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The matrix elements of the process ep → ep
e(p1) + p(q1, s1) → e(p2) + p(q2, s2) , (1)

Mep→ep = (Je)
µ (Jp)µ

1

q2
, (2)

(Je)
µ = u(p2)γ

µu(p1) , (Jp)µ = u(q2)Γµ(q2)u(q1) , (3)

Γµ(q2) = F1γµ +
F2

4M
(q̂γµ − γµq̂ ) , q = q2 − q1, (4)

u(pi)u(pi) = 2me, u(qi)u(qi) = 2M ; p2
i = m2

e, q2
i = M2(i = 1, 2);

F1 and F2 are the Dirac and Pauli proton form factors (FFs).

The Sachs electric GE and magnetic GM FFS have advantage that the
scattering cross section has only terms proportional to G2

E and G2
M [1].

GE = F1 − τ F2 , GM = F1 + F2 , (5)

τ = Q2/4M2, Q2 = −q2.
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[1]. A.I. Akhiezer and V.B. Berestetsky, Quantum Electrodynamics,
Nauka, Moscow, 1969.



1. Rosenbluth Method or Rosenbluth Technique

In elastic electron proton scattering e(p1) + p(q1) → e(p2) + p(q2) there
are primarily two methods used to extract the proton form factors. The
first method is the Rosenbluth separation method, which uses
measurements of the unpolarized cross section and in the laboratory
reference frame when q1 = (M,0) and me = 0 in one-photon exchange
(Born) approximation read as [1]:

dσ

dΩ
=

α2E2 cos2(θe/2)

4E3
1 sin4(θe/2)

1

1 + τ

(

G2
E +

τ

ε
G2

M

)

. (6)

GE = F1 − τ F2 , GM = F1 + F2 .

Here τ = Q2/4M2, Q2 = −q2 = 4E1E2 sin2(θe/2), q = q2 − q1,
α = 1/137 - fine structure constant, ε−1 = 1 + 2(1 + τ) tan2(θe/2),

ε is the degree of the linear polarization of the virtual photon [2-4]!

[1]. M. Rosenbluth, Phys. Rev. 79, 615 (1950)
[2]. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).
[3]. A. Akhiezer, M. Rekalo, Fiz.Elem.Chast.Atom.Yadra 4, 662 (1973).
[4]. M. Galynskii and M. Levchuk, Yad. Fiz. 60, 2028 (1997).



The Rosenbluth formula in the arbitrary reference frame

[A.I. Akhiezer and V.B. Berestetsky, Quantum Electrodynamics, Nauka,
Moscow, 1969, in Russian, eq.(34.3.3), page 475.]

The Rosenbluth formula in the arbitrary reference frame read as:

dσ =
α2do

4w2

1

1 + τ
( G2

E YI + τ G2
M YII )

1

q4
, (7)

YI = (p+q+)2 + q2
+q2, YII = (p+q+)2 − q2

+(q2 + 4m2
e) ,

p+ = p1 + p2 , q+ = q1 + q2 .

The GE and GM FFS have the advantage that the scattering cross
section has only terms proportional to G2

E and G2
M [2].

[2]. A.J.R. Puckett, arXiv:1508.01456 [nucl-ex],
Recoil Polarization Measurements of the Proton Electromagnetic Form
Factor Ratio to High Momentum Transfer. MIT Ph.D. thesis, final
version accepted by MIT on Oct. 13, 2009. 313 pages.

It is the question arises: whether there is any physical meaning in the
decomposition of G2

E and G2
M in Rosenbluth’s cross section ????



2. Polarization transfer method of Akhiezer and Rekalo

A.I. Akhiezer and M.P. Rekalo proposed a method for measuring the
ratio of the Sachs form factors in the reaction ~ep → e~p [1,2]. Their
method relies on the phenomenon of polarization transfer from the
longitudinally polarized initial electron to the final proton and requires
measurement of the spin-dependent cross section. This method is called
by the polarization transfer or polarized target (PT) method. In papers
[1,2] was shown that the ratio of the degrees of longitudinal (Pl) and
transverse (Pt) polarizations of the scattered proton has the form

Pl

Pt

= −GM

GE

E1 + E2

2M
tan

θe

2
. (8)

[1] A. Akhiezer, M. Rekalo, DAN SSSR 13, 572 (1968),
[2] A. Akhiezer, M. Rekalo, Fiz.Elem.Chast.Atom.Yadra 4, 662 (1973).



Erroneous terminology (red color)

I. A. Qattan, J. Arrington, A. Alsaad, arXiv: 1502.02872 [nucl-ex]

Citation 1: In electron scattering there are primarily two methods used to
extract the proton form factors.

