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INTRODUCTION

One of the problems of approximate stochastic analysis is the
construction of the numerical methods for the calculation of
probabilistic characteristics (mathematical expectation, dispersion,
etc) of random processes. In various applications the processes of
the form η(t) = F

(
ξ(t)

)
, where ξ(t) is some fixed random process

with a given average and dispersion, F (x) is the function defined
on R, are often used. Such processes arise, in particular, and when
solving stochastic differential equations.

In our message, we will consider random processes η(t), where ξ(t)
are some processes generated by the Brownian motion process W (t)

(Wiener process). Further we give the methods of approximate
calculation of averages for such processes and numerous examples.
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ξ(t) – THE BROWNIAN BRIDGE B(t)

The random process B(t) = W (t) − tW (1), where W (t), 0 ≤ t ≤ 1

is standard Wiener process, is related to the set of processes called
the Brownian bridge.

Its probabilistic characteristics:

E
{
B(t)

}
= 0, D

[
B(t)

]
= t(1− t),

Cov
[
B(s), B(t)

]
= s(1− t), s ≤ t.

The random process of the form ξ(t) = F
(
B(t)

)
, where y = F (x)

is the function, given on R, as well as some other processes ξ(t) of
such structure are stochastic models of many real phenomena and
processes.
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THE BROWNIAN BRIDGE OF MORE GENERAL FORM

Let there be set three real numbers: α, β and T > 0. The continuous
Gaussian process ξ(t)

(
0 ≤ t ≤ T, ξ(0) = α

)
, for which

E
{
ξ(t)

}
= α+ (β − α)

t

T
, Cov

[
ξ(t), ξ(s)

]
= min(s, t)−

st

T
,

is called the Brownian bridge (fixed Brownian motion) from α to β

of length T.

It is obvious that E
{
ξ(t)

}
= β, and Cov

[
ξ(t), ξ(s)

]
= 0, for s = T

or t = T. Hence, it is almost surely that ξ(t) = β, that is the main
property of random processes of this type. The random process ξ(t)
with α = β = 0 and T = 1 coincides with B(t).
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EXAMPLES OF THE BROWNIAN BRIDGE

The processes defined by the following two formulas

ξ1(t) = α+W (t)−
t

T
W (T ),

ξ2(t) = α+
T − t
T

W

(
T

T − t

)
, 0 ≤ t ≤ T,

ξ3(t) = (1− t)W
(

t

1− t

)
(0 ≤ t ≤ 1),

also represent the Brownian bridge.
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We consider Brownian bridge B(t) (0 ≤ t ≤ 1) as a Gaussian process
with zero average and dispersion t(1− t). Consequently,

E

{
F
(
B(t)

)}
=

1
√
π

∞∫
−∞

e−x
2
F

(√
2t(1− t)x

)
dx, (1)

where F (x) is the function given on R, for which this integral exists.

With F (x) = x2k+1 (k = 0,1,2, . . .) the integral (1) vanishes. For
F (x) = x2k we have:

E
{
B2k(t)

}
=

2ktk(1− t)k
√
π

∞∫
−∞

e−x
2
x2kdx =

= (2k − 1)!!tk(1− t)k (k = 0,1, . . .). (2)

From (1), in particular, we also get E
{
eλB(t)

}
= e

1
2λ

2t(1−t).
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Brownian bridge ξ(t) from α to β can be also defined as the solution
of stochastic differential equations. One of the simplest variants is
equation

dξ(t) =
β − ξ(t)
T − t

dt+ dW (t),0 ≤ t ≤ T, ξ(0) = α, (3)

the solution ξ(t) of which has the form

ξ(t) = α+ (β − α)
t

T
+ (T − t)

t∫
0

dW (s)

T − s
.

Here

ξ(T ) = β,

E
{
ξ(t)

}
= α+ (β − α)

t

T
,

D(ξ) =
t

T
(T − t).

7



ON SOME FORMULAS OF APPROXIMATING
CONSIDERED RANDOM PROCESSES

Let ξ = ξ(t) (0 ≤ t ≤ T, T > 0) be a real Gaussian random process,
E
{
ξ(t)

}
= m = m(t) and D(ξ) = σ = σ(t).

