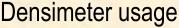
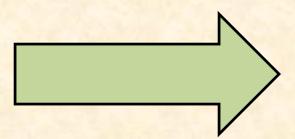


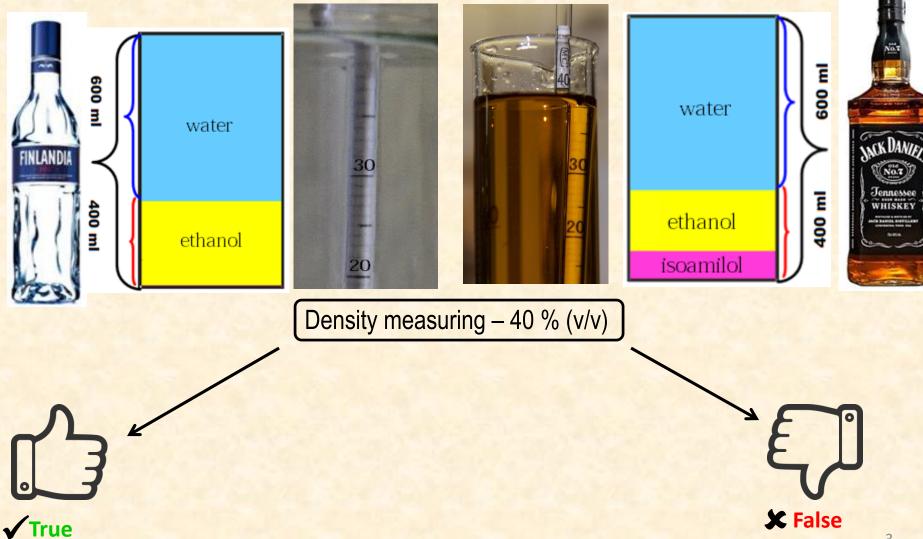
A numerical method for calculating the quantitative composition of complex water-ethanol mixtures


Strength


The determination of the strength of the sample of alcohol beverage is one of the key actions while routine quality control tests.

Strength = The volumetric ethanol content in solution

$$strength = \frac{v_{ethanol}}{v_{sample}} \cdot 100\%$$



	Содержание спирта при 20 °C, % (по объему)									
Темпера- тура, °C	100	99	98	97	96	95	Темпера- тура, °C			
	Плотность водно-спиртового раствора, т/см2									
+7	0,80032	0,80543	0,81012	0,81452	0,81868	0,82264	+7			
6	116	628	097	537	953	349	6			
5	200	711	181	621	0,82037	433	5			
4	285	796	264	704	120	516	4			
3	369	880	347	787	203	598	3			
2	454	964	430	870	286	681	2			
1	539	0,81047	513	953	368	763	1			
0	623	130	596	0,82035	450	845	0			
-1	0,8071	0,8121	0,8168	0,8212	0,8253	0,8293	-1			
2	79	30	76	20	61	0,8301	2			
3	88	38	84	28	70	09	3			
4	96	46	93	37	78	17	4			
5	0,8105	55	0,8201	45	86	25	5			
6	13	63	10	53	94	34	6			
7	22	72	18	62	0,8303	42	7			
8	30	80	26	70	11	50	8			
9	39	89	35	78	19	58	9			
10	47	97	43	86	27	67	10			
11	55	0,8205	51	95	36	75	11			
12	63	13	60	0,8303	44	83	12			
13	71	21	68	11	53	92	13			
14	79	30	76	20	61	0,8400	14			
15	88	38	84	28	69	09	15			
16	96	46	93	36	78	17	16			
17	0,8204	54	0,8301	45	86	25	17			
10	12	62	00	52	0.4	22	10			

Alcoholometric tables 2

How to determine strength correctly?

Inaccurate data example

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ FOCT P 55983— 2014

ФРАКЦИЯ ГОЛОВНАЯ ЭТИЛОВОГО СПИРТА

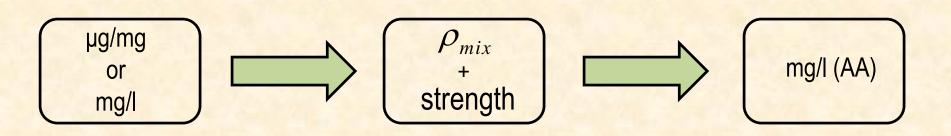
Технические условия

Наименование показателя	Значение показателя для головной фракции, вырабатываемой			
паименование показателя	из мелассы	из крахмалсодержащего сырья		
Объемная доля этилового спирта, % не менее	92,0	92,0		
Объемная доля метилового спирта в пересчете на безводный спирт, %, не более	0,05	6,0		
Массовая концентрация сивушного масла в пересчете на безводный спирт, г/дм³, не более	1,5	2,5		
Массовая концентрация альдегидов в пересчете на безводный спирт, г/дм 3	35,0	35,0		
Массовая концентрация эфиров в пересчете на безводный спирт, $r/дм^3$, не более	60,0	60,0		
Массовая концентрация летучих кислот, г/дм ³ безводного спирта, не более	1,0	2,0		