The first method is the Rosenbluth or Longitudinal-Transverse (LT)
separation method [1] for the case of the unpolarized cross section;

the second is the polarization transfer or polarized target (PT) method
[2, 3], which requires measurement of the spin-dependent cross section.

Citation 2: ε is the virtual photon longitudinal polarization parameter...

[1]. M. Rosenbluth, Phys. Rev. 79, 615 (1950).
[2]. N. Dombey, Rev. Mod. Phys. 41, 236 (1969).
[3]. A. Akhiezer, M. Rekalo, Fiz. Elem. Chast.Atom.Yadra 4, 662 (1973).



Erroneous terminology (red color)

A. V. Gramolin, V. S. Fadin, A. L. Feldman et al.

J.Phys. G: Nucl. Part. Phys. 41 (2014) 115001

dσBorn

dΩℓ

=
1

ε(1 + τ)

[

ε G2
E(q2) + τ G2

M (q2)
] dσMott

dΩℓ

, (9)

Citation:

1. where ε =
[

1 + 2(1 + τ) tan2 (θ/2)
]−1

is a convenient dimensionless
variable, lying in the range 0 < ε < 1;

2. ε describing the separation between the longitudinal (charge) and
transverse (magnetic) parts of the cross section;



The absolutely correct terminology (red color)

I found only one work [4], where the written words about the physical
meaning of the variable ε are absolutely correct....

Citation from [4], top of page 5:

”Let us introduce another set of kinematical variables: Q2, and the
degree of the linear polarization of the virtual photon, ε.

[4] G.I. Gakh, E. Tomasi-Gustafsson,
Model independent analysis of polarization effects in elastic
electron-deuteron scattering in presence of two-photon exchange.
Nuclear Physics A 799 (2008), pp. 127–150.



The discrepancy between the RT and JLab experiments
With the aid of Rosenbluth’s technique, it was found that the
experimental dependences of GE and GM on Q2 are well
described up to 5 − 6 GeV2 by the dipole-approximation expression

GE = GM/µp = GD(Q2) ≡ 1

(1 + Q2/0.71)2
∼ 1

Q4
, µp

GE

GM

≈ 1 , (10)

where µp is the proton magnetic moment (µp = 2.79).

Precision experiments based on employing of the method of Akhiezer and
Rekalo were performed at JLab. They showed that, in the range of
0.5 < Q2 < 5.5 GeV2, there was a linear decrease in the ratio
R = µpGE/GM with increasing Q2:

R ≡ µpGE/GM = 1 − 0.13 (Q2 − 0.04) ≈ 1 − 1

8
Q2 , (11)

which indicates that GE falls faster than GM . In the non-relativistic
limit, this fact could be interpreted as indicating that the spatial
distributions of charge and magnetization currents in the proton are
definitely different.



Polarization transfer experiments JLab data for Gp
E/Gp

M
A. Puckett et al., PRC, 85 (2012) 045203 →
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Present status of the question
In order to resolve this contradiction, it was assumed that the
discrepancy in question may be caused by disregarding, in the respective
analysis, the contribution of two-photon exchange (TPE):

[P. Guichon and M. Vanderhaeghen, Phys. Rev. Lett. 91, 142303 (2003)].
[C. Perdrisat et al., Prog. Part. Nucl. Phys. 59, 694 (2007)]
[J. R. Arrington et al., Prog. Part. Nucl. Phys. 66, 782 (2011)].

At the present time, three experiments aimed at studying the
contribution of TPE are known:

1) experiment at the VEPP-3 storage ring in Novosibirsk
I. A. Rachek, J. Arrington, V. F. Dmitriev et al.

Phys. Rev. Lett. 114, 062005 (2015)

2) the EG5 CLAS experiment at JLab
D. Adikaram, D. Rimal, L.B. Weinstein et al.

Phys. Rev. Lett. 114, 062003 (2015)

3) the OLYMPUS experiment at the DORIS accelerator at DESY
B.S. Henderson, L.D. Ice, C. O’Connor, R. Russell, J.C. Bernauer et al.

Phys. Rev. Lett. 118, 092501 (2017)



Present status of the question

[ M. V. Galynskii and E.A. Kuraev, Phys.Rev.D 89, 054005 (2014)]

We use of the hard-scattering mechanism (HSM) of perturbative QCD
(pQCD) under the assumption that the onset of pQCD starts around the
lower boundary of the region 1.0 ≤ Q2 ≤ 8.5 GeV2 of the experimental
measurements.

