrals of wave functions (which contains the combination of Bessel func-
tions) and cannot be written in simple analytical form. Explicit formulas
for the gauge couplings can be found in papers cited above.

The relevant couplings of the Z ′ bosons for fixing θH parameter are
tabulated in Table 3 and Table 4.

Table 3: Masses, total decay widths and couplings of the Z ′ bosons to
SM particles in the first generation for θH = 0.114. Couplings to µ are
approximately the same as those to e.

Z ′ m(TeV) Γ(GeV) gZ
′

uL gZ
′

dL gZ
′

eL gZ
′

uR gZ
′

dR gZ
′

eR

Z 0.0912 2.44 0.257 -0.314 -0.200 -0.115 0.0573 0.172

Z
(1)
R 5.73 482 0 0 0 0.641 -0.321 -0.978

Z(1) 6.07 342 -0.0887 0.108 0.0690 -0.466 0.233 0.711

γ(1) 6.08 886 -0.0724 0.0362 0.109 0.846 -0.423 -1.29

Z(2) 9.14 1.29 -0.0073 0.0089 0.0056 0.0055 0.00274 0.0086
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Table 4: Masses, total decay widths and couplings of the Z ′ bosons to SM
particles in the first generation for θH = 0.073.

Z ′ m(TeV) Γ(GeV) gZ
′

uL gZ
′

dL gZ
′

eL gZ
′

uR gZ
′

dR gZ
′

eR

Z
(1)
R 8.00 553 0 0 0 0.588 -0.294 -0.896

Z(1) 8.61 494 -0.100 0.123 0.078 -0.426 0.213 0.650

γ(1) 8.61 1040 -0.0817 0.041 0.123 0.775 -0.388 -1.18

The decay width of the Z ′ boson is given by

ΓZ′ =
∑
i

mZ′

12π

((
gZ

′
iL

)2
+
(
gZ

′
iR

)2

2
+ 2gZ

′

iLg
Z′

iR

m2
i

m2
Z′

)√
1− 4m2

i

m2
Z′
. (15)

Here i runs over all fermions including SM fermions and exotic fermions.
The contribution of its decay to W+W− is very small and can be neglected.
The evaluated ΓZ′ for θH = 0.114 is summarized in Table 3. It is seen that
all of Z

(1)
R , Z(1), and γ(1) have large decay widths (300 ∼ 900 GeV) in quite

contrast to the narrow width of the Z boson. It is mainly due to the large
couplings of right-handed quarks and leptons.

Now consider the dilepton production cross sections through the Z ′

boson exchange together with the SM processes mediated by the Z boson
and photon. The dependence of the cross section on the final state dilepton
invariant mass M`` is described as

dσ(pp→ `+`−X)

dM``

=
∑
q

∫ 1

−1

d cos θ

∫ 1

M2
``

E2
CMS

dx1
2M``

x1E2
CMS

× fq(x1,M
2
``)fq̄

(
M2

``

x1E2
CMS

,M2
``

)
dσ(q̄q → `+`−)

d cos θ
,(16)

where ECMS is the center-of-mass energy of the LHC and fq’s are the parton
distribution functions(PDFs) for q quark.

Figure 2 shows the differential cross section for pp → µ+µ− together
with the SM cross section mediated by the Z boson and photon for θH =
0.114 (nF = 5, zL = 105). The deviation from the SM is very small below
3 TeV because the couplings of the Z boson or photon to SM fermions

271



are almost the same as in the SM. For this reason it is difficult to see the
signals of the gauge-Higgs unification at 8 TeV LHC experiments. In the
case of θH = 0.251 (nF = 5, zL = 107), the deviation from the SM is large
and this value is excluded by the 8 TeV LHC experiments.

Figure 2: The differential cross section multiplied by an integrated lumi-
nosity of 20.6 fb−1 for pp→ µ+µ−X at the 8 TeV LHC for θH = 0.114 (red
solid curve) and for θH = 0.251 (blue dashed curve). The black dashed
line represents the SM background.

On the other hand, at 14 TeV LHC experiments, we expect the signals.
Figure 3 shows the differential cross section dσ/dMµµ in the range 3 TeV <
Mµµ < 9 TeV for θH = 0.114 and 0.073. The contributions from Z(2) boson
and higher KK modes are negligible because the couplings are very small
and the widths are very narrow (see Table 4). One sees a very large
deviation from the SM, which can be detected at the upgraded LHC.

4 Conclusion and remarks

In the SO(5)×U(1) gauge-Higgs unification the three gauge bosons, Z
(1)
R ,

Z(1), and γ(1), appear as Z ′ bosons in dilepton events at LHC. It is in-
teresting that the masses of these bosons turn out around 6 (8 TeV) for
θH = 0.114 (0.073), which is exactly in the region explored at the 14 TeV
LHC.

As right-handed quarks and leptons have large couplings to those Z ′

bosons, the widths of those bosons become large; the decay widths of Z
(1)
R ,
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Figure 3: The differential cross section for pp → µ+µ−X at the 14 TeV
LHC for θH = 0.114 (red solid curve) and for θH = 0.073 (blue dashed
curve) . The nearly straight line represents the SM background.

Z(1) and γ(1) are 482, 342 and 886 GeV for θH = 0.114.
As the difference in masses of Z(1) and γ(1) is small, there should appear

two peaks in dilepton events. Due to the large widths the excess of events
over those expected in the SM should be seen in much wider range of
energies. For θH = 0.114 an excess due to the broad widths of the Z ′

resonances should be observed above 3 TeV in the dilepton invariant mass.
The discovery of the Z ′ bosons in the 3 - 9 TeV range would give strong
support for the gauge-Higgs unification, signaling the existence of extra
dimensions.

Let’s give some remarks concerning Higgs interactions. In realistic
GHU models all Higgs couplings HWW , HZZ, Hcc̄, Hbb̄, Hττ̄ are sup-
pressed by a factor cos θH at the tree level, moreover coupling HZγ is
absent on 1-loop level. The corrections to Γ[H → γγ] and Γ[H → gg] due
to KK states amount only to 0.2% for θH = 0.114. Hence may conclude
that Br(H → j) ∼ BrSM(H → j), where j = WW , ZZ, γγ, gg , bb̄, cc̄,
τ τ̄ and σprod(H) · Br(H → γγ) ∼ (SM)× cos2 θH . The signal strength in
the γγ production relative to the SM is about cos2 θH . It is about 0.99 for
θH ∼ 0.1. This contrasts to the prediction in the UED models in which
the contributions of KK states can add up in the same sign.
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Electromagnetic Decays of Light Vector
Mesons

Andreev V.V ∗, Gavrish V.Yu. †

F.Skorina Gomel State University

Abstract

This work dedicated to describing two-body compounded system
of quarks (meson) in point form of Poincare invariant quantum me-
chanics with potential, which was offered by so-called Mock-meson
model. Authors shows process of calculation the basis parameters
of the model by the variational method and followed applications
for radiative decay processes. For such calculation authors use the
simplest radiative decay scheme. Comparing results with exper-
imental data was shown how to calculate the anomalous part of
quark magnetic moment.