Total content of impurities reaches 13 % in anhydrous alcohol

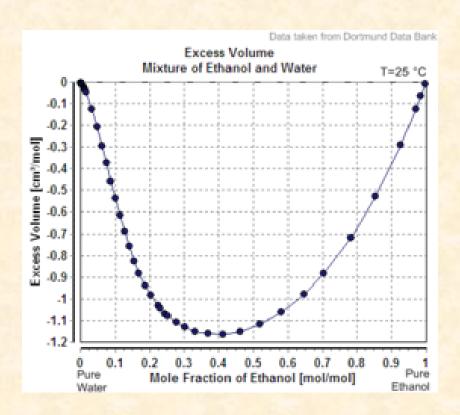
7.2.1 Определение запаха

25 см³ головной фракции при температуре 20 °C наливают в колбу с широким горлом вместимостые 100—150 см³ с притертой пробкой. Колбу открывают для опредоления запаха на 5—8 с.


7.3 Определение объемной доли этилового спирта — по ГОСТ 3639.

Reference to areometric determination of strength

Determination of volatiles contamination


Volatile compounds – associated components, appeared during ethanol production

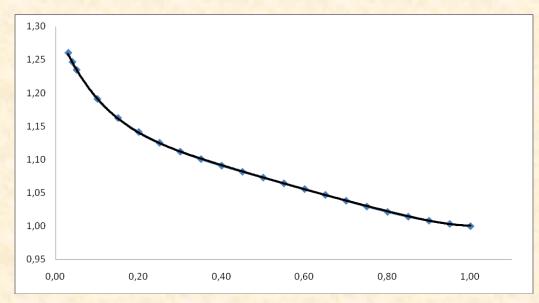
The concentrations of volatile components must be presented in mg/l (AA) (Absolute Alcohol)

Contraction phenomenon

While mixing pure components (ethanol and water) the final solution has less volume than the sum of volumes of pure components

The proposed method of calculation

Every water-ethanol solution appears to be divided into hydrous and anhydrous parts:


$$\rho_{mix} = C_{water} \cdot (\rho_{water}^{eff}) + (1 - C_{water}) \cdot \sum_{(i)} \rho_i \cdot C_i^*$$

$$\rho_{water}^{eff} = \rho_{water}^{20} \cdot F(C_{water}, C_{ethanol})$$

The effective water density appeared to be depending on F value

$$F = \frac{\rho_{mix} - C_{ethanol} \cdot \rho_{ethanol}}{C_{water} \cdot \rho_{water}^{20}}$$

F value can be calculated from the official water-ethanol density tables and finally be presented as function of water volumetric concentration

$$F(C_{W}, C_{Eth}) = a \cdot x^{6} + b \cdot x^{5} + c \cdot x^{4} + d \cdot x^{3} + e \cdot x^{2} + f \cdot x + g$$

$$x = \frac{C_{water}}{C_{water} + C_{ethanol}}$$

The proposed method of calculation

The relationship between ml/ml and mg/l (AA) values can be demonstrated as:

$$C_{i}^{*} = \left(\frac{\widetilde{C}_{i}}{\rho_{i}}\right) / \left(\sum_{(i)} \frac{\widetilde{C}_{i}}{\rho_{i}}\right) \qquad \widetilde{C}_{i} = RRF_{i} \cdot \frac{A_{i}}{A_{Et}} \cdot \rho_{Et} = \left(\frac{\widetilde{C}_{i}^{st}}{A_{i}^{st}} / \frac{\widetilde{C}_{Et}^{st}}{A_{Et}^{st}}\right) \cdot \frac{A_{i}}{A_{Et}} \cdot \rho_{Et} = \widetilde{C}_{i}^{st} \cdot \frac{A_{Et}^{st}}{A_{i}^{st}} \cdot \frac{A_{i}}{A_{Et}}$$

Substituting volumetric concentration in anhydrous part:

$$C_{W}^{(j+1)} = \frac{\rho_{T} \cdot \sum_{(i)}^{\widetilde{C}_{i}} - \sum_{(i)}^{\widetilde{C}_{i}} \widetilde{C}_{i}}{\rho_{W} \cdot F^{(j+1)}(x^{(j+1)}) \cdot \sum_{(i)}^{\widetilde{C}_{i}} - \sum_{(i)}^{\widetilde{C}_{i}}}$$

