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Methods of mathematical modeling were used for simulation of processes of radiation
of charged particles, moving in di�erent types of volume free electron lasers (VFEL).
Generalized system for simulation of di�erent types of VFEL is proposed. Some results of
simulation of VFEL are given. Overview of methods of chaos control in VFEL is proposed.
Such chaos control can be carried out via varying external electromagnetic waves in VFEL,
changing of geometry of volume distributed feedback, parameters of electron beams etc.
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1. Introduction

The last �fty years we see rapid development
of vacuum electronics in the world. During this
time it was created a large number of di�erent
types of vacuum electronic devices, such
as traveling wave tubes (TWT), backward
wave tubes (BWT), free electron lasers
(FEL), orotrons, masers, multiwave Cherenkov
generators, etc. [1] � [4]. The basis of their work
consists in the emission of electrons, grouped in
bunches and interacting in resonator or undulator
with slow electromagnetic waves. Such devices
have a number of advantages [1], in particular,
good e�ciency as well as generation of powerful
radiation in a narrow spectral range. Among the
problematic aspects of their operation it should
be called a risk of waveguide breakdown on high
power and complexity when creating oversized
systems with electron beam cross-section much
larger than the wavelength. The last problem is
connected with the necessity to use thin ribbon
or cannular electron beams that interacts with
electromagentic waves only at small distance of
the resonator surface.
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So, now we have a wide variety of military
and commercial applications of vacuum electronic
devices requiring high power at high frequency as
well as reliable performance at such power with
high e�ciency and low cost. Let us emphasize
that vacuum electronics ampli�ers and oscillators
are used in scienti�c research areas such as
high-energy particle accelerators and plasma
heating for controlled thermonuclear fusion. In
medical systems they are used in compact radio-
frequency accelerators and nuclear magnetic
resonance spectrometers. Other applications are
for commercial satellite communication systems,
broadcasting, microwave ovens for industrial and
home use etc.

In the same line with these devices we
can put volume free electron lasers (VFEL)
[5], [6] running on the radiation of relativistic
electrons in two- and three-dimensional spatially-
periodic structures in synchronism with one
or more coupled strong electromagnetic waves.
For these waves the conditions of Bragg
di�raction near degeneration points of the roots
of the dispersion equation should be valid.
Dynamical di�raction provides volume (non-one-
dimensional) distributed feedback (VDFB) in
contrast to one-dimensional distributed feedback

21



22 S. N. Sytova

in TWT, BWT etc. VFEL spatially-periodic
structures are natural crystals (in X-ray range
[7]) or arti�cial electromagnetic (photonic)
crystals with a period proportional to the
radiation wavelength [6], [8]. Principles of VFEL
functioning are valid for all frequency ranges
and di�erent mechanisms of spontaneous emission
[5], [7]. VFEL lasing was obtained in millimeter
range [9], [10] and put the beginning of its
experimental development. In the microwave
range VFEL experimental setup uses now grid
and foil resonators [11], [12], having all necessary
properties of photonic crystals.

Investigation of VFEL nonlinear stage can
be carried out only by methods of mathematical
modelling [13], [14]. The main distinguish between
VFEL mathematical model and TWT, BWO
models [3] is the following. In VFEL modelling
[14] we use the method of averaging over initial
phases of electron entrance in the resonator that
takes into account as initial phase of an electron
not only the moment of time t0 as in other models
[3] but also transverse spatial coordinate of an
electron entrance in the resonator at z = 0. As a
result, we managed to simulate strongly non-one-
dimensional VFEL system with electron beam of
broad cross-section as one-dimensional system.

Let us note that this one-dimensional
system with one space coordinate z describes a
two-dimensional or three-dimensional dynamical
di�raction geometry, which, coupled with the
simulation of a wide cross-section of the electron
beam gives good results on the modeling of two-
dimensional or three-dimensional VFEL systems
[13] � [20].

In the literature, nonlinear dynamics and
chaos in cited above vacuum electronic devices
were studied in detail [3], [21] � [24]. VFEL
nonlinear dynamics was investigated by methods
of mathematical modelling too [13] � [20].
In VFEL, the reasons of initiation of chaotic
dynamics remain the same as in other electronic
devices: signi�cant perturbation in movement of
electrons and deformation of bunches leading
to generation higher harmonics in the system
and vice versa. A whole spectrum of external

operating (bifurcational) parameters exists in
VFEL. Their varying leads to qualitative
changing of the system behavior. Such parameters
are the following: electron beam current, length
of the resonator, geometry parameters, factors
of asymmetry etc. Investigation of chaos in
VFEL is important in the light of experimental
development of VFEL. In our previous works [13]
� [20] a gallery of di�erent chaotic regimes for
VFEL laser intensity with corresponding phase
space portrait, attractors and Poincaré maps was
proposed.

The main goal of the paper presented is
the further investigation of di�erent aspects
of chaotic nature of VFEL by methods of
mathematical modelling. Here we propose the
mostly common VFEL model taking into account
dispersion of electromagnetic waves in the
system and resonator with several sections with
di�erent parameters. Some di�erent electron
beams moving in resonator and external re�ectors
placed in the system are considered too.