Abandoning the massless quarks, we were able to explain in the
one-photon exchange approximation the unexpected results of
measurements of the proton Sachs FFs ratio and analytically derive the
experimentally established formula of the linear decrease law for this ratio
at τ < 1.

For this purpose, we developed an approach which essentially is a
generalization of the constituent-counting rules of the pQCD for the case
of massive quarks. Our interpretation can be considered as a possible way
to solve the GE/GM problem.



Diagonal spin basis (DSB)
In the diagonal spin basis (DSB) spin 4-vectors s1 and s2 of protons with
4-momenta q1 and q2 (s1q1 = s2q2 = 0, s2

1 = s2
2 = −1) have the form [1]:

s1 = − (v1v2)v1 − v2
√

(v1v2)2 − 1
, s2 =

(v1v2)v2 − v1
√

(v1v2)2 − 1
, vi = qi/M . (12)

The spin vectors (12) obviously do not change under transformations of
the Lorentz little group (little Wigner group) common to particles with
4-momenta q1 and q2: Lq1,q2

q1 = q1, Lq1,q2
q2 = q2. This group is

isomorphic to one-parameter subgroup of the rotation group SO3 with
axis whose direction is determined by the 3-vector [2]:

a = q2/q20 − q1/q10 . (13)

The direction of a (13) have property that the projections of the spins of
both particles on it simultaneously have definite values. Therefore, the
DSB naturally makes it possible to describe the spin states of systems of
any two particles by means of the spin projections on the common
direction given by the 3-vector (13).
[1] S. Sikach, Vesti AN BSSR, ser. fiz.-m.n, 2, 84 (1984)
[2] F.I. Fedorov, TMF 2, 3, 343 (1970)



Diagonal spin basis (DSB)

Since vector a (13) is the difference of two vectors and the geometrical
image of the difference of two vectors is the diagonal of a parallelogram,
hence the name ”diagonal spin basis” given by academician F.I. Fedorov.

Let us consider the realization DSB in the rest frame of the initial proton,
where q1 = (M,0). Here a (13) equal a = n2 = q2/|q2|, i.e. common
direction for spin projection is the direction of the motion of the final
proton, thus this final proton polarization state is a helicity and spin
4-vectors s1 and s2 (12) have the form:

s1 = (0, n2), s2 = (|v2|, v20 n2), c1 = c2 = n2 = q2/|q2| , (14)

i.e. axis c1 and c2 is coincide with the direction of the final proton.

Breit system, where q2 = −q1, is a special case of DSB. In the Breit
system where q1 = (q0,−q), q2 = (q0, q), the spin states of the initial
and final protons are helicity, so they spin 4-vectors s1 and s2 in DSB
have the form:

s1 = (−|v|, v0n2), s2 = (|v|, v0n2) , n2 = q2/|q2| . (15)



Spin operators in the DSB

In the DSB spin operators for initial and final proton have the same form [1]:

σ = σ1 = σ2 = γ5ŝ1v̂1 = γ5ŝ2v̂2 = γ5b̂0b̂3 = ib̂1b̂2 , (16a)

σ±δ = σ±δ
1 = σ±δ

2 = −i/2γ5b̂±δ, b±δ = b1 ± iδb2 , δ = ±1 , (16b)

σuδ(qi) = δuδ(qi) , σ±δu∓δ(qi) = u±δ(qi). (16c)

The set of unit 4-vectors b0, b1, b2, b3 is an orthonormal basis of 4-vectors
bA, bAbB = gAB (A, B = 0, 1, 2, 3):

b0 = q+/
√

q2
+ , b3 = q−/

√

−q2
− ,

(b2)µ = εµνκσbν
0bκ

3 pσ
1/ρ , (b1)µ = εµνκσbν

0bκ
3bσ

2 , (17)

where q− = q2 − q1, q+ = q2 + q1, εµνκσ is the Levi-Civita tensor
(ε0123 = −1), ρ is determined from the normalization conditions
b2
1 = b2

2 = b2
3 = −b2

0 = −1.