1 Introduction

The radiative processes, in particular the decays of vector mesons has been
a convenient tool for studying the structure of hadrons. There are quite
a number of approaches for the model to describe radiative transitions
mesons(see,[1, 2, 3, 4]). In our work, the calculation of the form-factor
of the radiative decay conducted within the constituent relativistic quark
model based on the point form of Poincare invariant quantum mechanics
(about Poincare invariant quantum mechanics, see, eg [5, 6]).

∗E-mail:vik.andreev@gsu.by
†E-mail:mez0n@inbox.ru
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2 Elements of quark model, based on

Poincare invariant quantum mechanics

For the our relativistic quark model, based on the Poincare invariant quan-
tum mechanics, using the potential proposed by the so-called Mock-meson
model [7] using a model parameterization running coupling constant of the
strong interaction, modified in [8]:

αS(Q2) =
7∑

k=1

αk exp
(
−Q2/4γ2

k

)
. (1)

The interquark potential in coordinate representation from [7] is used,
which is considered a sum of Coulomb, linear confinement, and spin-spin
parts for pseudoscalar and vector mesons:

V̂ (r) = V̂Coul(r) + V̂conf(r) + V̂SS(r) (2)

where

V̂Coul(r) = −4

3

αS(r)

r
= − 4

3r

7∑
k=1

αkerf(τkr) , (3)

V̂conf(r) = w0 + σr

(
exp(−b2r2)√

πbr
+

(
1 +

1

2b2r2

)
erf(br)

)
(4)

and

V̂SS(r) = −
32
(
SqSQ̄

)
9
√
πmqmQ̄

7∑
k=1

αkτ
4
k exp(−τ 2

k r2) . (5)

Potential has following free parameters: gluon string tension parameter σ,
parameter of perturbative part w0 and masses of quarks mq,Q̄. Parameter
τk determined from relation

τ 2
k =

γ2
k

γ2
k + b

b , (6)

where b is smearing parameter [7].
Parameter of linear part of the potential in most number of models lies

in limits σ = (0.18÷ 0.20) GeV2, that’s why we assume, that

σ = σ̄ ±4σ = (0.19± 0.01) GeV2 . (7)
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The parameters αk, γk are fixed on the basis of requirements, consistent
with experimental data for the difference in the first moments of the proton
and neutron spin structure functions (QCD-modified Bjorken sum rule
[9])[8].

In work [10] were calculated integral representation of decay constant
for pseudoscalar and vector meson in framework of point form of Poincare
invariant quantum mechanics:

fP (mq,mQ̄, β) =
3√
2π

∫ ∞
0

dkk2 Φ(k, β)

√
M2

0 − (mq −mQ)2

ωmq (k)ωmQ
(k)

(mq +mQ)

M
3/2
0

,

(8)
fV (mq,mQ) =

=
3√
2π

∞∫
0

dkk2 Φ(k, β)

√(
ωmq (k) +mq

) (
ωmQ

(k) +mQ

)√
ωmq (k) + ωmQ

(k)
√
ωmq (k)ωmQ

(k)
×

×

(
1 +

k2

3
(
ωmq (k) +mq

) (
ωmQ

(k) +mQ

)) ,
(9)

where M0 = ωmq(k) + ωmQ̄
(k) and ωm(k) =

√
k2 +m2.

Using equations (2)-(5) and (8),(9) we get the following system of equa-
tions [8]:

MP (mq,mQ̄, w0, β) = M exp
P ±∆MP , (10)

MV (mq,mQ̄, w0, β) = M exp
V ±∆MV , (11)

MV (mq,mQ̄, w0, β)−MP (mq,mQ̄, w0, β) = M exp
V −M exp

P ± δM exp
V,P , (12)

fP (mq,mQ̄, β) = f exp
P ±∆f exp

P , (13)

fV (mq,mQ̄, β) = f exp
V ±∆f exp

V , (14)

where M exp
P ,M exp

V are experimental value of pseudoscalar and vector me-
sons, respectively. The last two equations (13)-(14) express condition of
equality lepton coupling constants for the pseudoscalar and vector mesons,
calculated in the framework of Poincare covariant model, with experimen-
tal values of decay constants. It’s should be notice, that during the calcu-
lation the wave function was taken in form

Φ(k, β) =
2√

3π1/4β3/2
exp

(
− k2

2β2

)
. (15)
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After solving the system of equations (10)-(14) for light mesons we have
following values of quark masses and β-parameters of wave function:

mu = (239.9± 2.3) MeV, md = (243.8± 2.3) MeV,

ms = (466.6± 28) MeV,

βuu ' βdd ' βud = (328.78± 2.1) MeV , βus ' (360.3± 12.1) MeV .
(16)

Thus, we have fixed all basic parameters of the model by equation (16).

3 Radiative decay of vector mesons

Matrix element of the radiative decay process V → Pγ∗ could be pa-
rameterized using 4-velocity of the vector and pseudoscalar mesons by
expression:

P 〈Q′,MP |Ĵα|Q,MV 〉V =
e

(2π)3
gV Pγ∗(t)K

α(µ)

√
MVMP√
4V0V ′0

, (17)

where Kα(µ) = iεανρσεν(µ)VρV
′
σ and e =

√
4παQED.

In framework of Poincare invariant quantum mechanics we consider
mesons P and V as relativistic constituent quark-antiquark system. In
such approach decay caused by the emission of quark a γ∗-quantum. In
generalized Breit system it’s easy to show, that

gV Pγ∗(t) =
1

4π
√
MVMP

∫
dk k2Φ(k, β)

√
1

ωmq(k)ωmQ̄
(k)
×

×
√

3 + 4ν1(λ− ν1)

2
ν ′1 ×

[
Φ(k2, β)

√
ωmQ̄

(k2)

ωmq(k2)
ūν′1(k2,mq)B

−1(υQ) ×

× (Γ2 ·K∗)
(K ·K∗)

uν1(k,mq)D
1/2

−ν′1,λ−ν1
(nW2(k,υQ)) + Φ(k2, β)

√
ωmq(k2)

ωmQ̄
(k2)
×

× ῡλ−ν1(k,mQ̄)
(Γ1 ·K∗)
(K ·K∗)

B(υQ)υ−ν′1(k2,mQ̄)D
1/2

ν′1,ν1
(nW1(k,υQ))

]
,

(18)
where k is relative momentum and

nW2,1 = − [k,V]

ωmq,Q̄
+mq,Q̄ − (kV)

, (19)
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Γµ1,2 = F1(t)γµ + iF2(t)
σµν(k1,2 − k)

2mq,Q̄

. (20)

In relation (20) form-factors F1(t) and F2(t) normalized in the natural
units magnetic µq and anomalous magnetic moments of quarks κq:

F1(t = 0) + F2(t = 0) = µq, F2(t = 0) = κq . (21)

It’s also should be notice, than in (18) relation for k2 and ωmq,Q̄
(k2) given

by:

k2 = k + υQ

(
($ + 1)ωmq,Q̄

+
√
$2 − 1 k cos θk

)
, (22)

ωmq,Q̄
(k2) = ωmq,Q̄

(k)$ −
√
$2 − 1 k cos θk (23)

and

$ =
M2

0 +M ′2
0 − t

2M0M ′
0

. (24)

Using experimental data for radiative decay of light vector mesons
ρ+, K± and K∗ [11] and carrying numerical integration from (18) and (21)
we obtain following values of magnetic moments of u, d and s quarks in
units µN (nuclear magneton)(Table (1)):

Table 1: Quarks magnetic moments, µN
Magnetic moment This work [12] [13]
µu 2.080± 0.082 2.066 2.08± 0.07
µd −1.261± 0.015 −1.110 −1.31± 0.06
µs −0.621± 0.011 −0.633 −0.77± 0.06

4 Conclusion and remarks

The work conducted within the framework of the relativistic quark model
based on the point form of the Poincare-invariant quantum mechanics to
obtain an integral representation for the form factor of the V → Pγ tran-
sition. From the condition of compliance with model calculations decay
width of experimental values found values of the magnetic moments of
quarks, which are correlated with the data obtained using the experimen-
tal values of the magnetic moments of baryons.
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The Polarized Semi-inclusive Lepton-Nucleon
DIS with Charged Current

E.A.Degtyareva∗, S.I.Timoshin
Sukhoi State Technical University of Gomel

Abstract

This paper discusses the polarization asymmetry of semi-inclu-
sive deep inelastic scattering of leptons on nucleons. Numerical
results of asymmetries and radiative corrections to lepton current
are provided.