Why multiple-beam VFEL? Multiple beams
have been proposed for applications such as
microwave tubes, FEL, heavy ion inertial fusion
drivers and other cases where single beam systems
may have di�culties [25] � [27]. Use of multiple
beams permits higher total charge. Higher peak
currents may be achievable with shorter wigglers
and higher saturated powers. If the total charge
is held �xed, then less charge is needed from each
injector and lower emittance may be possible.
So, multiple-beam VFEL can have analogous
advantages [8], [6].

This article is arranged as follows. Section 2
describes VFEL generalized system of equations.
Section 3 proposes mathematical model for two-
beam two-wave VFEL. Some numerical results for
simulation of this model are given in Section 4
with discussion of chaos control methods here.
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2. Generalized system of VFEL

equations

The most simple scheme of VFEL is
depicted in Fig.1 [14]. Here an electron beam
with electron velocity u passes through a
spatially periodic resonator of the length L. This
resonator can be natural or arti�cial photonic
crystal in dependence of work wavelength.
Under di�raction conditions two strong coupled
electromagnetic waves are excited in the
resonator. If simultaneously electrons of the
beam are under synchronism condition, they
emit electromagnetic radiation in directions
depending on di�raction conditions.

Two-wave VFEL can work in two di�erent
geomentries. Bragg geometry is depicted in Fig.1,
where transmitted and di�racted waves go out
through opposite sides of resonator. In Laue
geometry both waves go out through its back side
at z = L. By assignment of system parameters,
VFEL can operate in regimes of TWT and
BWT, i.e. in one-dimensional geometry [20]. For
three-wave di�raction we have three di�erent
geometries [15] and so on for multiwave cases.

In Fig.2 a multisection multiwave VFEL
scheme with some electron beams in very general
outline is proposed. Multiple beam free-electron
lasers were proposed �rstly [25]. Also it should
be mentioned two-stream FEL [26] with slightly
di�erent velocities of electron beams. Multisection
VFEL was considered in [11]. Additionally
re�ectors can be put along the edges of VFEL
[14].

FIG. 1: Two-wave VFEL.

Let us depict all these VFEL variants by the
generalized system of equations. First proposition
of given below system was in [28].

The system of nonlinear equations for VFEL
modelling is obtained from Maxwell equations
in the slowly-varying envelope approximation.
Electron beam dynamics is described by method
of averaging over initial phases of electrons.

Let us consider VFEL resonator of the
length L consisting from l sections with di�erent
parameters in the following domain Ω:

Ω = G(z)
⋃
{−2π ≤ p ≤ 2π}

⋃
{t > 0},

G(z) =
l⋃

i=1

Gi, Gi = [z1
i , z

2
i ],

z2
i = z1

i+1, z1
1 = 0, z2

l = L.

Let us consider N electromagnetic waves
in di�raction conditions with amplitudes Ej(z, t)

with ni waves in each i-th section,
∑l

i=1 ni = N .
Here we have

j =
i−1∑
k=1

nk + j, j = 1, 2, ..., ni.

Then let us consider M = M left + M right

electron beams with M left beams coming from
the left boundary z = 0 of the system and M right

ones coming from the right boundary at z = L.
Each beam is described by the phase θm(t, z, p)
of electrons with respect to electromagnetic wave
and is calculated in the whole domain G. In
each section, it may be in synchronism with one
wave with wave vector kα. We do not consider
the beam synchronizm with several waves since it
is practically unachievable by the parameters of
di�raction.

So, electromagnetic �eld for N -wave M -
beam (M ≤ N) VFEL is represented in the
common case in the following form:

E(r, t) =

N∑
j=1

eEj(z, t)e
ı(kjr−ωt), (1)
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FIG. 2: Multiple beam multisection VFEL with external re�ectors.

where Ej(z, t) is the amplitude of the wave
number j generated in the system with wave
vector kj and frequency ω.

Electron beams current is presented in the
form:

j(r, t) =
M∑
m=1

ejm(z, t)eı(kαr−ωt), (2)

where jm(z, t) are amplitudes of expansion of
m-th electron beam current. e is a vector of
polarization. It can be the vector of σ-polarization
eσ or π-polarization eπ. ı is the imaginary unit.
Wave vector kα belong to the set of wave vectors
kj in the system.

Slowly-varying envelope approximation for
all waves E from (1) means that:

|1
k
∂E
∂z
| � |E|, | 1ω

∂E
∂t
| � |E|, (3)

where k = ω/c. So, second derivatives with
respect to time and space can be neglected.

So, considering vector of amplitudes E =
(E1, E2, ..., EN )T and vector of right-hand side
of dimension N I = (I1, I2, ..., IM , 0, ..., 0)T , the
system of equations has the matrix form:

A
∂E

∂t
+ B

∂E

∂z
+ CE = DI. (4)

In (4) matrices are of the following type:

A =


1 + a11 a12 · · · a1N

a21 1 + a22 · · · a2N
...

