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Theory of diffracted channeling radiation
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Monochromatic x-ray emission is predicted for MeV channeled electrons/positrons. The mechanism of this
radiation is intuitively understood as diffraction of virtual channeling radiation into the direction of the Bragg
angles with respect to the electron beam. Our numerical calculations predict that spectral density of the emitted
X rays is about ten times larger than that of parametric x-ray radiation.
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[. INTRODUCTION CR taking into account diffraction is discussed in Ref. 3
and calculated using a kinematical thedryHowever, nei-
There is no doubt that making a monochromatic, intensether the absolute value nor the angular distribution has been
tunable, as well as compact x-ray source will bring furthergiven. This is because the kinematical theory results in a
development to various fields of science, technology, andlivergence at the resonance condition of Bgl).*®
medicine. At present, channeling radiati@R) is one of the In this paper, we use the dynamical theory for x-ray pho-
candidates for such an x-ray source. Indeed, CR up@al  tons, predicting various properties of DCR. It is shown that,
photon pere™ per sr. has been observedemonstrating that in comparison with PXR, the spectral density of DCR is very
CR can be used as a practical x-ray source. large and the width of the angular distribution is very nar-
Unfortunately, CR has a large continuous background rarow. The peak intensity of DCR is about 10 times larger than
diation due to incoherent bremsstrahlung. Therefore, wéhat of PXR.
need a monochromator for extraction. Furthermore, since CR

is emit_ted along the electron be_am, we need e_quipment for Il. THEORY

sweeping out the electrons. This equipment will cause the . ) o

x-ray generating system based on CR to become rather com- A Frequency of diffracted channeling radiation

plex and large. In this section, we derive the expression for the frequency

Recently, a new type of coherent x-ray radiation fromof DCR from the energy and momentum-conservation equa-
crystals, called “parametric x-ray radiatiofPXR), has be-  tions. When a photon is emitted from a channeled electron,
come a new candidate for the compact x-ray source of theéhe photon energ§ w is given as the difference of the initial
future. In PXR, it is not difficult to extract x rays because and final energy of the electron as
they are emitted in the direction satisfying the Bragg condi-

tions. Moreover, the background radiation in PXR is negli- E—Ei=fo, 2.0
gibly small?> However, the intensity of PXR is about ,
103-10* times smaller than that of CR. where Ei~E(p)+E.;, E~E(p))+E.s, E(p)

Taking into account the advantages in CR and PXR, it is= V(cpj)°+m“c®, andp is the momentum along the chan-
interesting to consider the possible use of the target crystalel. The momentum is conserved only in the direction par-
itself as a monochromator for CR. As is well known, a MeV allel to the channel
channeled electron emits CR spontaneously by changing its
transverse energy fror&, ; to E, ;. Due to the Doppler pi—p| =%k +g), (2.2
shift, the frequency of CR emitted in the forward direction
becomeswcr~2y?Qjs, Wherey is the Lorentz factor and
Oi=(E.i—E, f)/h. Let wg represent the frequency of
photons satisfying the Bragg conditiass = c|g|/(2 sinfg),
where g is the reciprocal-lattice vector anélg the Bragg

because the transverse state of the channeled electron is
bound. From Eqs(2.1) and(2.2), under the condition satis-
fying w<<E,; ,E;, we obtain

angle. If the condition . g- v+ Q¢ 23
1-pBj cos® '
WcR™ @B 1D where o=c*|k|, k is the wave vector of the photom*

=cl\eg, &g is the average dielectric constayﬂﬁf =y|/c*,
is satisfied, the CR photon will be diffracted in the crystal. Inv the velocity of the electron along the channel, &dhe
other words, we have an x-ray emission as a result of difobservation angle.
fraction of virtual CR. We call this radiation process “dif- If Q;;=0, Eq. (2.3 reduces to the well-known formula
fracted channeling radiation{DCR). for the frequency of PXR
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1—-pjcosO’

