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The electron beam instability in a one-dimensional cylindrical

photonic crystal
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Bobruiskaya Str. 11, 220050 Minsk, Belarus

The radiative instability of the relativistic electron beam in a periodic dielectric-

filled cylindrical waveguide is considered. The dependence of the beam instability

increment on the radiated wave frequency near the region of dispersion equation

roots degeneracy is studied. It is shown that sharp change in the instability of the

beam under the conditions of two-wave diffraction in Compton generation regime,

making the increment proportional to the fourth root from the beam density ρ1/4

in contrast to conventional law ρ1/3, brings radiation generation (amplification) in

the considered system to be essentially improved in comparison with conventional

devices (BWO, TWT, FEL etc). Numerical calculations of the instability increment

for various parameters of the system are performed.

I. INTRODUCTION

Currently, there is a large number of generators and amplifiers of electromagnetic radi-

ation (from microwave to optical wavelengths range) based on electron beams, for example

traveling-wave tubes (TWT), backward wave oscillators (BWO), free electron lasers (FEL),

ubitrons etc [1, 2]. It is known that any radiating system is characterized by its dispersion

equation describing in the case of small perturbations the possible types of waves in the

system. A detailed analysis of the properties of this dispersion equation [3] shows that the

gain in the Compton regime (increment of electron beam instability) of the most commonly

used generators (TWT’s, BWO’s, FEL’s) is proportional to ρ
1

3 , where ρ is the density of

the electron beam. However, in the papers [4, 5] it is found that for electron beam moving
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in spatially periodic medium under the conditions providing the coincidence of roots of the

dispersion equation there is a new physical law: the increment of instability is proportional

to ρ1/(3+s), where s is the number of additional waves appearing due to diffraction in the

crystal. The analysis shows that this new law leads to reducing of the electron beam current

density, needed to reach lasing threshold. This enables development of a new type of Free

Electron Lasers called the Volume Free Electron Lasers (VFEL) [5–7]. Due to a significant

change in the threshold conditions, VFEL can provide a more efficient radiation process

than conventional generators.

Until recently the theoretical studies of the problem of beam instability in photonic

crystals were carried out for the case of infinite in the transverse direction crystals. However,

in many cases the mode structure of the electromagnetic field in laser cavities can not be

neglected (for example, when the lasing is performed in the microwave range). For the first

time the process of VFEL lasing in photonic crystal finite in transverse direction is considered

in [8] . In [8] it is also pointed out that the four-fold degeneracy of the dispersion equation

roots (when increment is ∼ ρ1/4) is possible in the one-dimensional photonic crystal when

the condition ε0 > 1 (in the conventional generators - BWO, TWT etc. ε0 is usually equal

to 1) is fullfilled. In this paper we consider the simplest example of such one-dimensional

photonic crystal – a cylindrical waveguide with a periodic dielectric filling.

II. BASIC FORMULAS

The system of equations describing the interaction of an electron beam with an electro-

magnetic wave in a waveguide can be obtained from the Maxwell and electron movement

equations. We rewrite the Maxwell equations as follows

rot rot ~E(~r, ω)− ω2

c2
ε(~r, ω) ~E(~r, ω) =

4πiω

c2
~j(~r, ω), (1)

div ε(~r, ω) ~E(~r, ω) = 4πρ(~r, ω), (2)

iωρ(~r, ω)− div~j(~r, ω) = 0, (3)

where ~E(~r, ω) =
∫

~E(~r, t)eiωtdt is the Fourier transformation of the electric field ~E(~r, t);

ε(~r, ω) is the dielectric permittivity of the medium filling waveguide; ~j(~r, ω) and ρ(~r, ω) are

Fourier transformations of the current density ~j(~r, t) and electric charge density of the beam
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ρ(~r, t), respectively. The quantities ~j(~r, t) and ρ(~r, t) can be expressed in following way

~j(~r, t) = e
∑

α

~vα(t)δ(~r − ~rα(t)), (4)

ρ(~r, t) = e
∑

α

δ(~r − ~rα(t)), (5)

where ~rα(t), ~vα(t) are αth electron radius-vector and velocity; the sum in (4)-(5) is over all

electrons in the beam.

The electron movement equations can be written in the form

d~vα(t)

dt
=

e

mγ

{

~E(~rα(t), t) +
1

c

[

~vα(t)× ~H(~rα(t), t)
]

− ~vα
c2

(

~vα ~E(~rα(t), t)
)

}

, (6)

where ~E(~rα(t), t) and ~H(~rα(t), t) are the electric and magnetic field of the electromagnetic

wave in the point ~rα(t) at the time moment t, γ = (1− v2
α

c2
)−

1

2 .

Let the z coordinate axis coincide with waveguide axis. We also suppose that electron

beam is “cold” (velocity spread of the electrons can be neglected) and initial electrons ve-

locities are directed along z-axis (~u = u~ez; (~ex, ~ey, ~ez) are unit vectors of coordinate system).