1 Introduction

A study of the spin structure of the nucleon is one of the main problems
of particle physics [1]. This problem is called ”spin crisis”. Semi-inclusive
processes are sources are new data on the spin structure of the nucleon.
Using data that can give these experiments can provide information for
each quark flavor quark. Spin nucleon problem is not yet solved completely
and therefore further research of all the contributions into nucleon spin is
necessary.

2 The semi-inclusive deep inelastic

lN-scattering

Consider the process of semi-inclusive lepton-nucleon deep inelastic scat-
tering of leptons on nucleons with a charged current

`+N → ν + h+X. (1)

∗E-mail:dekaterinaa@mail.ru
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The differential cross section for scattering of a lepton is defined as
case of a lepton:

( d3σ`−

dxdydz

)h
= (2)

= 2ρx

∑
qi,qj

qi(x,Q
2)Dh

qj
(z,Q2) + y2

1

∑
q̄j ,q̄i

q̄j(x,Q
2)Dh

q̄i
(z,Q2)+

PN

∑
qi,qj

∆qi(x,Q
2)Dh

qj
(z,Q2)− y2

1

∑
q̄j ,q̄i

∆ q̄j(x,Q
2)Dh

q̄i
(z,Q2)

 ,
where qi = d, s, b, qj = u, c, t, q̄i = d̄, s̄, b̄, q̄j = ū, c̄, t̄;

the case of antilepton

( d3σ`+

dxdydz

)h
= (3)

2ρx

y2
1

∑
qi,qj

qi(x,Q
2)Dh

qj
(z,Q2)+

∑
q̄j ,q̄i

q̄j(x,Q
2)Dh

q̄i
(z,Q2)+

+PN

∑
qi,qj

∆qi(x,Q
2)Dh

qj
(z,Q2)−

∑
q̄j ,q̄i

∆ q̄j(x,Q
2)Dh

q̄i
(z,Q2)


where qi = u, c, t, qj = d, s, b, q̄i = ū, c̄, t̄, q̄j = d̄, s̄, b̄.

Here ρ =
G2s

2π

(
m2
w

m2
w +Q2

)2

, y1 = 1−y, G is Fermi constant, mw is the

W-boson mass, x =
Q2

2p· q
, y =

p· q
p· k

, Q2 = −q2 = −(k−k′)2, s = 2p· k, k(k′)

and p are the initial (final) lepton and proton 4-momenta, respectively, PN
is the degree of longitudinal polarization of proton,

q(x)(∆q(x))/q̄(x)(∆q̄(x))

are the unpolarized (polarized) quark/antiquark distribution functions,
Dh
q (z,Q2)(Dh

q̄ (z,Q2)) are the fragmentation functions of quark (antiquark)
with flavor q to the hadron h.

Consider the asymmetry. These asymmetries have been offered in the
[3]. We consider the asymmetry, which are constructed as a combination
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of different cross-sections in the following form [2]

Ah
+−h−
`− =

(d3σ↓↑
ell−

dxdydz

)h+−h−
−
(d3σ↓↓

ell−
dxdydz

)h+−h−
(
d3σ↓↑

ell−
dxdydz

)h+−h−
+
(d3σ↓↑

ell−
dxdydz

)h+−h− , (4)

Ah
+−h−
`+ =

( d3σ↑↑
el+

dxdydz

)h+−h−
−
(d3σ↑↓

ell+

dxdydz

)h+−h−
(
d3σ↑↑

ell+

dxdydz

)h+−h−
+
(d3σ↑↓

ell+

dxdydz

)h+−h− , (5)

Ah
+−h−
± = (6)

=

[
(
d3σ↓↑

l−
dxdydz

)h
+−h−±(

d3σ↑↑
l+

dxdydz
)h

+−h−
]
−
[
(
d3σ↓↓

l−
dxdydz

)h
+−h−±(

d3σ↑↓
l+

dxdydz
)h

+−h−
]

[
(
d3σ↓↑

l−
dxdydz

)h
+−h−±(

d3σ↑↑
l+

dxdydz
)h

+−h−
]
+
[
(
d3σ↓↓

l−
dxdydz

)h
+−h−±(

d3σ↑↓
l+

dxdydz
)h

+−h−
] ,

where σh
+−h− = σh

+ − σh− .
The first arrow corresponds to the helicity of the initial lepton (↓) or

antilepton (↑) and the second – to the polarization degree of the proton:
↑ (PN = +1), ↓ (PN = −1).

Let us consider the case π-meson.With the correlations for π− meson
fragmentation functions [3]

Dπ+−π−
d = −Dπ+−π−

u , Dπ+−π−
u = −Dπ+−π−

ū ,

Dπ+−π−
s = Dπ+−π−

s̄ = 0, Dπ+−π−
c = Dπ+−π−

c̄ = 0,

we obtain for the proton target asymmetry in the form of

Aπ
+−π−
`−p =

∆u(x,Q2)− y2
1∆d̄(x,Q2)

u(x,Q2) + y2
1 d̄(x,Q2)

, (7)

Aπ
+−π−
`+p =

y2
1∆d(x,Q2)−∆ū(x,Q2)

y2
1d(x,Q2) + ū(x,Q2)

, (8)

Aπ
+−π−

+,p =
∆u(x,Q2) + ∆ū(x,Q2)− y2

1(∆d(x,Q2) + ∆d̄(x,Q2))

uV (x,Q2)− y2
1dV (x,Q2)

, (9)

Aπ
+−π−
−,p =

∆uV (x,Q2) + y2
1∆dV (x,Q2)

u(x,Q2) + ū(x,Q2) + y2
1(d(x,Q2) + d̄(x,Q2)

, (10)
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where uV (x,Q2) = u(x,Q2)− ū(x,Q2), dV (x,Q2) = d(x,Q2)− d̄(x,Q2).
For the case of the neutron

Aπ
+−π−
`−n =

∆d(x,Q2)− y2
1∆ū(x,Q2)

d(x,Q2) + y2
1ū(x,Q2)

, (11)

Aπ
+−π−
`+n =

y2
1∆u(x,Q2)−∆d̄(x,Q2)

y2
1u(x,Q2) + d̄(x,Q2)

, (12)

Aπ
+−π−

+,n =
∆d(x,Q2) + ∆d̄(x,Q2)− y2

1(∆u(x,Q2) + ∆ū(x,Q2))

dV (x,Q2)− y2
1uV (x,Q2)

,(13)

Aπ
+−π−
−,n =

∆dV (x,Q2) + y2
1∆uV (x,Q2)

d(x,Q2) + d̄(x,Q2) + y2
1(u(x,Q2) + ū(x,Q2)

. (14)

With the help of these asymmetries can be obtained distribution func-
tion. The expressions for (∆u + ∆ū), (∆d + ∆d̄) we obtain from asym-
metries (9),(13); for ∆d̄, ∆u from (7) and (12); for ∆ū, ∆d from (8) and
(11); for ∆uV , ∆dV from (10), (14). The considered asymmetries have no
dependence on fragmentation function which is very useful for the analysis
of proton spin structure.

