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Theory of diffracted channeling radiation
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Monochromatic x-ray emission is predicted for MeV channeled electrons/positrons. The mechanism of this
radiation is intuitively understood as diffraction of virtual channeling radiation into the direction of the Bragg
angles with respect to the electron beam. Our numerical calculations predict that spectral density of the emitted
x rays is about ten times larger than that of parametric x-ray radiation.
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I. INTRODUCTION

There is no doubt that making a monochromatic, inten
tunable, as well as compact x-ray source will bring furth
development to various fields of science, technology,
medicine. At present, channeling radiation~CR! is one of the
candidates for such an x-ray source. Indeed, CR up to;0.1
photon pere2 per sr. has been observed,1 demonstrating tha
CR can be used as a practical x-ray source.

Unfortunately, CR has a large continuous background
diation due to incoherent bremsstrahlung. Therefore,
need a monochromator for extraction. Furthermore, since
is emitted along the electron beam, we need equipmen
sweeping out the electrons. This equipment will cause
x-ray generating system based on CR to become rather c
plex and large.

Recently, a new type of coherent x-ray radiation fro
crystals, called ‘‘parametric x-ray radiation’’~PXR!, has be-
come a new candidate for the compact x-ray source of
future. In PXR, it is not difficult to extract x rays becau
they are emitted in the direction satisfying the Bragg con
tions. Moreover, the background radiation in PXR is neg
gibly small.2 However, the intensity of PXR is abou
1023– 1024 times smaller than that of CR.

Taking into account the advantages in CR and PXR, i
interesting to consider the possible use of the target cry
itself as a monochromator for CR. As is well known, a Me
channeled electron emits CR spontaneously by changin
transverse energy fromE',i to E', f . Due to the Doppler
shift, the frequency of CR emitted in the forward directio
becomesvCR'2g2V i f , whereg is the Lorentz factor and
V i f 5(E',i2E', f)/\. Let vB represent the frequency o
photons satisfying the Bragg conditionvB5cugu/(2 sinuB),
where g is the reciprocal-lattice vector anduB the Bragg
angle. If the condition

vCR'vB ~1.1!

is satisfied, the CR photon will be diffracted in the crystal.
other words, we have an x-ray emission as a result of
fraction of virtual CR. We call this radiation process ‘‘di
fracted channeling radiation’’~DCR!.
0163-1829/2001/63~17!/174112~7!/$20.00 63 1741
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CR taking into account diffraction is discussed in Ref.
and calculated using a kinematical theory.4,5 However, nei-
ther the absolute value nor the angular distribution has b
given. This is because the kinematical theory results i
divergence at the resonance condition of Eq.~1.1!.4,5

In this paper, we use the dynamical theory for x-ray ph
tons, predicting various properties of DCR. It is shown th
in comparison with PXR, the spectral density of DCR is ve
large and the width of the angular distribution is very na
row. The peak intensity of DCR is about 10 times larger th
that of PXR.

II. THEORY

A. Frequency of diffracted channeling radiation

In this section, we derive the expression for the frequen
of DCR from the energy and momentum-conservation eq
tions. When a photon is emitted from a channeled electr
the photon energy\v is given as the difference of the initia
and final energy of the electron as

Ei2Ef5\v, ~2.1!

where Ei'E(pi)1E',i , Ef'E(pi8)1E', f , E(pi)
5A(cpi)

21m2c4, andpi is the momentum along the chan
nel. The momentum is conserved only in the direction p
allel to the channel

pi2pi85\~ki1gi!, ~2.2!

because the transverse state of the channeled electro
bound. From Eqs.~2.1! and ~2.2!, under the condition satis
fying \v!Ei ,Ef , we obtain

v5
g•vi1V i f

12b i* cosQ
, ~2.3!

where v5c* uku, k is the wave vector of the photon,c*
5c/A«0, «0 is the average dielectric constant,b i* 5v i /c* ,
vi the velocity of the electron along the channel, andQ the
observation angle.

If V i f 50, Eq. ~2.3! reduces to the well-known formula
for the frequency of PXR6
©2001 The American Physical Society12-1
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v5
g•vi

12b i cosQ
. ~2.4!