On the other hand, i§=0, then Eq.(2.3 reduces to the
expression of the CR frequengy®

(2.9

Qif
w=— (2.5
1-Bj cos®

It should be noted that the approximated expression
~2v%Q);; at the forward direction is modified to

O
Y+ xo(®)]
it \V[xo(w)|[~1/y is satisfied® Equation(2.3) may be con-

(2.6
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state along the channel ang,(y) the transverse state ob-
tained as a solution of the transverse Sdimger equation

~2
2Ly

2ym (2.11

enly)= EL,n@n(Y)-

Since the Lindhard continuum potenti¥l|(y) is periodic,
¢on(y) is written in the form of the Bloch wave

1

enly)= 3

% CcO(pyexdi(p,/h+G)y], (2.12

T

where G is the reciprocal-lattice vector associated with the
channel planes.
Using Egs.(2.9) and (2.10), the matrix element may be

sidered as a unified expression for the frequencies of CRjecomposed into two parts:

PXR, and DCR.
It is worthwhile to mention that Eq2.3) is not only held

<F|Hint||>

for the bound-bound transitions but also for the free-free and

free-bound transitions. For example, let us consider the free-

free transitions. As shown by Anderdand in Ref. 8, in this
case we may expect coherent bremsstrahlung$o0. Cor-

respondingly, forg#0, we may have “diffracted coherent

bremsstrahlung.® We will not discuss further this possibil-
ity but concentrate on DCR from now on.

B. Radiation processes and their matrix elements

In this section we derive the radiation probability for

DCR. We start with the Fermi golden rule,

Wi =2 (F Hinel1)2 @7
IF A int PF, .

e . . -
=—(¢5,p[| W?[AO exp(—ik-1)]-plei,py)

e -
— N * — . . .
(@1, ymcggo) {A* exd —i(k+g)-r1}-plei.p))
YICE ) (213

9(#0)

The termMS') corresponds to the emission of a photon with-
out changing the transverse stéte., theintraband transi-
tion). Only the momentum along the channel changes in this
case because the transverse state is bound. As we dhave
=0 and(;;=0 for this transition, Eq(2.3) reduces to the

where | and F represent the initial and final states of the éerenkO\( condition * B¥ cos®=0. ThereforeMg”) repre-

system as a whole, respectively, apg the density of the
final state.

For simplicity, from now on we consider planar channel-
ing of electrons. In our case, the effect of spin is negligibly
small® Then the Hamiltonian for the interaction between the

channeled electron and the photon field may be given by

e ~
Hin== SrcA B,

Jme (2.9

wherep is the momentum operator. The photon fidldis
given in a form of the Bloch wavésee the appendix

A(r)=§k: > Agexdi(k+g)-r]+c.c. (2.9
g

sents the @renkov radiation under the channeling condition.
Of course, as x rays do not satisfy ther€nkov condition,
M§" does not contribute in our problem.

For the conditiori # f, M{") represents the normal CR. In
a strict sense, a certain effect of diffraction may take place
because in the two-wave approximatitsee the appendix
A, has a form of the superposition of two plane waves on the
slightly different energy branches. However, since the differ-
ence of the energies is of the order| gf|~10"*—10"° this
dynamical effect on CR may be usually neglected.

The second term in E¢2.13, M{", represents the emis-
sion of a diffracted photon. The matrix elemei” , where
the transition of the channeled electroning¢raband gives
PXR under channeling conditiof®XRC). PXRC is differ-
ent from the normal PXR in that its matrix element includes

The wave function for the planar-channeled electron is givenhe form factor of channeling states. Numerically however,

ast

" /ﬁ,

PpO(r)= en(y)ePr (2.10

X=z

wheres=(n,p) andL, andL, are the normalization con-
stants. The factor exj-r;/%)/\LiL, describes the free

as we will discuss in Sec. lll, the difference between PXRC
and PXR is rather small.