Of interest are the limiting cases for y. We consider the case when
y → 1. Asymmetry (7)-(14) take the form of

Aπ
+−π−
`−p = ∆u(x,Q2)

u(x,Q2)
, Aπ

+−π−
+,p = ∆u(x,Q2)+∆ū(x,Q2)

uV (x,Q2)
,

Aπ
+−π−
`+p = −∆ū(x,Q2)

ū(x,Q2)
, Aπ

+−π−
−,p = ∆uV (x,Q2)

u(x,Q2)+ū(x,Q2)
,

Aπ
+−π−
`−n = ∆d(x,Q2

d(x,Q2)
, Aπ

+−π−
+,n = ∆d(x,Q2)+∆d̄(x,Q2)

dV (x,Q2)
,

Aπ
+−π−
`+n = −∆d̄(x,Q2)

d̄(x,Q2)
, Aπ

+−π−
−,n = ∆dV (x,Q2)

d(x,Q2)+d̄(x,Q2)
.

For the analysis of nucleon spin structure we introduce the first moments
of parton distributions as follows

∆q(Q2) =
∫ 1

0
∆q(x,Q2)dx,

∆q̄(Q2) =
∫ 1

0
∆q̄(x,Q2)dx,

which correspond to the quark q(antiquark q̄) contributions to the spin of
nucleon.

With the first moments of parton distributions can be obtained quark
contributions to the nucleon spin. Semi-inclusive process is interesting
because it can be individually receive contributions of quarks.
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3 Numerical results and conclusions

To analyze the distribution of the nucleon spin structure used distribution
quarks and antiquarks in the nucleon [6]. The numerical results of obtained

asymmetries are presented on Fig.1, Fig.2. The asymmetry Aπ
+−π−
`−p shows

a significant dependence on y in the x ≤ 0.5. The asymmetry Aπ
+−π−
`+

in almost the entire region depend on y and the measured region reaches
about 60%−80% . The asymmetry Aπ

+−π−
`−n is negative, weakly dependent

on the y. The asymmetry Aπ
+−π−
`+n is largely dependent on the y at low

and medium x. The asymmetries Aπ
+−π−

+,p and Aπ
+−π−
−,p are of the order of

70%, the asymmetry Aπ
+−π−
−,p has a significant dependence on the y in the

all kinematic region.

a) b)

c) d)

Figure 1: Obtained asymmetries a) Aπ
+−π−
`−p (x, y), b) Aπ

+−π−
`+p (x, y), c)

Aπ
+−π−
`−n (x, y), d) Aπ

+−π−
`+n (x, y).

We discuss the radiative corrections. Calculated the electromagnetic
corrections to lepton current. Numerical results are presented in Fig. 3. It
can be seen that the correction for asymmetry Aπ

+−π−
`−p decreases rapidly

for large values of x and less than 1%, and for small values of x, it is heavily
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a) b)

Figure 2: Obtained asymmetries: a) Aπ
+−π−

+,p (x, y), b) Aπ
+−π−
−,p (x, y).

dependent on y. A similar behavior of a correction for asymmetry Aπ
+−π−
`−n .

For large values of x, it is insignificant, but for small x up to 4 − 10%.
QCD corrections were evaluated in the work [7] and appeared small. The
amendments can be neglected, and the main contribution electromagnetic
corrections.

a) b)

Figure 3: QED correction δ`−(%) a)for Aπ
+−π−
`−,p (x, y), b)for Aπ

+−π−
`−,n (x, y).

In this paper we consider the asymmetry that do not depend on the
fragmentation functions. With the help of these asymmetries can be ob-
tained of the distribution function, and then deposits quarks and antiquark
in the nucleon spin. The advantage of semi-inclusive processes is the abil-
ity to receive individual contributions quarks and antiquarks. Radiative
corrections were evaluated and they were small except for small values x.

286



References

[1] Burkardt, M [et al.] Spin-polarized high-energy scattering of charged
leptons on nucleons, - 2008. – 103 p. (ArXiv: hep-ph/0812.2208).

[2] Timoshin S.I. The spin and electroweak effects in the lepton-nucleon
scattering: Gomel : GSTU , 2002. – 121 p.

[3] Christova E., Leader E. A Strategy for the Analysis of Semi-Inclusive
Deep Inelastic Scattering / E. Christova, E. Leader // Nucl.Phys. B607
(2001). P369.

[4] Sissakian, A.N. [et al.] NLO QCD procedure of the SIDIS data analysis
with respect to light quark polarized sea / A.N. Sissakian et al. 2004.
– 20p. (ArXiv: hep-ph/0312084).

[5] Bass, S.D. [et al.] Towards an understanding of nucleon spin structure:
from hard to soft scales / S.D. Bass, C.A. Aidala. 2006. 19p. (ArXiv:
hep-ph/0606269).

[6] Kurzela,M. [et al] Phenomenological analysis of data on inclusive
and semi-inclusive spin asymmetries / M.Kurzela et al.1998.–16p.
(ArXiv:hep-ph/9807355).

[7] Blumlein, J. Prog.Part Nucl. Phys.2013. V69.P28.

287



One-Loop Radiative Corrections of

Two-Photon Production Processes of the

Leptons at Colliders
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Institute of Applied Physics, National Academy of Sciences of Belarus

Abstract

The one�loop radiative corrections of two-photon production of the

leptons at colliders are considered. We obtain total and di�erential

cross sections for the processes depending on various variables and

parameters.

1 Introduction

The processes of two�photon production of leptons at hadrons colliders
are studied in the next-leading order in this paper. This process is very
important to study, because it can be used to calibrate the collider's lu-
minosity and to search the e�ects of "new physics". It has the small
background and the process can be used to measure the parameters of
Standard Model. This background is small for this process, as the �nal
leptons are measured at the main detector, the �nal hadrons are measured
at the forward�detector. The process of particle production at colliders
by two-photon mechanism were investigated previously at the leading or-
der [1, 2, 3, 4, 10]. The key moment is the possibility of using the equivalent

∗e-mail: andrej.j.manko@gmail.com
†e-mail: shul@ifanbel.bas-net.by
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photon method (Weizsacker-Williams approximation) for ultrarelativistic
collisions, which allows us to consider virtual photons as real ones and es-
sentially simpli�es the calculation of observable values. The processes of
lepton pair production by two-photon mechanism can be measured with
high accuracy at modern colliders [5, 6, 7, 8] and have bright signature. It
should be noted that processes with two�photon mechanism of pair pro-
duction have the cross-section of the order α4 (α ≈ 1

137
� �ne coupling

constant) while "one-photon mechanism" (Drell�Yan processes) leads to
the σ ∼ α2. However, at high energies (

√
s� 1 GeV) corresponding cross-

section of Drell�Yan processes decreases as 1
s
while two-photon mechanism

leads to large logarithmic growth with energy. Two-photon mechanism
can be used as mechanism of lepton pair production at Tevatron and LHC
energies in certain kinematic regions. As this process can be calculated
with accuracy about 1% in the leading order and can be calculated with
accuracy more 1% in the next�leading order, it is necessary to calculate
this process with accuracy more 1% in the next�leading order to study at
modern colliders. The elastic case was studied in the next�leading order in
this paper. The elastic case also was studied in the leading order in these
papers [8, 9, 10, 11].