Then for process η(t) = F
(
ξ(t)

)
m̃(t) = E

{
η(t)

}
= I1(t), σ̃(t) = D(η) = I2(t)− m̃2(t), (4)

where

I1(t) =
1
√
π

∞∫
−∞

e−s
2
F
(√

2σs+m
)
ds,

I2(t) =
1
√
π

∞∫
−∞

e−s
2
F2

(√
2σs+m

)
ds,

and function F (x) on R is that integrals I1(t) and I2(t) exist.
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For approximate calculation of integrals I1(t) and I2(t) one usually
uses quadrature formulas. For example, for I1(t) :

I1(t) =
1
√
π

∞∫
−∞

e−x
2
F
(√

2σx+m
)
dx =

=
1
√
π

n∑
k=1

AkF
(√

2σxk +m
)
+ rn(F ), (5)

where xk are the roots of Chebyshev–Hermite polynomial Hn(x) =

= (−1)nex2
dn

dxn

(
e−x

2)
, Ak =

√
π2n+1n!

[
H ′n(xk)

]−2
(k = 1,2, . . . , n).

For the error rn(F ) equality holds

rn(F ) =
n!
√
π

2n(2n)!
F (2n)(η),

F = F
(√

2σx+m
)
, η ∈ R.
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We introduce the following notations

Sn(t) =
1
√
π

n∑
k=1

AkF
(√

2σxk +m
)
,

S
(2)
n (t) =

1
√
π

n∑
k=1

AkF
2
(√

2σxk +m
)
.

Let us consider the following random process sequences:

ηn(t) =
n∑

k=1

lnk

(
W (t)√

2t

)
F
(√

2σxk +m
)
,

η
(2)
n (t) =

n∑
k=1

lnk

(
W (t)√

2t

)
F2

(√
2σxk +m

)
,

η̃n(t) =
n∑

k=1

lnk

 B(t)√
2t(1− t)

F (√2σxk +m
)
,
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η̃
(2)
n (t) =

n∑
k=1

lnk

 B(t)√
2t(1− t)

F2
(√

2σxk +m
)
.

Here lnk(x) =
(x−x1)···(x−xk−1)(x−xk+1)···(x−xn)

(xk−x1)···(xk−xk−1)(xk−xk+1)···(xk−xn)
.

Theorem. Let function F
(√

2σxk +m
)
be a continuous one on

the real axis and integrals in

m̃(t) = E
{
η(t)

}
= I1(t), σ̃(t) = D(η) = I2(t)− m̃2(t),

exist. Then the sequences of averages E
{
ηn(t)

}
, E

{
η̃n(t)

}
at

n→∞ converge on T to average E
{
η(t)

}
, and sequences E

{
η
(2)
n (t)

}
,

E

{
η̃
(2)
n (t)

}
correspondingly converge to second moment E

{
η2(t)

}
of process η(t) = F

(
ξ(t)

)
, where ξ(t) is a Gaussian random process

with average m = m(t) and dispersion σ = σ(t), (0 ≤ t ≤ 1).
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NUMERICAL EXAMPLES

Let η(t) = sin
(
ξ(t)

)
, where ξ(t) is an Ornstein–Uhlenbeck process,

defined as the solution of stochastic differential equation

dξ(t) = −α
(
ξ(t)− β

)
dt+ γdW (t) (t ≤ 0)

with initial condition ξ(0) = ξ0, where α, β, γ and ξ0 are fixed
numerical values. Solution ξ(t) is defined by formula

ξ(t) = ξ0e
−αt+ β

(
1− e−αt

)
+ γ

t∫
0

e−α(t−s)dW (s),

and average m = m(t) and dispersion σ = σ(t) correspondingly have
the form of

m = ξ0e
−αt+ β

(
1− e−αt

)
,

σ =
γ2

2α

(
1− e−2αt

)
. (6)
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EXAMPLE 1

Let ξ(t) be an Ornstein–Uhlenbeck process. For random process
η(t) = sin

(
ξ(t)

)
let us calculate mathematical expectation

E
{
η(t)

}
=

1
√
π

∞∫
−∞

e−x
2
sin

(√
2σx+m

)
dx (7)

and its approximate value

Sn(t) =
1
√
π

n∑
k=1

Ak sin
(√

2σxk +m
)
. (8)

Integral (7) is calculated exactly: E
{
η(t)