The matrix elemenM{" (i #f), which is of our present
interest, represents the emission of a diffracted photon due to
theinterband transitiorbetween the transverse statB€R).

In the next section, we derive the radiation probability of
DCR and PXRC by calculating’lgf) in more detail.
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C. Analytical expression of PXR and DCR %
From Egs.(2.9), (2.10, and(2.13, we obtain the matrix Ffract]
element for the emission of a diffracted photon 1P1r:§e]on

(A’ig-VH)(npf|e*i(k’9)yy|<pi> Cha : eling

. e

(i) _| =
_1 * —itk—9)yy¥n

+ ,ym(A—g)y<QDf|e Ypylei)

X 3(py = Pilfik—g), (2.14

wheref)y= —ih(d/dy), (A%, and k—g), are they com- /
ponents ofA’ig andk — g, respectively, and(A|B) the Kro-

necker delta. Using the relation-(#/ym)p,=[H,,y], Eq.
(2.149) is rewritten as

. e .
M0 =— (E)[(Atg'v)<‘Pf|e_l(k_g)yy|‘»0i>

+i(AY ) Qir( erlyl@i)16(p)— pf 1Ak ). o
FIG. 1. Geometry of our system. The relativistic electron travels
(215 along theZ axis. The channel planes are parallel to ¥ plane.

: : : The 6,6, coordinates are also introduced to represent the angular
As mentioned in . 1IB, Eq2.15 incl Wi XY ) .
s mentioned in Sec » Eq2.15 includes two types distribution of the emitted photons. TlZeaxis indicates the direc-

of transitions: the intraband transition=f) and the inter- tion satisfying the Bragg condition with respect to the beam direc-

band transition i(# f). . . . : . _
. . . - tion. The diffraction plane is perpendicular to the channeling plane.
First, we consider the intraband transition. From Eg. P perp gp

2.15, we obtain -
(2.19 0, and ¢, are the angles of emission measured from the

- e direction satisfying the Bragg conditiosee Fig. 1, and
M("QZ—(E (A% - vPFil(k—g)y18(py—p[ 1k _g), 02..=7v >+|xol.® In the above calculation, we have as-
(2.1  sumed tha®, <1 is satisfied.
Next, we consider the interband transition corresponding
where to DCR. Using the dipole approximatioe 'K~ 9y~1

Fi(q)=(eile %)) 2.17) —i(k—g)yy to Eq.(2.15, we obtain
I I I "

is the form factor for the channeling state that represents the (if
effect of channeling on PXR. If we substitute by the plane 9=
wave expip,y/#)/L,, the form factor becomes the Kro- ,
necker deltas(p,— py|%0).'% In this case, Eq(2.16) reduces X 8(py—p'jlk _g)- (2.20
to the ordinary PXR matrix eleméhand within the two- . i o .
wave approximation, we obtain the dynamical expression o,‘JS'nt% I_Eq.(gt.Z_O), éhe radiation probability of DCR per unit
the radiation probability of PXR per unit length after sum- ength 1s obtaned as
ming up the final momentum of the channeled electroh

e
E)<<Pf|Y|<Pi>[i(k_9)y(A*g-V||)+i(A*g)yQif]

( dN B awgyizf
( dN __ aws d6,d6,dz) . amc?sir? o
doxdéydz) . . 4xcsir? 6g o2
02— —”)
0>2< 0)2/ « 9593 +( Y wg
+ 1
4(1+W2)  A(1+W5)) 4(1+WP)  A(1+WT)
(2.18 (2.21)
where wherea is the fine-structure constamp; = (¢¢|y| i),
1 |X |2P2 1 | |2P2
W,,= 02+ 02+ 02, — —— | _ Xl “Pg
Y 20xglPe| Y Y g2 24 62, Wo= 2 Txal Py R\ (2.22
(o=[,L). (219 and
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FIG. 2. Angular distribution of the intensity of DCR and PXR
emitted by a 10-MeV electron channeled along thel B)) plane. '
The diffraction plane is Si(11). The resonant condition is satisfied 0
by the 1-0 transition.
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cotfg