2 The amplitudes and the matrix elements

The Weizsacker�Williams approximation (equivalent-photon method) [12,
13, 14] was used to study the process of lepton pairs production by mean
of two�photon production in hadron collisions at LHC and Tevatron in
next�to�leading order. We studied this process in the elastic case in the
paper. The diagram of the full process are shown at �g. 1. The diagrams
of the subprocess in leading order are shown at �g. 2. The one of self-
energies diagrams and the one of boxes diagrams are shown at �g. 3. The
two of vertex diagrams are shown at �g. 4. The bosons: W+, W−, Z; the
unphysical particles: φ+, φ− and the Faddeev Popov ghosts u±, ū±, uγ, ūγ,
uZ and ūZ were used in our investigation, as the two�photon production
process of leptons were studied. We used the 't Hooft Feynman gauge in
our consideration, as the particles: φ+, φ−, u±, ū±, uγ, ūγ, uZ and ūZ

were used. The program Mathematica [15] and package FeynArts 3.4
[16] were used to calculate the subprocesse's amplitudes in the leading and
the next�leading order. The regularization scheme proposed by 't Hooft
[17, 18, 19, 20] and Veltman [21, 22, 23] and the renormalization on-
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shell scheme developed by Denner [24] were used to calculate UV��nite
amplitudes. We also used the programMathematica and package FeynCalc
[25] to calculate the square module of matrix for this process.

Figure 1: Feynman diagrams of the considered processes. P1 (P ′1) and
P2 (P

′
2) are 4-momenta of initial (�nal) hadrons; k1, k2 are 4-momenta of

leptons.

Figure 2: Feynman diagrams of the considered subprocesses in the leading
order.

3 Cross and di�erential section

The library LoopTools [26] was used to calculate numerical the loop's
integrals. The Library is based on the package FF [27] and provides
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Figure 3: Feynman diagrams of the considered subprocesses in the next�
leading order: the diagram of self�energies(left), the box diagram(right).

Figure 4: Feynman diagrams of the considered subprocesses in the next�
leading order: the two vertex diagrams.

in addition to the scalar integrals of FF also the tensor coe�cients in
the conventions of the work [24]. The monte�carlo generator [28, 29]
TwoPhotonGen written on C++ was used to calculate numerical total
and di�erential cross sections. The cuts for Tevatron shown at tab. 1
and the cuts for ATLAS shown at tab. 2 were used to calculate total and
di�erential cross sections. The results of the numerical calculation of total
cross sections at the di�erent collision energies are shown at tab. 3 for
electron�positron pair in the leading and the next�leanding order for the
elastic case. The di�erential cross section of e+e− production as a function
the invariant mass e+e− and the distribution as a function the electron's
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pseudorapidity η are shown for Tevatron at �g. 5. The di�erential cross
section of e+e− production as a function the invariant mass e+e− and the
distribution as a function the electron's pseudorapidity η are shown for
ATLAS(LHC) for di�erent collisons' energies at �g. 6� 9. There is a solid
line for the leading order at �g. 6� 9. There is a dashed line for the next�
leading order at �g. 6� 9.

Cut Value
me−e+ 10 GeV
Et 5 GeV
|η| 2.0
Forward detector: |ηp| 3.6 < |ηp| < 5.2

Table 1: The cuts for Tevatron

Cut Value
me−e+ 24 GeV
pt 12 GeV
|η| 2.4
Forward detector: |ηp| 4.3 < |ηp| < 4.9

Table 2: The cuts for ATLAS

Collider LO NLO
Tevatron

√
s = 1.96 TEV 1.7013(54) 1.647(11)

LHC
√
s = 7 TEV 5.5327(13) 4.123(14)

LHC
√
s = 8 TEV 6.088(11) 4.469(15)

LHC
√
s = 13 TEV 7.825(17) 5.847(69)

LHC
√
s = 14 TEV 8.205(16) 6.089(23)

Table 3: Total Cross sections σ pb
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Figure 5: The Distribution as a function the invariant mass e−e+ for Teva-
tron(left) and the distribution depends on the electron's pseudorapidity
for Tevatron(right).

Figure 6: The Distribution as a function the invariant mass e−e+(left)
and the distribution depends on the electron's pseudorapidity(right) for
ATLAS(LHC) at

√
s = 7.0 TeV.

Figure 7: The Distribution as a function the invariant mass e−e+(left)
and the distribution depends on the electron's pseudorapidity(right) for
ATLAS(LHC) at

√
s = 8.0 TeV.
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Figure 8: The Distribution as a function the invariant mass e−e+(left)
and the distribution depends on the electron's pseudorapidity(right) for
ATLAS(LHC) at

√
s = 13.0 TeV.

Figure 9: The Distribution as a function the invariant mass e−e+(left)
and the distribution depends on the electron's pseudorapidity(right) for
ATLAS(LHC) at

√
s = 14.0 TeV.

4 Conclusion

The two-photon mechanism of lepton pairs production was studied in the
next�leading order in this article. The total and di�erential cross sections
were obtained for Tevatron and ATLAS(LHC) using the cuts for Tevatron
and ATLAS(LHC) in this article. The total cross sections for next-leading
order is less than the total cross section for leading order. It was shown
what the process of two�photon production leptons can be use to calibrate
collider's luminosity, to search the e�ects of "new physics" and to measure
the parameters of Standard Model.
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5 Nuclear Energy





Numerical Simulation of Flow and Heat
Transfer around of Spherical Fuel Elements

L. Babichev1)∗, S. Bakhanovitch2)†, G. Gromyko2)‡,

A. Zherelo 1),2)§

1)Joint Institute for Power and Nuclear Research - Sosny
of the NAS of Belarus

2)Institute of Mathematics of the NAS of Belarus

Abstract

Numerical simulation of flow and heat transfer around of spher-
ical fuel elements from a pebble-bed reactor by new 3D code is
presented.

1 Introduction

The pebble-bed reactor (PBR) is a graphite-moderated, gas-cooled nuclear
reactor. It is a type of very-high-temperature reactor (VHTR), one of the
six classes of nuclear reactors in the Generation IV initiative [1]. The
basic feature of pebble-bed reactors are spherical fuel elements called peb-
bles. Heightened interest to gas-cooled pebble-bed reactor is determined
by their improved safety features. However, from the viewpoint of the
safety of the reactor, it is important to accurately predict the maximum
fuel temperature during the normal operation of the reactor. In the case
of the PBR, the random distribution of the spherical fuel pebbles causes

∗E-mail:babichev@sosny.bas-net
†E-mail:bsv@im.bas-net.by
‡E-mail:grom@im.bas-net.by
§E-mail:ant@sosny.bas-net.
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a highly complicated flow regime which finally results in differences in the
degree of local cooling. Such flow-induced local hot spot analyses in the
PBR core were recently performed by several authors. In [2] the flow dis-
tribution in an aligned pebble geometry consisting of 27 pebble spheres
was investigated. The local heat transfer due to complexity of the flow
distribution in a body-centered cubical (BCC) structure of pebble beds
was also studied [3].