[1]. M. Galynskii, S. Sikach, Phys.Part.Nucl. 29, 469 (1998),



The matrix elements of the proton current in the DSB

e(p1) + p(q1, s1) → e(p2) + p(q2, s2) . (18)

Mep→ep = u(p2)γ
µu(p1) · u(q2)Γµ(q2)u(q1)

1

q2
, (19)

Γµ(q2) = f1 γµ +
f2

4M
( q̂γµ − γµq̂ ) , (20)

Matrix elements (amplitudes) for proton current defined as:

(J±δ,δ
p )µ = u±δ(q2)Γµ(q2)uδ(q1) , (21)

Γµ(q2) = F1 γµ +
F2

4M
( q̂γµ − γµq̂ ) . (22)

They were calculated in DSB by S.Sikach (1984):

(Jδ,δ
p )µ = 2MGE(b0)µ , (23)

(J−δ,δ
p )µ = −2δM

√
τ GM (bδ)µ . (24)

S. Sikach, Vesti AN BSSR, ser. fiz.-m.n, 2, 84 (1984)



The Rosenbluth formula in the arbitrary reference frame

dσ

dQ2
=

πα2

4I2
|Mep→ep|2 , I2 = (p1q1)

2 − m2M2 . (25)

|Mep→ep|2 =
(1 + δ1δ2)

2
W δ,δ

ep→ep +
(1 − δ1δ2)

2
W−δ,δ

ep→ep . (26)

W δ,δ
ep→ep =

4M2

q4
−

G 2
E

1

2
Tr(p̂2 + m)b̂0(p̂1 + m)b̂0 , (27)

W−δ,δ
ep→ep =

4M2

q4
−

τ G 2
M

1

2
Tr(p̂2 + m)b̂δ(p̂1 + m)b̂∗δ) . (28)

W δ,δ
ep→ep = G2

E Y1

4 M2

q2
+q4

−

, Y1 = (p+q+)2 + q2
+q2

−, (29)

W−δ,δ
ep→ep = τG2

M Y2

4M2

q2
+q4

−

, Y2 = (p+q+)2 − q2
+(q2

− + 4m2) ,(30)

dσδ1,δ2

dQ2
=

πα2

4I2 (1 + τ)

(

1 + δ1δ2

2
G2

E Y1 +
1 − δ1δ2

2
τ G2

M Y2

)

1

q4
−

. (31)



Differential cross section for the e~p → e~p process in the

arbitrary reference frame

dσδ1,δ2

dQ2
=

πα2

4I2 (1 + τ)

(

1 + δ1δ2

2
G2

E Y1 +
1 − δ1δ2

2
τ G2

M Y2

)

1

q4
−

. (32)

Thus, the differential cross section for the e~p → e~p process naturally
splits into the sum of two terms containing only the squares of the Sachs
FFs and corresponding to the contribution of transition without (∼ G2

E)
and with (∼ G2

M ) proton spin-flip.

dσ0

dQ2
=

πα2

4I2 (1 + τ)
( G2

E Y1 + τ G2
M Y2 )

1

q4
−

, (33)

a = q2/q20 − q1/q10, c = c1 = c2 = a/|a|, c2 = 1 . (34)



Differential cross section for the e~p → e~p process in the

laboratory system

a = q2/q20 − q1/q10, c = c1 = c2 = a/|a|, c2 = 1 . (35)

In the laboratory system (LS), where q1 = (M,0), q2 = (q20, q2), the
axes c1 and c2 coincide with the direction of motion of the final proton

c1 = c2 = n2 = q2/|q2| , (36)

s = (s0, s) , s0 = v c , s = c + ((c v)v)/(1 + v0) , (37)

s1 = (0, n2) , s2 = (|v2|, v20 n2) , (38)

τq1
= (q̂1 + M)(1 − δ1γ5ŝ1)/2 , s1q1 = 0 , δ1 = ±1 ,

τq2
= (q̂2 + M)(1 − δ2γ5ŝ2)/2 , s2q2 = 0 , δ2 = λ2 = ±1 .

dσδ1,δ2

dΩe

=
α2E2 cos2(θe/2)

4E3
1 sin4(θe/2)

1

1 + τ

(

1 + δ1δ2

2
G2

E +
1 − δ1δ2

2

τ

ε
G 2

M

)

. (39)

dσ

dΩ
=

α2E2 cos2(θe/2)

4E3
1 sin4(θe/2)

1

1 + τ

(

G2
E +

τ

ε
G2

M

)

. (40)



Conclusion

We showed that the term in Rosenbluth’s cross section proportional to
G2

E corresponds to the contribution without spin-flip whereas the term
proportional to G2

M corresponds to spin-flip transition.

We offer an new independent approach to measure of the squares of
Sachs form factors. In our approach this Sachs form factors are
determined by the differential cross sections with non-spin-flip and
spin-flip of initial proton, which must be rest and totally polarized in the
direction of motion of the recoil proton.

We supposed that both initial and the recoil protons are polarized
collinearly (anti-collinearly) to the 3-momentum of the recoil proton and,
besides the polarization states are pure ones.
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