Qif 2 2 Qif
R=|60,—| — + 05+ Orin— 2| —1. (2.23 o .
wp wp FIG. 3. (a) Angular distribution of DCR as a function of the
“ . incident energy. Other parameters are same as in Fi¢)2lhe
W, corresponds to “the resonance error” in the theory Ofsame asa) but for lower energy. As the energy decreases below the

i : i 14,15 ;
dynamlcal dlffractl_oﬁ (aIS(.)’ see the ?‘ppe”d‘x'” _the threshold energyEq. (3.4)], DCR is suppressed very rapidly.
next section, we discuss various properties of DCR in more

detail by performing numerical calculations. behavior is understood in terms of the energy dependence of
the resonance errdl/,. RegardingW, as a function off,,
I1l. NUMERICAL RESULTS AND DISCUSSION the solution of the equatiowlr:() is given by

First of all, we note that an experimental condition for
observing DCR is not as simple as that for PXR because the 0,=cotfg
resonant condition depends on both the observation angle
and the energy of the channeled electron.

As a typical example, we calculate the intensity of DCR
for 8—20-MeV electrons channeled along th¢l%D) plane.
The incident angle to the channel plane is tilted 0.02° for Dzz((ﬂ) — i—|)(o|—92i|)( P, . (3.2
obtaining enough population into the excited statel. The wg 2 oA
energy of the channeled electron is chosen so that the stron-

gest CR peak appears in the x-ray energy region. From Eq¥/hen the conditiod <0 is satisfied, we have/,>0 for all
(1.1) and (2.3), for the 1—0 transition of a 10-MeV chan- 0x- Under this condition DCR is suppressed because, as one

neled electron, we obtaiiwg=7.1 keV for the(111) plane ~ €an see from Eq.2.21), DCR becomes significant only at a

diffraction satisfying the resonant condition at the observa€ertain narrow region of wherew,~0 is satisfied. On the
tion angle® = 265=232.2°. The channeling states have beenCther hand, whe=0 is satisfied, two sharp DCR peaks
obtained by the many-beam calculations. F¢y), we have &rise atfy satisfying Eq.(3.1) for the 1—0 transition. Each
used the thermally averaged Doyle-Turner potehitfaat T peak actually has a fine structure of the double peak similar

&) +\D, (3.2
wp

where

=300 K. to Fig. 2 because it has two maxima at the angles satisfying
In Fig. 2, we show a typical angular distribution of DCR. Ed- (3.1) while minima at

For comparison, the angular distribution of PXR is shown.

The peak intensity of DCR is ten times stronger than that of B Qi . Qi 1 5

PXR. In other numerical calculations, we have obtained up 0x=cotfg wg) 2 wg| ?_|XO|_ 0y, (3.3

to a 1 enhancement at higher incident energies. The angu-
lar width of DCR is much narrower than that of PXR. This is which corresponds to the angles fa¥,—o. The small
because the width of PXR is of the order&§, whereas for peaks appearing &>16 MeV are associated with the 2
DCR it is of the order ofm, and 6,;,> V| x4l is satisfied —1 transitions. Other transitions, e.g+&, are too small
for MeV electrons. to be seen.