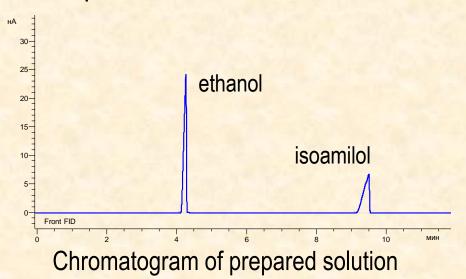
$$F(C_{W}, C_{Eth}) = a \cdot x^{6} + \dots + g$$

$$C_{i} \text{ -ml/ml solution}$$

$$C_{i}^{*} \text{-ml/ml of anhydrous part}$$

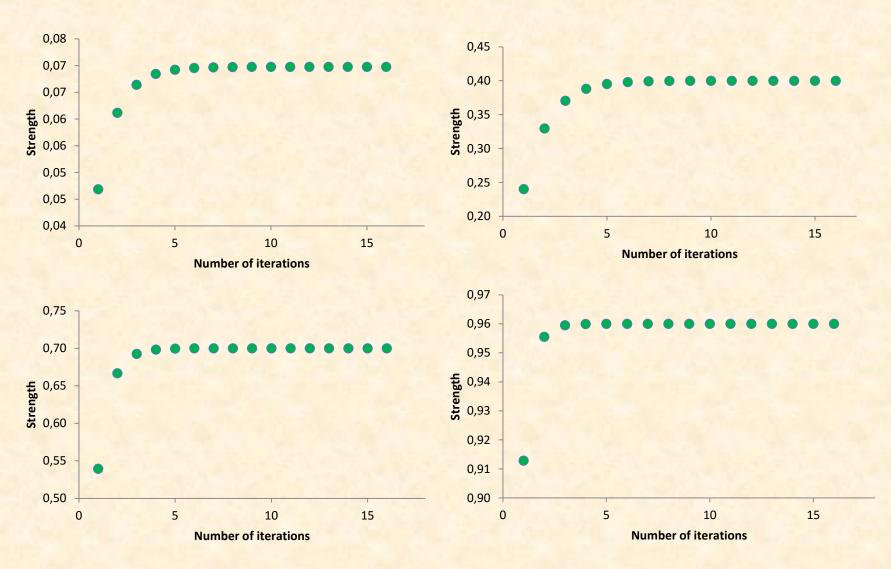
$$\widetilde{C}_{i} \text{ -mg/l (AA)}$$

$$C_i = (1 - C_W)(C_i^*)$$
 — Determined directly fom GC measurements


Experimental tests

The RRFs' values were calculated according to GC analysis of both bought and prepared standard solutions

Ten samples were prepared by mixing pure ethanol and water and then they were analysed by the proposed method


Areo	meter	10,0%	20,0%	30,0%	40,0%	50,0%	60,0%	70,0%	80,0%	90,0%	95,5%
GC a	analysis	9,97%	19,97%	29,96%	39,99%	49,99%	59,99%	69,99%	79,99%	89,95%	95,49%
l	bias	-0,03%	-0,03%	-0,04%	-0,01%	-0,01%	-0,01%	-0,01%	-0,01%	-0,05%	-0,01%

A complex mixture of water, ethanol and isoamil alcohol in the ratio of 20:60:20

method	strength value, %	bias, %
areometer	80,2	33,7
proposed	59,3	1,2

Cyclical calculations

On-line calculator AlcoDrinks

http://inp.bsu.by/calculator/vcalcr.html

To	Плотность*,		RRF	Площадь,	Концентрация, мг/л (АА) ▼	
Компонент	мг/л	Средний**	Собственный	произвольн. ед.		
ацетальдегид	783400	1.337	1.337	31.216	75.84	
изобутиральдегид	793800	1.109	1.109	0		
этилформиат	916800	1.321	1.321	0		
ацетон	784500	1.300	1.300	0		
метилацетат	934200	1.387	1.387	3.481	8.77	
этилацетат	900300	1.117	1.117	121.388	246.40	
метанол	786600	1.223	1.223	23.757	52.80	
2-бутанон	805000	0.900	0.900	0		
2-пропанол	785000	0.969	0.969	0.917	1.61	
этанол	789300	1.000	1.000	434338	789300 (39.90 об. %	
диацетил	990000	2.019	2.019	0		
2-бутанол	806300	0.853	0.853	0		
1-пропанол	805300	0.679	0.679	471.362	581.61	
изобутанол	801800	0.581	0.581	585.582	618.27	
изоамилацетат	876000	0.707	0.707	0		
1-бутанол	809800	0.648	0.648	4.443	5.23	
изоамилол	813000	0.632	0.632	775.877	891.09	
гексанол	815300	0.600	0.600	0		
этиллактат	1032800	1.908	1.908	0		
циклогексанол	962400	0.556	0.556	0		
бензиловый спирт	1041900	0.909	0.909	0		
фенилэтанол	1013000	0.730	0.730	0		
проба	948060		1	,		