The dielectric permittivity inside the waveguide is ε(~r, ω) = ε0(~ρ) + χ(~r, ω), where χ is

periodic function of z: χ(~r, ω) =
∑

τ 6=0

χτ (~ρ)e
iτz; χ0 ≡ ε0 − 1. With the help of (2,3) and

supposing that |χ(~r, ω)| ≪ 1 we can rewrite (1) in the following way

− ~∇2 ~E(~r, ω)− ω2

c2
ε(~r, ω) ~E(~r, ω) ≈ 4πi

c2

(

~j(~r, ω) +
c2

ω2ε0
~∇(~∇~j(~r, ω))

)

. (7)

The field ~E(~r, ω) can be decomposed in terms of the waveguide eigenfunctions

~E(~r, ω) =
1

2π

∑

n

∫

an(kz)~Yn(~ρ, kz)e
ikzzdkz, (8)

where an(kz) are the expansion coeffitients (amplitudes), ~Yn(~ρ, kz) and κn are the waveguide

eigenfunctions and corresponding eigenvalues [9–11].

The beam current appearing on the right-hand side of (7) is a complicated function of

the field ~E. To study the problem of the system instability, it is sufficient to consider the

system in the approximation linear over perturbation, i.e., one can expand the expressions

for ~j(~r, ω) over the field amplitude ~E(~r, ω): ~j = ~j0 + δ~j, where ~j0 is the beam current not

perturbated by the radiated field, δ~j ∼ ~E(~r, ω) is the beam current induced by the radiated

field. With the help of (4) one can find

δ~j(~k, ω) = e
∑

α

e−i~k~rα0

{

δ~vα(ω − ~k~u) +
1

ω − ~k~u
~u
(

~kδ~vα(ω − ~k~u)
)

}

. (9)
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The quantity δ~vα(ω) can be obtained from movement equations:

δ~vα(ω) =

=
ie

mωγ

∫

d3k′

(2π)3
ei
~k′~rα0

{

ω

ω + ~k′~u
~E(~k′, ω + ~k′~u) +

(

~k′

ω + ~k′~u
− ~u

c2

)

·
(

~u~E(~k′, ω + ~k′~u)
)

}

.

(10)

After substituting (10) into (9) in the expression for the current density appear the sum
∑

α

ei(
~k′−~k)~rα0 . Let us average this sum over distribution of the particles in the beam

∑

α

ei(
~k′−~k)~rα0 ≃ Φ(~k⊥ − ~k′

⊥) · (2π)3n0δ(kz − k′
z), (11)

where Φ(~k⊥ − ~k′
⊥) = 1

(2π)2

∫

S
e−i(~k⊥−~k′

⊥
)~ρϕ(~ρ)d2~ρ, 1

S

∫

S
ϕ(~ρ)d2~ρ = 1, S is cross-section of

the waveguide, n0 is the electron density of the beam, kz is the longitudinal component of

the wave vector, the function ϕ(~ρ) describes the distribution of the electrons in the beam

cross-section.

The expressions (7)-(11) allow us to write the following system of equations for amplitudes

am(kz) (this system is similar to that describing the multiwave dynamical diffraction in

crystals):

(

k2
z −

(

ω2

c2
ε0 − κ2

m

))

am(kz)−
ω2

c2

∑

m

∑

τ 6=0

χmn
eff (kz, kz − τ)an(kz − τ) =

= −ω2
l

γ

1

(ω − kzu)2

∑

n

Amnan(kz), (12)

where ω2
l =

4πe2n0

m
is the Langmuir frequency of the beam, effective susceptibility χmn

eff is

χmn
eff(kz, kz − τ) =

∫

~Y ∗
m(~ρ, kz)χτ

~Yn(~ρ, kz − τ)d2~ρ. (13)

Coeffitients Amn in (12) are

Amn =
1

c4

∫

d2~k⊥
(2π)2

d2~ρd2~ρ′ϕ(~ρ′)ei
~k⊥(~ρ−~ρ′)×

× ~Y ∗
m(~ρ, kz)

(

~u− c2

ωε0
~k

)(

−ic2~k⊥~∇′
⊥ +

c2 − u2

u2
ω2

)

(

~u~Yn(~ρ
′, kz)

)

. (14)
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III. INCREMENT OF ELECTRON BEAM INSTABILITY

Let us consider the generation on the most commonly used E01-mode of circular waveg-

uide. The vector eigenfunction ~Y1(~ρ, kz) corresponding to E01-mode can be written as [11]

~Y1 =
1√

πRJ1(ν01)

{

−ikz
√

k2
z + κ2

J1(ρκ)~er +
κ

√

k2
z + κ2

J0(ρκ)~ez

}

, (15)

where ν01 ≈ 2.4048, κ = ν01/R, R is the waveguide radius, J0 and J1 are Bessel functions.