On the other hand, ifg50, then Eq.~2.3! reduces to the
expression of the CR frequency:8,16

v5
V i f

12b i* cosQ
. ~2.5!

It should be noted that the approximated expressionv
'2g2V i f at the forward direction is modified to

v'
2V i f

g221ux0~v!u
, ~2.6!

if Aux0(v)u;1/g is satisfied.16 Equation~2.3! may be con-
sidered as a unified expression for the frequencies of
PXR, and DCR.

It is worthwhile to mention that Eq.~2.3! is not only held
for the bound-bound transitions but also for the free-free
free-bound transitions. For example, let us consider the f
free transitions. As shown by Andersen7 and in Ref. 8, in this
case we may expect coherent bremsstrahlung forg50. Cor-
respondingly, forgÞ0, we may have ‘‘diffracted coheren
bremsstrahlung.’’9 We will not discuss further this possibil
ity but concentrate on DCR from now on.

B. Radiation processes and their matrix elements

In this section we derive the radiation probability f
DCR. We start with the Fermi golden rule,

wIF5
2p

\
u^FuHintuI &u2rF , ~2.7!

where I and F represent the initial and final states of th
system as a whole, respectively, andrF the density of the
final state.

For simplicity, from now on we consider planar chann
ing of electrons. In our case, the effect of spin is negligib
small.6 Then the Hamiltonian for the interaction between t
channeled electron and the photon field may be given by

Hint52
e

gmc
A•p̂, ~2.8!

where p̂ is the momentum operator. The photon fieldA is
given in a form of the Bloch wave~see the appendix!

A~r !5(
k

(
g

Ag exp@ i ~k1g!•r #1c.c. ~2.9!

The wave function for the planar-channeled electron is gi
as16

c (s)~r !5
1

ALxLz

wn~y!eipi•r i /\, ~2.10!

where s5(n,p) and Lx and Lz are the normalization con
stants. The factor exp(ipi•r i /\)/ALxLz describes the free
17411
R,

d
e-

-

n

state along the channel andwn(y) the transverse state ob
tained as a solution of the transverse Schro¨dinger equation

F p̂'
2

2gm
1V~y!Gwn~y!5E',nwn~y!. ~2.11!

Since the Lindhard continuum potentialV(y) is periodic,
wn(y) is written in the form of the Bloch wave

wn~y!5
1

ALy
(
G

CG
(n)~py!exp@ i ~py /\1G!y#, ~2.12!

whereG is the reciprocal-lattice vector associated with t
channel planes.

Using Eqs.~2.9! and ~2.10!, the matrix element may be
decomposed into two parts:

^FuHintuI &

52^w f ,pi8u
e

gmc
@A0* exp~2 ik•r !#•p̂uw i ,pi&

2^w f ,pi8u
e

gmc (
g(Þ0)

$Ag* exp@2 i ~k1g!•r #%•p̂uw i ,pi&

[M0
( i f )1 (

g(Þ0)
Mg

( i f ) . ~2.13!

The termM0
( i i ) corresponds to the emission of a photon wit

out changing the transverse state~i.e., theintraband transi-
tion!. Only the momentum along the channel changes in
case because the transverse state is bound. As we hag
50 andV i i 50 for this transition, Eq.~2.3! reduces to the
Čerenkov condition 12b i* cosQ50. Therefore,M0

( i i ) repre-
sents the Cˇ erenkov radiation under the channeling conditio
Of course, as x rays do not satisfy the Cˇ erenkov condition,
M0

( i i ) does not contribute in our problem.
For the conditioniÞ f , M0

( i f ) represents the normal CR. I
a strict sense, a certain effect of diffraction may take pla
because in the two-wave approximation~see the appendix!,
A0 has a form of the superposition of two plane waves on
slightly different energy branches. However, since the diff
ence of the energies is of the order ofuxgu;102421026 this
dynamical effect on CR may be usually neglected.

The second term in Eq.~2.13!, Mg
( i f ) , represents the emis

sion of a diffracted photon. The matrix elementMg
( i i ) , where

the transition of the channeled electron isintraband, gives
PXR under channeling conditions~PXRC!. PXRC is differ-
ent from the normal PXR in that its matrix element includ
the form factor of channeling states. Numerically howev
as we will discuss in Sec. III, the difference between PXR
and PXR is rather small.