}
= e−

1
2σ sinm, where

m = ξ0e
−αt+ β

(
1− e−αt

)
, σ =

γ2

2α

(
1− e−2αt

)
.
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We present the numerical values of error

rn(t) = e−
1
2σ(t) sinm(t)− Sn(t)

at points ti =
i

10
(i = 0,1, . . . ,10) for n = 10. Here

Sn(t) =
1
√
π

n∑
k=1

Ak sin
(√

2σxk +m
)
.
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Calculation results at ξ0 = 1, α = 2, β = 3, γ = 5 are given in
Table 1.

ti E
{
η(ti)

}
Sn(ti) rn(ti)

0 0.84147098481 0.841470985 −1.9× 10−10

0.1 0.34920570709 0.349205706 1.1× 10−9

0.2 0.17821334508 0.178213194 1.5× 10−7

0.3 0.10648205980 0.106480813 1.2× 10−6

0.4 0.07122171563 0.071218014 3.7× 10−6

0.5 0.05157706331 0.051570409 6.7× 10−6

0.6 0.03950761433 0.039498551 9.1× 10−6

0.7 0.03150780929 0.031497321 1.0× 10−5

0.8 0.02588852563 0.025877529 1.1× 10−5

0.9 0.02176554463 0.021754685 1.1× 10−5

1.0 0.01864185530 0.018631506 1.0× 10−5
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EXAMPLE 2

For process η(t) = cos2
{
ξ(t)

}
the average is defined by formula

E
{
η(t)

}
=

1
√
π

∞∫
−∞

e−s
2
cos2

(√
2σs+m

)
ds =

1

2

(
1+ e−2σ cos 2m

)
,

and the approximate value in this case is

Sn(t) =
1
√
π

n∑
k=1

Ak cos
2
(√

2σxk +m
)
. (9)

Here error

rn(t) =
1

2

(
1+ e−2σ(t) cos 2m(t)

)
− Sn(t),

points ti =
i

5
(i = 0,1, . . . ,10).
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Results for parameter values equal to ξ0 = 5, α = 4, β = 2, γ = 2,

at given points ti of segment [0; 2].

ti E
{
η(ti)

}
Sn(ti) rn(ti)

0 0.08046423546 0.080464235 4.6× 10−10

0.2 0.70618461865 0.706184619 −3.5× 10−10

0.4 0.59168445417 0.591684454 1.7× 10−10

0.6 0.46897426165 0.468974262 −3.6× 10−10

0.8 0.41691669322 0.416916693 2.2× 10−10

1.0 0.39572637760 0.395726378 −4.0× 10−10

1.2 0.38677884287 0.386778843 −1.3× 10−10

1.4 0.38288530187 0.382885302 −1.3× 10−10

1.6 0.38116239149 0.381162392 −5.1× 10−10

1.8 0.38039368806 0.380393688 6.3× 10−11

2.0 0.38004939542 0.380049396 −5.9× 10−10
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Here is the graph of error rn(t)
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OTHER METHODS OF APPROXIMATION

Let’s consider another class of random processes

η̃
(1)
n (t) =

=
1
√
π

n∑
k=0

Ckn
(1− t)n−2k

(2k − 1)!!
B2k(t)

∞∫
−∞

e−x
2
F

√2σ
(
k

n

)
x+m

(
k

n

) dx,
(10)

where B(t) = W (t) − tW (1), Ckn =
n!

k!(n− k)!
, (k = 1,2, . . . , n; n =

1,2, . . .), 0 ≤ t ≤ 1. Mathematical expectation m̃
(1)
n (t) = E

{
η̃
(1)
n (t)

}
of process (10) is determined by the formula

m̃
(1)
n (t) =

n∑
k=0

Cknt
k(1− t)n−km̃

(
k

n

)
. (11)

Hence, lim
n→∞ m̃

(1)
n (t) = E

{
η(t)

}
= m̃(t).
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In the function approximation theory of E.V. Voronovskaya’s formula
concerning the asymptotic specification of function approximations
by Bernstein polynomials:

Bn(f ; t) = f(t) +
1

2

t− t2

n
f ′′(t) +

εn

n
,

where εn → 0 at n→∞ is known.