The effective susceptibility according to (13) is

χeff (kz, τ) = χτ

∫

~Y ∗
1 (~ρ, kz)

~Y1(~ρ, kz − τ)d2~ρ = χτ

(

1− kzτ

k2
z + κ2

)

. (16)

The equations (12) for the E01-mode can be written as

(ω − kzu)
2

(

(k2
z − k2

z0)a(kz)− k2
0

∑

τ 6=0

χeff(kz, τ)a(kz − τ)

)

=
ω2
l

γ
A11a(kz), (17)

where kz0 =
√

ω2

c2
ε0 − κ2 and k0 = ω/c. We assume that unperturbed beam occupies the

entire cross section of the waveguide and ϕ(~ρ) = 1. Then the calculation of the A11 in

accordance with (14) gives

A11 =

(

k2
0

γ2
+ β2κ2

)

κ2

k2
z + κ2

. (18)

Let us consider firstly the case of waveguide with homogeneous filling (χτ = 0). Ap-

parently in this case the diffracted wave is absent and system (17) is reduced to a single

equation. Suppose that right-hand side of (17) is small. Since the nonlinearity is insignifi-

cant, let us consider as the zero approximation the spectrum of the waves of equation (17)

with zero right-hand side. So, the solution of (17) is kz1 = k′
z1 + δkz1, where δkz1 is to be

found, and k′
z1 is the solution of (17) with zero right-hand side k′

z1 = kz0 =
√

ω2

c2
ε0 − κ2.

Repeating exactly the arguments, for example [8], we arrive the following expression for

increment

Im kz1 = Im δkz1 =

√
3

2

(

ω2
l

2k′
z1u

2γ
A11

)
1

3

∼ ρ1/3. (19)

Now let us consider the case χτ 6= 0, χτ ≪ 1. Apparently when the diffraction conditions

are not fullfilled we get the same expression (19) for increment. We therefore assume that

the conditions of two-wave dynamical diffraction in a waveguide are realized, i.e. the wave
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amplitude a(kz + τ) is comparable with the amplitude a(kz). In this case the dispersion

equation has the next form:

(ω− kzu)
2
{

(k2
z − k2

z0)(k
2
zτ − k2

z0)− k4
0χeff (kzτ , τ)χeff (kz,−τ)

}

= −ω2
l

γ
A11(k

2
zτ − k2

z0). (20)

The solution of this equation is kz2 = k′
z2 + δkz2, where

k
′(1,2)
z2 = kz0

{

1− 1

4
αBβ ±

√

(αBβ)2 + 4
r

γ4
0

β

}

, (21)

r = χeff(kz0 + τ, τ)χeff (kz0,−τ), kz0 =
√

ω2

c2
ε0 − κ2, γ0 = kz0

ω/c
, β = kz0

kz0+τ
is the diffraction

asymmetry factor, αB = (2kz0+τ)τ
k2
z0

is the off-Bragg parameter (αB = 0 when the Bragg

condition of diffraction is exactly fulfilled), τ = 2π/D, D is the waveguide period. The

calculation gives the following expression for increment Im kz in the vicinity of the roots

degeneracy point

Im kz2 = Im δkz2 ≈
(

ω2
l k

2
0

√
r

γu2τ 2
A11

)1/4

∼ ρ1/4. (22)

From (19) and (22) we have

Im kz2
Im kz1

≈
(

ω2
l

ω2

τ 2

k2
0

A11

k2
0

1

(
√
r)3β2γ

)−1/12

≫ 1, (23)

because ω2
l ≪ ω2, A11 ≪ k2

0. This means under diffraction conditions the gain increases. As

a result, the threshold current density in two-wave diffraction case is lower (j ∼ 1
(kL)3(kχτL)2s

,

where L is the interaction length).

IV. NUMERICAL SOLUTIONS

To be able to experimentally observe this effect it is necessary to know how accurately

the diffraction condition must be satisfied. To study this, the equations (20) were solved

numerically. Now we demonstrate the results of this calculation by the example of one of

the systems studied (R = 6 cm, D = 3.6 cm, ε0 = 1.23, χτ = 0.05).