The matrix elementMg
( i f ) ( iÞ f ), which is of our present

interest, represents the emission of a diffracted photon du
the interband transitionbetween the transverse states~DCR!.
In the next section, we derive the radiation probability
DCR and PXRC by calculatingMg

( i f ) in more detail.
2-2
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C. Analytical expression of PXR and DCR

From Eqs.~2.8!, ~2.10!, and~2.13!, we obtain the matrix
element for the emission of a diffracted photon

M 2g
( i f )52S e

cD F ~A2g* •vi!^w f ue2 i (k2g)yyuw i&

1
1

gm
~A2g* !y^w f ue2 i (k2g)yyp̂yuw i&G

3d~pi2pi8u\k2gi!, ~2.14!

wherep̂y52 i\(d/dy), (A2g* )y and (k2g)y are they com-
ponents ofA2g* andk2g, respectively, andd(AuB) the Kro-

necker delta. Using the relation (2 i\/gm) p̂y5@Ĥy ,y#, Eq.
~2.14! is rewritten as

M 2g
( i f )52S e

cD @~A2g* •vi!^w f ue2 i (k2g)yyuw i&

1 i ~A2g* !yV i f ^w f uyuw i&#d~pi2pi8u\k2gi!.

~2.15!

As mentioned in Sec. II B, Eq.~2.15! includes two types
of transitions: the intraband transition (i 5 f ) and the inter-
band transition (iÞ f ).

First, we consider the intraband transition. From E
~2.15!, we obtain

M 2g
( i i )52S e

cD ~A2g* •vi!Fii @~k2g!y#d~pi2pi8u\k2gi!,

~2.16!

where

Fii ~q!5^w i ue2 iqyuw i& ~2.17!

is the form factor for the channeling state that represents
effect of channeling on PXR. If we substitutew i by the plane
wave exp(ipyy/\)/ALy, the form factor becomes the Kro
necker deltad(py2py8u\q).10 In this case, Eq.~2.16! reduces
to the ordinary PXR matrix element6 and within the two-
wave approximation, we obtain the dynamical expression
the radiation probability of PXR per unit length after sum
ming up the final momentum of the channeled electron11,12

S dN

dux duy dzD
PXR

5
avB

4pc sin2 uB

3S ux
2

4~11Wvi
2 !

1
uy

2

4~11Wv'
2 !

D ,

~2.18!

where

Wvs[
1

2uxguPs
F ux

21uy
21ukin

2 2
uxgu2Ps

2

ux
21uy

21ukin
2 G ,

~s5i ,' !. ~2.19!
17411
.

e

f

ux and uy are the angles of emission measured from
direction satisfying the Bragg condition~see Fig. 1!, and
ukin

2 5g221ux0u.13 In the above calculation, we have a
sumed thatux,y!1 is satisfied.

Next, we consider the interband transition correspond
to DCR. Using the dipole approximatione2 i (k2g)yy'1
2 i (k2g)yy to Eq. ~2.15!, we obtain

M 2g
( i f )5S e

cD ^w f uyuw i&@ i ~k2g!y~A2g* •vi!1 i ~A2g* !yV i f #

3d~pi2p8iu\k2gi!. ~2.20!

Using Eq.~2.20!, the radiation probability of DCR per uni
length is obtained as

S dN

dux duy dzD
DCR

5
avB

3yi f
2

4pc3 sin2 uB

3S ux
2uy

2

4~11Wi
2!

1

S uy
22

V i f

vB
D 2

4~11W'
2 !

D ,

~2.21!

wherea is the fine-structure constantyi f 5^w f uyuw i&,

Ws5
1

2uxguPs
FR2

uxgu2Ps
2

R G , ~2.22!

and

FIG. 1. Geometry of our system. The relativistic electron trav
along theZ axis. The channel planes are parallel to theXZ plane.
The uxuy coordinates are also introduced to represent the ang
distribution of the emitted photons. TheZ axis indicates the direc-
tion satisfying the Bragg condition with respect to the beam dir
tion. The diffraction plane is perpendicular to the channeling pla
2-3
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R5Fux2S V i f

vB
D cotuBG2

1uy
21ukin

2 22S V i f

vB
D . ~2.23!