Figure 3 shows the incident energy dependence of DCR. The above discussion suggests that we may introduce the
Below a certain energy, DCR is suddenly suppressed. Thithreshold energy for observing DCR by
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it -1z narrower than that of PXR. It should be noted that as the
2(w—) —|xol + |Xg|} : (34  incident energy increases, the peak intensity ratio of DCR to
B PXR becomes larger, while the width of the DCR angular
Neglecting the weaker dependence (&fi on vy, one may distribution becomes narrower.
predict that a necessary condition for observing DCRyis It has also been shown that the incident energy depen-
>y, . It would be worthwhile to mention that if bothy| dence of DCR has a certain threshold. These properties of
and|xg| are neglected, Eq3.4) recovers the “resonant con- DCR will be helpful in discriminating between DCR and
dition” Eq. (1.2). PXR experimentally. To observe DCR, the energy of chan-
Finally, we consider PXRC. As mentioned in the previousneled electrons should be in the quantum channeling region,
section, the matrix element of PXRC, E(.16), differs i.e., typically =20 MeV for planar channeling anes10
from that of PXR in that it includes the form factés;[ (k MeV for axial channeling so that the principal CR is emitted
—0)y]. The correction is very small for x rays. To see this,at x-ray energies. In this paper we have considered DCR
for simplicity, we assume that the diffraction plane is parallelfrom planar-channeled electrons only, but it is straightfor-
to the 6, axis (g,=0). Since the angular distribution of ward to extend our theory to the case of axially channeled
PXRC has a width of the order of /it is similar to that of  electrons as well as planar-channeled positrons.
PXR. Thus we havek,~k6,=<k/y. In this case we may
approximate that exp(ikyy)~1—ikyy—(kyy)2 and the form ACKNOWLEDGMENT
factor may be expanded as

Yth=

2 One of the authorgH.N.) is grateful to Professor Yuri
Fii (k) ~Fii(0)— ?y<¢i|y2|¢i> (35  Pivovarov for stimulating discussions.

for the emission of x rays satisfyirg~d ™, whered is the =~ APPENDIX:  DYNAMICAL DIFFRACTION OF X RAYS
lattice constant. From Ed3.5, we may conclude that the  The Maxwell equations describing the electromagnetic
d|ffer§anc§a between PXR and PX.RC is small because th@vaveA(r) inside a crystal are given as
contribution from the second term is less than of the order of
y~2<1. Indeed, our numerical calculation for 10-MeV elec- divie(r)A(r)]=0, (A1)
trons indicates that the second term in E3}5) is about 18
times smaller than the first term. w\?

So far, we have neglected the inelastic collisions. In fact, rot rot A(r) - (E) e(NA(r)=0. (A2)
a channeled electron is scattered by thermally displaced tar-. o ) }
get atoms, target electrons, impurities, dislocations, etc. Dugince the crystal has a periodic structure, the local dielectric
to the inelastic scattering the transverse statebecomes functione(r) is also periodic. Therefore, we may expand it
unstable, having a finite lifetime; . As is well known, this  into the Fourier series as
causes the linewidth in channeling radiation. DCR will be

also affected by the inelastic scattering. One possible way to s(r)=zote'(r), (A3)
take into account the effect of channeling lifetime is to use
simple exponentially decaying statés e'(N= 2 xg£9", (A4)
9(#0)
Bily,t)=gi(y)e V2. (3.6 ,
It should be noted, however, that this model will overesti- Yo= — 4Lep , (A5)
mate the effect especially for a thick target because rechan- ¢ me? " °

neling is not negligible at all. For detailed quantitative cal-
culations, therefore, we should consider the populatio
dynamics by using a master equati§which is outside the
scope of our present paper.

heree,=1+ x, is the mean dielectric constant, the Fou-
rier component of the local electric susceptibility, gngthe
Fourier component of the electron density. According to the
Bloch theorem, the wave functio(r) as a solution of Egs.

(A1) and(A2) becomes the Bloch wave
IV. CONCLUSIONS

In this paper we have considered the effect of diffraction A(r)= Eg: Age's"+c.c. (A6)
on channeling radiation from relativistic electrons. We have
derived the frequency condition of the diffracted channelingSubstituting Eqs(A3)—(A6) for Egs.(Al) and(A2), we ob-
radiation (DCR), which includes that of PXR and CR as tain the fundamental equation of diffraction
special conditions. We have shown that PXR emitted by
channeled electrons occurs as the intraband transition in the
guantum transverse states whereas DCR occurs as the inter-
band transition.