In high-temperature gas-cooled reactors as limiting factors are the max-
imum allowable temperature of fuel and the pressure drop attributable to
the core that characterizes the allowable energy costs for pumping coolant.
Thus, it is necessary for the same maximum fuel temperature to develop
such a core, which would have minimal hydrodynamic resistance under
given geometrical dimensions of the core, and heat capacity of coolant gas
parameters.

Until now, research reactors with pebble bed is considered to be a
daunting task. Of particular difficulty cause local hot spots that appear in
the fuel, is heated to the melting point of graphite moderator surrounding
the fuel. Due to the complex non-uniform core structure of the reactor
cooling gas flow has a complex turbulent character. Nuclear engineers use
a simulation with help of variety of CFD-codes to examine of safety of gas-
cooled pebble bed reactor. In this paper we study the gas flow in system
with sphere fuel elements by means solving 3D Navier-Stokes equations.
The calculations are made taking into account the turbulent flow of the
stream, the calculation of eddy viscosity was carried out using Smagorinsky
model.

2 Numerical method

For 3D simulations of the turbulent flow and heat transfer around sphere
fuel elements in the different cases, the special supercomputer software was
created.

The main purpose of creating new software is optimization of simu-
lation on distributed memory supercomputers using standard MPI. The
proposed architecture of software allows us to set an arbitrary set of op-
erators that implement the selected circuit solutions or create new ones if
it is necessary. To unify the approach the initial and boundary conditions
are also implemented as operators.

Currently we implemented in the software package explicit schemes for
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solving Navier-Stokes equations using Smagorinsky subgrid-scale (SGS)
model that represents one of the trips to modeling using the of large-eddy
simulation (LES) method. The boundary condition is the no-slip condition
at a solid boundary.

It should be noted that the proposed architecture allows us to imple-
ment solutions and different approaches to solving this problem, such as
the method of direct numerical simulation.

We use GDML language for description the geometry of bodies in flow,
which allows us to specify the body of complex geometry, including an
ensemble of several bodies.

3 Simulation of gas flow through cell with

two spherical fuel elements

Let’s consider the 3D modeling of flow in cell with two spherical fuel ele-
ments. The geometry for the numerical analysis is similar to that consid-
ered in article [4] (see Fig. 1.) There are two neighboring spheres aligned
to each other.

Figure 1: Geometry for simula-
tions

Figure 2: The temperature
isosurface with flow visualization
T = 290 K.

The incoming gas flow is directed strictly along the Z axis in the
opposite direction, flow rate is 0.2 M , which is 68 m/c (u = 0, v =
0, w = −0.68), body and flow temperatures are T = 288.15 K, density is
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Figure 3: Pressure distribution,
XZ, y = 0 cross section.

Figure 4: The density distribu-
tion, XZ, y = 0 and Y Z, x = 0
cross sections.

ρ = 1.225, pressure is P = 101325, molecular viscosity is µ = 1.4607 · 10−5

.

4 Results

The times for calculations ware from 0 to 0.15 sec with the time dis-
cretization of 10−7 sec. Processor: AMD Opteron (tm) 6376, 202 cores
(198 cores for calculations and 4 cores to support exchanges and collection
data). Interconnect: GigabitEthernet. The sizes of the simulation region
are: X : 24 cm, Y : 18 cm, Z : 30 cm. Origin of the coordinate system
(0, 0, 0) is located in the center of XY plane and at the distance of 20 cm
from the bottom of the simulation region. Mesh Size: 212× 90× 150, cell
size 2 mm× 2 mm× 1.5 mm. The diameter of spheres: d = 60 mm. The
distance between centers of the spheres is l = 68 mm. Time accounts for
t = 0.15 sec duration was 7 days.

After the simulation we find the following quantities: temperature,
pressure, density, viscosity, effective turbulent viscosity, thermal conduc-
tivity in each cell of computing the volume and velocity fields. Some results
of our calculations are presented on Figures 2 − 4.
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5 Conclusion

Simulation of flow around the pebbles in the PBMR core sell was performed
with turbulence modeling using a new software for supercomputer with
distributive memory and MPI.

The presence of turbulent gas flow for the pebbles are shown.
Temperature, pressure, density, viscosity, effective turbulent viscosity,

thermal conductivity in each cell of computing the volume and velocity
fields are calculated.
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The Estimation of Efficiency of the Control
Rods in the Reactor with Sodium Coolant

using Monte Carlo Simulation
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Abstract

The full-scale three-dimensional Monte Carlo model of BN-600
type reactor with plutonium fuel is created. The basic characteris-
tics of the control system of the reactor are calculated.

1 Introduction

Knowledge of the efficiency of a control rod to absorb excess reactivity in
a nuclear reactor, i.e. knowledge of its reactivity worth, is very important
from many points of view. These include the analysis and the assessment
of the shutdown margin of new core configurations (upgrade, conversion,
refuelling, etc.) as well as several operational needs, such as calibration
of the control rods, e.g. in case that reactivity insertion experiments are
planned. There has been no change in the view that energy production
with breeding of fissile materials is the main goal of fast reactor develop-
ment to ensure long-term fuel supply [1]. However, before the breeding
role of fast reactors is recognized economically, due to the increasingly
available low-cost uranium from the 1980s onwards, the emphasis of fast
reactor development shifted to incineration of stock-piled plutonium and
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partitioning and transmutation of nuclear wastes to meet contemporary
demands.

2 Description of the model

Let us consider a model of the fast breeder reactor corresponding design
of the BN-600 with plutonium fuel. A fast neutron reactor or simply
a fast reactor is a category of nuclear reactor in which the fission chain
reaction is sustained by fast neutrons. Such a reactor needs no neutron
moderator, but must use fuel that is relatively rich in fissile material when
compared to that required for a thermal reactor. The BN-600 reactor
is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear
Power Station, in Zarechny, Sverdlovsk Oblast, Russia [2]. The plant is
a pool-type reactor, where the reactor, coolant pumps, intermediate heat
exchangers and associated piping are all located in a common liquid sodium
pool. The reactor core is 1.03 meters tall with a diameter of 2.05 meters. It
has 369 fuel assemblies, mounted vertically, each consisting of 127 fuel rods
enriched to between 17 ÷ 26% 235U . In comparison, normal enrichment
in other Russian reactors is between 34% 235U . The control and scram
system comprises 27 reactivity control elements including 19 shimming
rods, two automatic control rods, and six automatic emergency shut-down
rods. On-power refueling equipment allows for charging the core with fresh
fuel assemblies, repositioning and turning the fuel assemblies within the
reactor, and changing control and scram system elements remotely. Now
we investigate the efficiency of the control rods in the reactor of BN-600
type with plutonium fuel. The horizontal cross section of the model of core
configuration used in this work is shown in Figure 1.