Ws corresponds to ‘‘the resonance error’’ in the theory
dynamical diffraction14,15 ~also, see the appendix!. In the
next section, we discuss various properties of DCR in m
detail by performing numerical calculations.

III. NUMERICAL RESULTS AND DISCUSSION

First of all, we note that an experimental condition f
observing DCR is not as simple as that for PXR because
resonant condition depends on both the observation a
and the energy of the channeled electron.

As a typical example, we calculate the intensity of DC
for 8–20-MeV electrons channeled along the Si~110! plane.
The incident angle to the channel plane is tilted 0.02°
obtaining enough population into the excited statei 51. The
energy of the channeled electron is chosen so that the s
gest CR peak appears in the x-ray energy region. From
~1.1! and ~2.3!, for the 1→0 transition of a 10-MeV chan
neled electron, we obtain\vB57.1 keV for the~111! plane
diffraction satisfying the resonant condition at the obser
tion angleQ52uB532.2°. The channeling states have be
obtained by the many-beam calculations. ForV(y), we have
used the thermally averaged Doyle-Turner potential8,16 at T
5300 K.

In Fig. 2, we show a typical angular distribution of DCR
For comparison, the angular distribution of PXR is show
The peak intensity of DCR is ten times stronger than tha
PXR. In other numerical calculations, we have obtained
to a 102 enhancement at higher incident energies. The an
lar width of DCR is much narrower than that of PXR. This
because the width of PXR is of the order ofukin whereas for
DCR it is of the order ofAuxgu, andukin@Auxgu is satisfied
for MeV electrons.

Figure 3 shows the incident energy dependence of D
Below a certain energy, DCR is suddenly suppressed. T

FIG. 2. Angular distribution of the intensity of DCR and PX
emitted by a 10-MeV electron channeled along the Si~110! plane.

The diffraction plane is Si(111̄). The resonant condition is satisfie
by the 1→0 transition.
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behavior is understood in terms of the energy dependenc
the resonance errorWs . RegardingWs as a function ofux ,
the solution of the equationWs50 is given by

ux5cotuBS V i f

vB
D6AD, ~3.1!

where

D52S V i f

vB
D2

1

g2
2ux0u2uy

26uxguPs . ~3.2!

When the conditionD,0 is satisfied, we haveWs.0 for all
ux . Under this condition DCR is suppressed because, as
can see from Eq.~2.21!, DCR becomes significant only at
certain narrow region ofux whereWs'0 is satisfied. On the
other hand, whenD>0 is satisfied, two sharp DCR peak
arise atux satisfying Eq.~3.1! for the 1→0 transition. Each
peak actually has a fine structure of the double peak sim
to Fig. 2 because it has two maxima at the angles satisfy
Eq. ~3.1! while minima at

ux5cotuBS V i f

vB
D6A2S V i f

vB
D2

1

g2
2ux0u2uy

2, ~3.3!

which corresponds to the angles forWs→`. The small
peaks appearing atE.16 MeV are associated with the
→1 transitions. Other transitions, e.g., 3→2, are too small
to be seen.

The above discussion suggests that we may introduce
threshold energy for observing DCR by

FIG. 3. ~a! Angular distribution of DCR as a function of th
incident energy. Other parameters are same as in Fig. 2.~b! The
same as~a! but for lower energy. As the energy decreases below
threshold energy@Eq. ~3.4!#, DCR is suppressed very rapidly.
2-4



-

us

is
lle
f

th
r o
c-

c
ta

Du

be
y
s

ti
a

al
io

ion
v

in
s
b
t

in

c
is
uc

the
to

lar

en-
s of
d
an-
ion,

ed
CR
or-
led

i

tic

tric
it

the

al-
n

THEORY OF DIFFRACTED CHANNELING RADIATION PHYSICAL REVIEW B63 174112
g th5F2S V i f

vB
D2ux0u1uxguG21/2

. ~3.4!

Neglecting the weaker dependence ofV i f on g, one may
predict that a necessary condition for observing DCR isg
.g th . It would be worthwhile to mention that if bothux0u
anduxgu are neglected, Eq.~3.4! recovers the ‘‘resonant con
dition’’ Eq. ~1.1!.