The numerical calculations for 10-MeV channeled elec-whereKy= w/c.
trons along SiL10 planes have shown that DCR intensity is  When the Bragg condition associated with a reciprocal-
about ten times stronger and the angular distribution is muchattice vectorg is satisfied, we may expect that the condition

Ag= 2 Xg-tAn, (A7)

2
9
K3 =)
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|An|<|Aol,|Ag| holds forh+0.g. In this case we may use the

two-wave approximation

A(r)~Age " +Agk . (A8)

Then, from Eq.(A7), we obtain the two coupled equations

(A9)

1X0A0 XgA O

|:k2
KO
k2
g
= —1-x

By introducing the polarization vectas,,, A, (h=0,() is
rewritten as

Ag—XgPo=0 (A10)

Ar= 2 EnoAne (A11)

o=|,L

whereg,, is the polarization vector, arjdand_L indicate the

fraction plane(i.e., the plane including botky andkg), re-
spectively. For further simplicity, let us defirdg andP,, as
follows:

2

26n=12 ~ 1= X0, (A12)
_[eoreru:]- (for o=1) AL3
| egprey=cog26p) (for o=|) " (A13)

Using Egs.(A11)-(A13), Eqs(A9) and (A10) may be re-
written in the form of the matrix equation

e

(A14)
- Xgpa 2§g Ago

Equation(A14) has nontrivial solutions only if the determi-

nant of the matrix satisfies
4éots—|xd*Po=
Under this condition, from Eq.A14) we obtain the follow-
ing relation betweer\, and Ay, :
2§, XgPa
X-gPo 284

(A15)

A

AOU': AOO’ . (A16)

g™
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Vacuum

Crystal

FIG. 4. The boundary condition for the x-ray incident on a crys-
tal near the Bragg conditiofthe Laue case Inside the crystal, x
rays are excited onto the two branches)(and (—) due to the
dynamical effectk{”) andk{") represent the primary waves and
the diffracted waves, respectively.

Next, we consider the boundary condition that determines

_ o o . .. the amplitude of the internal field excited by the external
polarization direction parallel and perpendicular to the dif-

field. The external field is written as

AO(r)=AP)e,, ekt 1y e, (A20)

while the internal field as

ik(’)

() _ (1)
A1) =AGe0,%0 T+ AL ey, 0 T+ AL ey ek T

+Al, )egoe e, (A21)

where we have approximated the direction of the polariza-
tion vectors assj)~e{) because the difference is of the
order of|xg|. In the above, ¢) and (—) imply the wave on

the upper branch and on the lower branch, respectively. The
relation between the external field and the internal field is
schematically shown in Fig. 4. At the surface=0). Since

the g wave appears only inside the crystal, the boundary
condition may be given as

AL =AD+ AL (A22)
0=A+AL). (A23)

Then, from Eqs(A16), (A22), and (A23), each component

For describing the dynamical effect, it is convenient to intro-of the internal field is expressed by the external field. Using

duce the “resonance errortV, defined by

k5— K3
Wo=—o——. (A17)
2KO|Xg| P(r
UsingW,,, £, andé&y as the solutions of EJA15) are given
by

o1

g—):§|Xg|PU(—WGi\/1+W§), (A18)
+ 1 2

géf):§|X9|P0(W(ri VI+W2), (A19)

W, , we obtain

Al — E 1+ —2 |1aA0 A24
Oo 2 I—21+WU 00 ( )
1 W,
Al = E( N AL, (A25)
1 1
AL =— = O A26
go 2 1+W2 Oo ( )
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1 1 These expressions have been used for the calculatioAg of
A= 5 —=Af). (A27)  appearing in Sec. Il C. For obtaining the field corresponding
1+ W5 to the emitted photon, the reciprocity theorem has been
applied®’
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