3 Control rods worth estimation

BN-600 model core has been simulated by the Monte Carlo code MCU-PD
using a stochastic approach. For the control rods worth estimation, the
procedure insertions of positive and negative reactivity, avoiding, however,
very small rod displacements which might cause ∆ keff of the order of the
Monte Carlo statistical error. After the rise of the test control rod to the
height h the inserted reactivity is calculated by the formula
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Figure 1: Horizontal cross section of the BN-600 model core. Blue areas
correspond to fuel assemblies with 8% 239Pu, dark-grin areas correspond to
fuel assemblies with 12% 239Pu, yellow areas correspond to fuel assemblies
with 17% 239Pu, orange areas correspond fuel assemblies of breeding zone,
red areas correspond to shimming rods, light green correspond to control
rods (CR1, CR2 ), white areas with RPS (Reactor Protection System)
correspond to automatic emergency shut-down rods.

∆ρh = ρh − ρ0 =
keff,h − keff,0
keff,h · keff,0

(1)

where keff,h is the multiplication factor calculated for the rod raised to
a height of h and keff,0 is the multiplication factor computed for fully
inserted rod.
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4 Numerical calculations

We made numerical calculations with MCU-PD code. MCU-PD is a gen-
eral purpose, three dimensional, polykinetic, transport computer code. It
uses the Monte Carlo method to simulate neutron, photon, electron and
positron behavior in three dimensional geometries [3]. The code provides
the ability of a detailed description of the geometrical elements (surface-
based and/or combinatorial geometries) and very precise representation of
basic nuclear data (point wise representation of cross sections), although
the code also allows multigroup homogenized cross sections. It also pro-
vides easy-to-use powerful variance-reduction tools that help the user to
solve deep penetration problems. For the purposes of this work, a detailed
description of the BN-600 geometry was provided, using both combinato-
rial geometry (for the description of the reactor pool, the reflectors, the
fuel elements and the control rods). The MDBPD50 nuclear data library
was used for this simulation. Full-scale MCU-PD model of BN-600 reactor
with plutonium fuel was developed (see Figures 2, 3).

Figure 2: Monte Carlo model,
XY cross section

Figure 3: Monte Carlo model,
XZ cross section

5 Calculation results

MCU-PD applications were performed using a number of events considered
suitable for reliable results acquisition; with this statistics, each step of
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the rod worth calculation (i.e. positive and negative reactivity insertion)
required about 72 hours of computational time in a IBM Blade Servers
HS22, 2.33 GHz, 24 × 8 node with 128 GB RAM, Linux machine. Thus,
the complete computation of a rod worth curve requires machine time
that may exceed 1 month. The results of calculations are presented in
Tables 1, 2 and in Figure 4 (for βeff = 3.617 · 10−3 ± 1 · 10−6).

Table 1: The basic characteristics of the control system of the reactor

Core state keff ∆ρH ∆ρH/βeff

All CR are extracted 1.06734 - -
±9.0373 · 10−5

CR1 is down 1.06297 3.8517 · 10−3 1.064
±9.0003 · 10−5 ±3.6149 · 10−4 ±3.62 · 10−4

CR2 is down 1.06300 3.8254 · 10−3 1.058
±9.0006 · 10−5 ±3.6148 · 10−4 ±3.62 · 10−4

RPS is down 1.03701 0.027409 7.578
±8.7805 · 10−5 ±3.5122 · 10−4 ±3.52 · 10−4

Table 2: The characteristics of the CR1 control rod depending on h

h, cm 0 31.8 63.6 127.35

keff 1.06297 1.06395 1.06647 1.06734
±9.0003 · 10−5 ±9.0086 · 10−5 ±9.0300 · 10−5 ±9.0373 · 10−5

∆ρh 0 8.6653 · 10−4 3.0874 · 10−3 3.8517 · 10−3

±3.6034 · 10−4 ±3.6120 · 10−4 ±3.6149 · 10−4

6 Conclusion

In this paper we have described algorithms for calculation of the efficiency
of the control rods in the fast breeder reactor, with sodium coolant using
Monte Carlo simulation. The full-scale three-dimensional Monte Carlo
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Figure 4: Integral worth of CR1 control rod.

model of BN-600 type reactor with plutonium fuel is created. The basic
characteristics of the control system of the reactor are calculated.
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Abstract

Belarusian State University is currently developing the educa-
tional and research web portal of nuclear knowledge BelNET (Be-
larusian Nuclear Education and Training Portal). In the future,
this specialized electronic portal could grow into a national portal
of nuclear knowledge. The concept, structure and taxonomy of Bel-
NET portal are developed. The requirements and conditions for its
functioning are analyzed. The information model and architecture
of the portal, as well as algorithms and methods of software are
realized. At present, BelNET software implemented all the basic
functions of this portal, including the ability to remotely (via the
Internet) open content editing, sorting, filtering, etc. Filling the
BelNET by knowledge is at the beginning.

1 Introduction

The International Atomic Energy Agency (IAEA) [1]–[4] pays close at-
tention to the problems of nuclear knowledge management. Nowadays,

∗E-mail:sytova@inp.bsu.by
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numerous national and international portals of nuclear knowledge were
created in Europe, Asia, Africa and America under the patronage of the
IAEA. It is planned to develop an international network of information
resources on nuclear knowledge. This means that a unified information
space in the field of nuclear knowledge is being formed in the world. Every
developed country with its own nuclear industry has to create and main-
tain a national portal of nuclear knowledge, integrated into a global system
of nuclear knowledge management. In the light of creation of Belarusian
nuclear industry and construction of Belarusian nuclear power plant, de-
velopment of electronic portal of nuclear knowledge is an insistent need for
Belarus.

The development of computer technology, new requirements for the
volume, complexity and speed of information transfer, as well as the rapid
growth of mobile applications with specific requirements on the amount
and form of presentation of information demand new effective algorith-
mic, architectural and software solutions. The portal of nuclear knowledge
should be a complex programming system based on such modern technolo-
gies. Also, in the light of rapid growth of popularity of free software in the
world, it would be good if the portal was developed on the Belarusian free
software. So, creating such a portal is not just the development of a simple
website, like such as millions in the Internet. The portal must meet the
requirements of safety, reliability, efficiency and performance and reflect
the national features of nuclear knowledge content.

The educational and research web-portal of nuclear knowledge BelNET
(Belarusian Nuclear Education and Training) has the following objec-
tives: acceleration of search and access to necessary data and information,
creation of new knowledge, promotion of participation in research, educa-
tion and training programs in nuclear industry, management of information
resources, knowledge and competencies of nuclear industry in Belarus.

The basis of BelNET software is “Electronic document management
system eLab”[5] developed on free software by the Laboratory of analyti-
cal research of the Research Institute for Nuclear Problems of Belarusian
State University. eLab is implemented in the educational process of lead-
ing Belarusian universities: Belarusian State University, Belarusian State
Technological University, Belarusian National Technical University. It is
introduced in the Chemical-toxicological laboratory of the Minsk Drug
Treatment Clinic. eLab has been a basis of management of specimens,
measurements and passports of fuels and lubricants of Belarusian Army
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since 2012 and Belarusian branch of Russian company GazPromNeft since
2013. Software eLab is protected by four Certificates of the National In-
tellectual Property Center of the Republic of Belarus.

eLab software is an electronic system of client-server architecture, de-
signed on the basis of free software: Debian GNU / Linux, Web-server
Apache, the Firebird database server using the application server PHP. It
works under Windows and Linux through widely used browsers reliably
without interruption. It is also completely secure from unauthorized ac-
cess. eLab has a fast response to user requests, providing visibility and
accessibility of information through a single interface for a wide range of
integrated applications for users with different rights of access. It proved
to be a system easily upgradable to conditions of the project.