We consider approximate formula

B̂n(f ; t) = Bn(f ; t)−
1

2

t− t2

n
f ′′(t) ≈ f(t) (0 ≤ t ≤ 1)

and corresponding random processes

η̂n(t) = η̃
(1)
n (t)−

1

2n
√
π
B2(t)

∞∫
−∞

e−x
2
F ′′

(√
2σ(t)x+m(t)

)
dx

(n = 1,2, . . .). (12)

20



Mathematical expectation m̂n(t) of processes

η̂n(t) = η̃
(1)
n (t)−

1

2n
√
π
B2(t)

∞∫
−∞

e−x
2
F ′′

(√
2σ(t)x+m(t)

)
dx

(n = 1,2, . . .) (12)

will be defined by formula

m̂n(t) = Bn

(
m̃

(1)
n (t); t

)
−

−
1

2
√
π

t− t2

n

∞∫
−∞

e−x
2
F ′′

(√
2σ(t)x+m(t)

)
dx. (13)

Consequently, lim
n→∞E

{
η̂n(t)

}
= E

{
η(t)

}
.
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EXAMPLE 3

Let F (x) = sin2 x, i. e., η(t) = sin2 ξ(t), where ξ(t) is an Ornstein–
Uhlenbeck process.

m̃s(t) = E
{
η(t)

}
=

1

2

(
1− e−2σ(t) cos 2m(t)

)
,

and

m = ξ0e
−αt+ β

(
1− e−αt

)
, σ =

γ2

2α

(
1− e−2αt

)
,

where ξ0 = 4, α = 5, β = 2, γ = 1.
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The calculation results by formula

m̃
(1)
n (t) =

n∑
k=0

Cknt
k(1− t)n−km̃

(
k

n

)
, (11)

where m̃(t) = m̃s(t), at points ti =
i

5
(i = 0,1, . . . ,5) of segment

[0,1] at n = 20 are given in

Table 3

ti E
{
η(ti)

}
m̃

(1)
n (ti) rn(ti)

0 0.5728 0.5728 0.0000
0.2 0.2105 0.2435 −0.0330
0.4 0.5699 0.5364 0.0336
0.6 0.7011 0.6878 0.0133
0.8 0.7442 0.7413 0.0029
1.0 0.7591 0.7591 0.0000
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and in accordance with a more precise formula

m̂n(t) = Bn

(
m̃

(1)
n (t); t

)
−

−
1

2
√
π

t− t2

n

∞∫
−∞

e−x
2
F ′′

(√
2σ(t)x+m(t)

)
dx,

in Table 4

ti E
{
η(ti)

}
m̂n(ti) r̃n(ti)

0 0.5728 0.5728 0.0000
0.2 0.2105 0.2118 −0.0013
0.4 0.5699 0.5732 −0.0032
0.6 0.7011 0.7048 −0.0037
0.8 0.7442 0.7467 −0.0025
1.0 0.7591 0.7591 0.0000

Here rn(ti) = E
{
η(ti)

}
− m̃(1)

n (ti), while r̃n(ti) = E
{
η(ti)

}
− m̂n(ti).
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In this case there has been used the exact value of the integral in
(12) and (13), and the calculations were made by formula

m̂n(t) =
n∑

k=0

Cknt
k(1− t)n−km̃s(t) +

1

2n

(
t− t2

)
m2s(t),

where m2s(t) =
1

2

(
1− e−8σ(t) cos 2m(t)

)
.
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THE CALCULATION OF THE MOMENTS
OF THE STOCHASTIC PROCESSES DEFINED

BY TRIGONOMETRIC FUNCTIONS
OF THE BROWNIAN MOTION

Analogous problems for the processes of the form

η(t) = F
(
αW2(t) + βW (t) + γ

)
, (14)

where F (x) is the function given and continuous on R, W (t) is also
standard Wiener process, are considered.
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QUADRATURE FORMULAS FOR THE CALCULATION OF
THE MATHEMATICAL EXPECTATION

We use the well-known formula for the calculation of k-th moments
of the random process (14):

mk(t) = E
{
ξk(t)

}
=

1
√
π

∫ ∞
−∞

e−x
2
F k
(
2αtx2 + β

√
2tx+ γ

)
dx, (15)

(k = 0,1,2, . . .), the function F (x) and parameters α, β, γ are such
that the integral (15) converges.