On the fig. 1 one can see the dependence of the increment of instability on the frequency

near region of dispersion roots degeneracy (4.06 GHz in our case). Let us explain how the

curves in fig. 1 are obtained. Initially, we found the solutions of dispersion equation without

beam (21). They are shown on the right-hand side of the graph. Next, for each frequency

fi from the selected range the set of equations (20) was solved and the imaginary part of
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FIG. 1: The dependence of instability increment of electron beam on the frequency near the point

of the roots degeneracy of dispersion equation. Beam current is 0.1 kA. Solid and dashed curves on

the right-hand side of the graph are dispersion characteristics of the forward and backward waves

in the waveguide, respectively; on the left-hand side are plotted corresponding increments. On the

graph are also shown the beam lines (ω = kzu) for the energies 600 keV and 1 MeV and the light

line (ω = kzc).

the solution found Im kz was plotted. In the calculations we assumed that the beam current

I is given; the beam energy E was chosen so that the Cherenkov synchronism occurred at

a frequency fi. Calculations were performed for the two roots of the dispersion equation.1

For example, for a backward wave synchronism with the beam with the energy 600 keV

occurs at a frequency of ∼ 3.9 GHz; if we choose the beam current equal to 0.1 kA, the

corresponding increment will be Im kz ≈ 0.006π/D ≈ 0.007 cm−1, which is shown in Fig. 1.

1 Far from the roots degeneracy point they correspond to the so-called forward and backward waves in the

waveguide. But near the point of degeneracy such division, generally speaking, is incorrect because in

this case “forward” and “backward” waves are coupled. Nevertheless, in the article we use the established

terms “forward” and “backward” waves to refer to the roots of the dispersion equation, since we investigate

the behavior of the system over a wide frequency range (far from the point of degeneration and in the

immediate vicinity from it).
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FIG. 2: The growth of the increment with beam current increase. On the graph are shown the

increments for cases when the beam current is 0.1 A, 1 A, 10 A, 0.1 kA and 1 kA.

A similar example is given on the fig. 1 for the forward wave.

From Fig. 1 we can trace back the typical dependence of the increment value on the

frequency near the point of the roots degeneracy for the systems studied. It is easy to see

that the synchronism condition for the forward wave is possible only for frequencies above

f0 (in our case f0 ≈ 3.87 GHz), because velocity of the beam can not exceed the speed

of light in vacuum c. Therefore, for the forward wave the increment begins to rise from

zero at the frequency f0 to a maximum which can be observed both at the point of the

roots degeneracy, and at some distance from it (see fig. 2). It is seen that in the vicinity

of the degeneracy point the increment increases with the frequency faster than away from

the diffraction conditions. For the backward wave a similar but much more pronounced

picture can be seen: relatively slow increment growth away from the diffraction conditions

is replaced by the rapid growth near the degeneracy point. In addition, for backward-wave

the increment has the highest value exactly in the degeneracy point.

Fig. 2 shows the increment of instability for different beam currents. For the forward

wave the increase of the beam current shifts down the frequency at which the increment
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reachs maximum. When the current rises, the increment maximum becomes wider and

lower. Nevertheless, for the chosen parameters of the waveguide the gain for a backward

wave in the vicinity of the degeneracy point can be several times (from 2 to 5) greater

than that for the usual no-diffraction case. But to use this in practice the synchronism

conditions must be satisfied very precisely. For example, when the beam current is 1 kA as

shown in fig. 2 the imaginary part Im kz is reduced by half when the displacement from the

point of degeneracy (4.06 GHz) down in frequency is only ∼ 116 MHz (the peak FWHM

is ∼ 116 MHz). In practice, the control of oscillation frequency with such precision is not

always possible due to many factors, such as the presence of an electron velocity spread

in the beam. Nevertheless, one can find conditions (such as geometric dimensions of the

system, values of ε0, χτ , the beam energy, etc.) under which it will be possible to perform

the lasing near degeneracy point with sufficient accuracy. In particular, by use of fig. 1 it is

easy to find that for selected geometry the spread in the electron velocities does not play a

significant role due to high electron beam energy (for the detection of the effect is enough

to have δE ≤ 30% at the energy E ∼ 1.6 MeV).

V. CONCLUSION

We conclude with a remark on the above mentioned model of the one-dimensional crys-

tal. This model is is somewhat idealized since in real systems it is impossible to use the

waveguides with a solid dielectric filling. As a rule, in practice are applied waveguides with

inner dielectric liner [12] (partially filled waveguides). However in considering of the partially

filled waveguide all the above arguments remain valid. In fact, you only need to substitute

in the above model other eigenfunctions and derive the expressions for coefficients χeff and

Amn. But the behavior of the instability increment near the degeneracy points remains the

same. Moreover to estimate the increment value you can use the model of a waveguide with

a solid filling by introducing the average over the cross section of the waveguide dielectric

permittivity ε(ω) and taking into account the fact that with a wave interacts effectively only

part of the beam (located at distance of . λβγ/(4π) from the surface of the dielectric).

It is shown that for a one-dimensional photonic crystal the gain near region of dispersion

equation roots degeneracy rapidly (several times) increases. With a reasonable choice of the

waveguide (crystal) and electron beam parameters (in particular, at sufficiently high beam
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energy) this effect is experimentally observable and can be used to improve the characteristics

of generators and amplifiers of microwave radiation.
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