2 BelNET principles of operation

In Fig.1, the main principles of BelNET operation are depicted in a simple
form. Users with different rights of access from high school and university
students to university professors and specialists visit on-line BelNET portal
from their computers and laptops. Depending on the rights of access they
can read documents available in open access, limited access or restricted
access areas. With a user name and a password with appropriate rights,
one can enter new documents on-line, or edit the existing ones etc.

BelNET components presented in Fig.2 as eLab system architecture
are as follows:

1) Control computer (application server) running Linux, Unix or Win-
dows;

2) Database server – cross-platform database management system
(DBMS) Firebird;

3) User databases (DB);
4) Server of web-applications – Apache HTTP Server;
5) Code of web-application in PHP and JavaScript;
6) Library of access to databases ADOdb for PHP;
7) XAJAX library for building interactive user interfaces and web-

applications;
8) Explorer (web-browser of client) for the following user categories:

user with restricted access, user with limited access, user with open access;
9) eLab administrator;
10) System administrator.
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Figure 1: BelNET principles of operation

Data streams in eLab are the following:
A. Data streams between the database server Firebird and user DB;
B. Data streams at ADOdb library and the DBMS Firebird;
C. Interaction of web-based applications eLab with user DB through

ADOdb library and the Firebird;
D. Implementation of XAJAX library in web-application eLab;
E. Formation and processing of HTTP(S) requests by server of web-

applications Apache;
F. Data transfer from the server to the client and back through the

web-server of applications;
G. Interaction of eLab administrator with eLab system;
H. Interaction of system administrator with the application server and

eLab.
The interaction of these data streams (from Fig.1) are presented in

other form in Fig.3.
BelNET and data content are placed on the host computer of the net-

work (the application server) by the system administrator. The system
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Figure 2: eLab system architecture

administrator has a full and direct access to the application server, includ-
ing BelNET with its databases. The system administrator is responsible
for operation, safety, and protection of server applications and data.

BelNET users, including the administrators of web-application (portal
administartors) are clients of the system. They interact with the system
and data over the Internet or the internal (corporate) network through
a browser that is installed and used on the user’s workstation. Personal
desktop computers, laptops, tablets, or smartphones can be used as a
workstation. Data streams between clients and web-application in both
directions are carried out via the web-server Apache which provides vali-
dation, filtering and redirection of HTTP(S) requests. An interactive user
interface is generated on the application server and displayed in a browser
window on a workstation via the server (in PHP) and client (in JavaScript)
of the interlayer XAJAX in accordance with the HTTP(S) user requests.
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Figure 3: eLab data streams

The interface includes custom elements: links, buttons, lists, tables and
other DOM-elements. Dynamic calls to the server with technology AJAX
are supported allowing the modification of contents of the browser without
reloading the entire page (the window contents).

3 Pilot version of BelNET

The pilot version of BelNET is depicted in part in [6]–[9] and available
here: http://lar.inpnet.net/el/belnet/ (see screenshot of its start page in
Fig.4).

At present, BelNET software implements all basic functions of the por-
tal, including the ability to remotely (via the Internet) open content edit-
ing, different sorting functions, filters, etc. (see Fig.5–6). So, we can say
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Figure 4: Start page of BelNET

that in the frame of this work the original content management system
(CMS) was created. It includes the possibility to input texts and formulae
in LaTeX-similar form and load different types of files, references, video,
photos and pictures. On the basis of this CMS educational and scientific
portals of various profiles can be created. Filling BelNET with information
is underway.

4 Lab practice for students

We emphasize that filling the portal with information as well as developing
special materials for a distance learning system is a time-consuming and
long process. In this sense, the work on BelNET is at the beginning.

Currently, a glossary of nuclear physics runnibg term and lab prac-
tice for students are developed. Definitions included in the glossary are
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Figure 5: Editing of BelNET resources

formed on the basis of traditions prevailing in the scientific community, na-
tional and interstate regulatory documents with the account of the IAEA
recommendations and the views of draftsmen. The articles contain term
definitions, area of application and, if appropriate, analysis of differences
between the given definitions and common or standard ones.

In high school, nuclear physics is traditionally presented only by a small
theoretical section, which does not provide for implementation of lab work
because the sources of ionizing radiation are forbodden by sanitary norms.
However, the practical skills that students receive in performing lab work
allow them to better understand the characteristics of ionizing radiation
passing through matter and the dangers associated with the use of ra-
dioactive substances and principles of radiation protection. This is very
important because of ionizing radiation and radioactive sources are widely
used in medicine, engineering and other areas. Now requirements for basic
knowledge of radiation principles and its impact on the environment are
high in the light of development of nuclear industry in Belarus. The ne-
cessity to the general public of at least a minimum level of knowledge in
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Figure 6: BelNET- Informations center - Legislation

this area was confirmed by the history of the Chernobyl disaster.
As a part of BelNET content, it was decided to develop a series of

on-line guides for lab work on ionizing radiation passing through matter.
These lab works are oriented to high school and university students as well
as to anyone interested in this topic. The general part of the series is an
introduction with brief information on nuclear physics and nuclear spec-
trometry. It includes the desctiption of main features of the phenomenon
of radioactivity. The work of detectors of ionizing radiation is explained
as well as the principles of formation and interpretation of experimental
energy radiation spectra. The formulae for estimating statistical errors
of the experiment are given. Practical part includes five lab works: ”De-
termination of the activity of radioactive source by a relative method”,
”Absorption of electrons in matter”, ”Absorption of gamma rays in mat-
ter”, ”Study of the penetrating power of gamma rays of different energies”,
”Natural decay chains”. Each practice includes a brief description of the
studied processes, necessary for understanding the experimental part of
the work, as well as analysis of the obtained results. As a separate section

318



of each work, a guide on the order of experimental data processing, cal-
culation and analysis of finite quantities is given. The experimental data
(energy spectra of specific ionizing radiation) obtained using the spectrom-
eter of ionizing radiation of the Department of Nuclear Physics of Belaru-
sian State University are available in the form of text files. Video files
demonstrate the spectrum set-up. This allows performing the lab work
using only a computer with a standard set of programs. Using a computer
calculator (eg. MS Excel), one can process the experimental spectra, cal-
culate the necessary values and present the obtained results in graphical
form. At the end of the series a test program is given in order to check
the correctness of obtained results, as well as the level of understanding
of the studied processes by the user and his willingness to use the results,
for example, to estimate the parameters, necessary for protection against
ionizing radiation.

5 Conclusion

Belarusian educational and research portal of nuclear knowledge BelNET
is developed by the efforts of the best experts and professorate in the field
of nuclear knowledge of the Republic of Belarus. The aim of the work
is the promotion of nuclear knowledge, the formation positive image of
nuclear science and attraction here the most able young people. Created
original CMS allows developing educational and scientific portals of various
profiles.
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