Finally, we consider PXRC. As mentioned in the previo
section, the matrix element of PXRC, Eq.~2.16!, differs
from that of PXR in that it includes the form factorFii @(k
2g)y#. The correction is very small for x rays. To see th
for simplicity, we assume that the diffraction plane is para
to the uy axis (gy50). Since the angular distribution o
PXRC has a width of the order of 1/g, it is similar to that of
PXR. Thus we haveky'kuy&k/g. In this case we may
approximate that exp(2ikyy);12ikyy2(kyy)2 and the form
factor may be expanded as

Fii ~ky!;Fii ~0!2
ky

2

2
^w i uy2uw i& ~3.5!

for the emission of x rays satisfyingk;d21, whered is the
lattice constant. From Eq.~3.5!, we may conclude that the
difference between PXR and PXRC is small because
contribution from the second term is less than of the orde
g22!1. Indeed, our numerical calculation for 10-MeV ele
trons indicates that the second term in Eq.~3.5! is about 102

times smaller than the first term.
So far, we have neglected the inelastic collisions. In fa

a channeled electron is scattered by thermally displaced
get atoms, target electrons, impurities, dislocations, etc.
to the inelastic scattering the transverse statew i becomes
unstable, having a finite lifetimet i . As is well known, this
causes the linewidth in channeling radiation. DCR will
also affected by the inelastic scattering. One possible wa
take into account the effect of channeling lifetime is to u
simple exponentially decaying states16

f i~y,t !5w i~y!e2t/2t i. ~3.6!

It should be noted, however, that this model will overes
mate the effect especially for a thick target because rech
neling is not negligible at all. For detailed quantitative c
culations, therefore, we should consider the populat
dynamics by using a master equation,16 which is outside the
scope of our present paper.

IV. CONCLUSIONS

In this paper we have considered the effect of diffract
on channeling radiation from relativistic electrons. We ha
derived the frequency condition of the diffracted channel
radiation ~DCR!, which includes that of PXR and CR a
special conditions. We have shown that PXR emitted
channeled electrons occurs as the intraband transition in
quantum transverse states whereas DCR occurs as the
band transition.

The numerical calculations for 10-MeV channeled ele
trons along Si~110! planes have shown that DCR intensity
about ten times stronger and the angular distribution is m
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narrower than that of PXR. It should be noted that as
incident energy increases, the peak intensity ratio of DCR
PXR becomes larger, while the width of the DCR angu
distribution becomes narrower.

It has also been shown that the incident energy dep
dence of DCR has a certain threshold. These propertie
DCR will be helpful in discriminating between DCR an
PXR experimentally. To observe DCR, the energy of ch
neled electrons should be in the quantum channeling reg
i.e., typically &20 MeV for planar channeling and&10
MeV for axial channeling so that the principal CR is emitt
at x-ray energies. In this paper we have considered D
from planar-channeled electrons only, but it is straightf
ward to extend our theory to the case of axially channe
electrons as well as planar-channeled positrons.
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APPENDIX: DYNAMICAL DIFFRACTION OF X RAYS

The Maxwell equations describing the electromagne
waveA(r ) inside a crystal are given as

div@«~r !A~r !#50, ~A1!

rot rot A~r !2S v

c D 2

«~r !A~r !50. ~A2!

Since the crystal has a periodic structure, the local dielec
function «(r ) is also periodic. Therefore, we may expand
into the Fourier series as

«~r !5«01«8~r !, ~A3!

«8~r !5 (
g(Þ0)

xge
ig•r, ~A4!

xg52
4pe2

mv2
rg , ~A5!

where«0511x0 is the mean dielectric constant,xg the Fou-
rier component of the local electric susceptibility, andrg the
Fourier component of the electron density. According to
Bloch theorem, the wave functionA(r ) as a solution of Eqs.
~A1! and ~A2! becomes the Bloch wave

A~r !5(
g

Age
ikg•r1c.c. ~A6!