For the approximate calculation of the integral (15) we use the
quadrature formula of the highest algebraic degree of accuracy
for the integrals over the number axis with the weighting function
p(x) = e−x

2
.
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The approximate calculation of mk(t) can be made from the formula

mk(t) =
1
√
π

n∑
ν=1

AνF
k
(
2αtx2ν + β

√
2txν + γ

)
+

1
√
π
rn(F

k), (16)

where xν are the roots of the Hermite polynomial of n-th power

Hn(x) = (−1)nex2
dn

dxn
e−x

2
, Aν are the coefficients of the quadrature

formula, and rn(F k) its remainder term.

We denote the quadrature sum in the formula (16) by

Snk(t) =
1
√
π

n∑
ν=1

AνF
k
(
2αtx2ν + β

√
2txν + γ

)
. (17)
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We consider the sequence of the random processes

ηnk(t) =
n∑

ν=1

lnν

(
W (t)√

2t

)
F k
(
2tαx2ν +

√
2tβxν + γ

)
(n, k = 1,2, . . .),

(18)

where lnν(x) =
(x−x1)···(x−xν−1)(x−xν+1)···(x−xn)

(xν−x1)···(xν−xν−1)(xν−xν+1)···(xν−xn)
.

For the calculation of the mathematical expectation of the random
process η(t) of the form η(t) = f

(
W (t)

)
we use the formula

E
{
η(t)

}
=

1
√
π

∫ ∞
−∞

e−x
2
f
(√

2tx
)
dx, (19)

where y = f(x) is the function for which the improper integral on
the right-hand side of (19) converges.
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Let us consider examples of random processes and give the results
of the computational experiment.

For the random process

η(t) = θ cos
(
αW2(t) + βW (t) + γ

)
, (20)

where θ is arbitrary fixed constant, using (15) and the formula for
the calculation of this kind of integrals we can calculate the first
order moment (the mathematical expectation):

mc(t) = E
{
η(t)

}
=

θ
√
π

∫ ∞
−∞

e−x
2
cos

(
2αtx2 + β

√
2tx+ γ

)
dx =

=
θ

4
√
1+ 4α2t2

exp

{
−

β2t

2(1 + 4α2t2)

}
×

× cos

{
1

2
arctg(2αt) +

(4α2γ − αβ2)t2 + γ

1+ 4α2t2

}
, t ∈ [0; 1].
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And, correspondingly, the approximate process ηnc(t) for (20), by
virtue of the formula (18) has the following form

ηnc(t) = θ
n∑

ν=1

lnν

(
W (t)√

2t

)
cos

(
2tαx2ν + β

√
2txν + γ

)
,

and the quadrature sum (17) Snc(t) will be given, respectively, by
the formula

Snc(t) =
θ
√
π

n∑
ν=1

Aν cos
(
2αtx2ν + β

√
2txν + γ

)
,

which is an approximation to the exact mathematical value mc(t).
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EXAMPLE 4

For the random process (20), the value of the error rnc(t) = mc(t)−
−Snc(t) of the calculation of the mathematical expectation mc(t) at

the points ti =
i

5
(i = 0,1, . . . ,5) for α = β = γ = θ = 1 and n = 9

is given in

Table 5

ti Snc(ti) mc(ti) rnc(ti)
0 0,54043931 0,54030231 –0,00013701
0,2 0,35652498 0,356435971 –8,90121×10−5
0,4 0,25443564 0,254201549 –0,00023409
0,6 0,20050560 0,195744407 –0,0047612
0,8 0,1536785 0,1574841 0,0038057
1 0,07416710 0,13041004 0,05624294
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For the random process

ζ(t) = θ sin
(
αW2(t) + βW (t) + γ

)
, (21)

analogously we can calculate exact value of the first order moment:

ms(t) = E
{
F (W (t))

}
=

θ
√
π

∫ ∞
−∞

e−x
2
sin

(
2αtx2 + β

√
2tx+ γ

)
dx =

=
θ

4
√
1+ 4α2t2

exp

{
−

β2t

2(1 + 4α2t2)

}
×

× sin

{
1

2
arctg(2αt) +

(4α2γ − αβ2)t2 + γ

1+ 4α2t2

}
.
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And, correspondingly, the approximation ηns(t) for the process (21)
will be

ηns(t) = θ
n∑

ν=1

lnν

(
W (t)√

2t

)
sin

(
2αtx2ν + β

√
2txν + γ

)
,

and Sns(t) will be given by the formula

Sns(t) =
θ
√
π

n∑
ν=1

Aν sin
(
2αtx2ν + β

√
2txν + γ

)
.
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