Substituting Eqs.~A3!–~A6! for Eqs.~A1! and~A2!, we ob-
tain the fundamental equation of diffraction

F kg
2

K0
2

212x0GAg5 (
h(Þg)

xg2hAh , ~A7!

whereK05v/c.
When the Bragg condition associated with a reciproc

lattice vectorg is satisfied, we may expect that the conditio
2-5
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uAhu!uA0u,uAgu holds forhÞ0,g. In this case we may use th
two-wave approximation

A~r !'A0eik•r1Age
ikg•r. ~A8!

Then, from Eq.~A7!, we obtain the two coupled equations

F k0
2

K0
2

212x0GA02x2gAg50, ~A9!

F kg
2

K0
2

212x0GAg2xgA050. ~A10!

By introducing the polarization vectorehs , Ah (h50,g) is
rewritten as

Ah5 (
s5i ,'

ehsAhs , ~A11!

whereehs is the polarization vector, andi and' indicate the
polarization direction parallel and perpendicular to the d
fraction plane~i.e., the plane including bothk0 andkg), re-
spectively. For further simplicity, let us definejh andPs as
follows:

2jh5
kh

2

K0
2 212x0 , ~A12!

Ps5H e0'•eh'51 ~ for s5' !

e0i•ehi.cos~2uB! ~ for s5i !
. ~A13!

Using Eqs.~A11!–~A13!, Eqs.~A9! and ~A10! may be re-
written in the form of the matrix equation

S 2j0 2x2gPs

2xgPs 2jg
D S A0s

Ags
D 50. ~A14!

Equation~A14! has nontrivial solutions only if the determ
nant of the matrix satisfies

4j0jg2uxgu2Ps
250. ~A15!

Under this condition, from Eq.~A14! we obtain the follow-
ing relation betweenAgs andA0s :

Ags5
2j0

x2gPs
A0s5

xgPs

2jg
A0s . ~A16!

For describing the dynamical effect, it is convenient to int
duce the ‘‘resonance error’’Ws defined by

Ws5
kg

22k0
2

2K0
2uxguPs

. ~A17!

UsingWs , j0 andjg as the solutions of Eq.~A15! are given
by

j0
(6)5

1

2
uxguPs~2Ws6A11Ws

2 !, ~A18!

jg
(6)5

1

2
uxguPs~Ws6A11Ws

2 !. ~A19!
17411
-

-

Next, we consider the boundary condition that determin
the amplitude of the internal field excited by the extern
field. The external field is written as

As
(0)~r !5A0s

(0)e0seik0
(0)

•r1c.c., ~A20!

while the internal field as

As~r !5A0s
(1)e0seik0

(1)
•r1A0s

(2)e0seik0
(2)

•r1Ags
(1)egseikg

(1)
•r

1Ags
(2)egseikg

(2)
•r1c.c., ~A21!

where we have approximated the direction of the polari
tion vectors asegi

(1)'egi
(2) because the difference is of th

order ofuxgu. In the above, (1) and (2) imply the wave on
the upper branch and on the lower branch, respectively.
relation between the external field and the internal field
schematically shown in Fig. 4. At the surface (z50). Since
the g wave appears only inside the crystal, the bound
condition may be given as

A0s
(0)5A0s

(1)1A0s
(2) , ~A22!

05Ags
(1)1Ags

(2) . ~A23!

Then, from Eqs.~A16!, ~A22!, and ~A23!, each componen
of the internal field is expressed by the external field. Us
Ws , we obtain

A0s
(1)5

1

2 S 11
Ws

A11Ws
2 D A0s

(0) , ~A24!

A0s
(2)5

1

2 S 12
Ws

A11Ws
2 D A0s

(0) , ~A25!

Ags
(1)52

1

2

1

A11Ws
2

A0s
(0) , ~A26!

FIG. 4. The boundary condition for the x-ray incident on a cry
tal near the Bragg condition~the Laue case!. Inside the crystal, x
rays are excited onto the two branches (1) and (2) due to the
dynamical effect.k0

(6) and kg
(6) represent the primary waves an

the diffracted waves, respectively.
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Ags
(2)5

1

2

1

A11Ws
2

A0s
(0) . ~A27!
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These expressions have been used for the calculations oAg
appearing in Sec. II C. For obtaining the field correspond
to the emitted photon, the reciprocity theorem has be
applied.17
y
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