...
. . .

...
an1 aN2 · · · 1 + aNN

 ,

B =


b11 0 · · · 0
0 b22 · · · 0
...

...
. . .

...
0 0 · · · bNN

 ,

C =


c11 c12 · · · c1N

c21 c22 · · · c2N
...

...
. . .

...
cN1 cN2 · · · cNN

 .

Vector I has the following components:

Im = Υm

∫ 2π

0
(2π − p)

×
(
e−ıΘm(t,z,p) + e−ıΘm(t,z,−p)

)
dp,

(5)

m = 1, 2, . . . , M .
The matrix A di�ers from identity matrix.

A contains additional terms aij which determine
dispersion of electromagnetic wave in the
resonator. Diagonal matrix B includes direction
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cosines of wave vectors ki. Matrix C describes
dynamical di�raction in the system. Matrix D
contains unities and zeros (beam interacts or do
not interact with present electromagnetic wave).

In our model m−th electron beam is
simulated via phases of m-th electron beam
relative to electromagnetic wave Θm(t, z, p) (m =
1, 2, ...,M) in the following way [14]:

∂2Θm(t, z, p)

∂z2 = Ψm

(
kαz −

∂Θm(t, z, p)

∂z

)3

×Re
(
Eα(t− z/um, z)eiΘm(t,z,p)

)
. (6)

All above t > 0, z ∈ [0, L], p ∈ [−2π, 2π].
Boundary conditions for amplitudes of

electromagnetic waves can be written as follows:

E(t,Γ1) = E0(t) + FE(t,Γ2). (7)

The vector E0 with components E0
i (some of

them can be equal to zero) contains amplitudes
of the external electromagnetic waves incident
on boundaries z = 0 or z = L. The matrix F
determines connections between separate sections
of VFEL and re�ectors. The form of its
components can be found in [14].

Components of vectors Γ1 and Γ2 for wave
with amplitude Ej are coordinates of entrance
and leaving of this wave i-th section: z1

i or z2
i or

vice versa in dependence of wave spread direction
in the current section.

Boundary conditions for phases of all
electron beams are the next:

Θl(t,Γ
m
1 , p) = p,

∂Θ(t,Γm1 , p)

∂z
= k0

mz − ω/um,
(8)

m = 1, . . . ,M .
Component Γ1

m is equal to 0 or L in
dependence of electron beam entrance side (from
the left or from the right). k0

mz corresponds to
projection on axis z of electromagnetic wave
vector in synchronism with electron beam in the
�rst section of beam entrance.

3. Two-wave two-beam VFEL

For two-wave two-beam VFEL when one
beam is in resonance with the transmitted
wave E and the second one � with di�racted
wave Eτ considering regime of generator without
dispersion components, we can obtain the
following form of matrices A, B, C, D.

A =

(
1 0
0 1

)
, B =

(
b11 0
0 b22

)
,

C =

(
c11 c12

c21 c22

)
, I =

(
I1

I2

)
,

D =

(
1 0
0 1

)
.

So, this system in full is the next:

∂E

∂t
+ γ0c

∂E

∂z
+ 0.5iωl1E − 0.5iωχτEτ = I1,

∂Eτ
∂t

+ γτ c
∂Eτ
∂z
− 0.5iωχ−τE + 0.5iωl2Eτ = I2,

∂2Θ1(t, z, p)

∂z2 =
eΦ1

mγ3
1ω

2

(
kz −

∂Θ1(t, z, p)

∂z

)3

·

Re
(
E(t− z/u1, z)e

iΘ1(t,z,p)
)
,

∂2Θ2(t, z, p)

∂z2 =
eΦ2

mγ3
2ω

2

(
kτz −

∂Θ2(t, z, p)

∂z

)3

·

Re
(
Eτ (t− z/u2, z)e

iΘ2(t,z,p)
)
,

∂Θ1(t, 0, p)

dz
= kz − ω/u1, Θ1(t, 0, p) = p,

∂Θ2(t, L, p)

dz
= kτz − ω/u2, Θ2(t, L, p) = p,

I1,2 = Υ1,2

∫ 2π

0
(2π − p)(e−iΘ1,2(t,z,p)
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+e−iΘ1,2(t,z,−p))dp,

E(0, t) = 0, Eτ (L, 0) = 0.

Here E and Eτ are amplitudes of transmitted
and di�racted waves, respectively. γ0,τ are
di�raction cosines. System parameters are the
following: l0,τ = (k2

·,τ c
2 − ω2ε0)/ω2, l1 =

l0 + δ1, l2 = lτ + δ2. δ1,2 are detuning
from the Cherenkov condition for both beams.
γ1,2 are Lorenz-factors for corresponding beam
velocities u1,2 and densities nb1,2. ε0 is a mean
dielectric susceptibility and χ±τ are Fourier
components of the dielectric susceptibility of
the target. Υ1,2 = enb1,2u1,2Φ1,2/(4π), Φ1,2 =√
l0,τ + χ0 − c2/(u1,2γ1,2)2.

4. Results of numerical

experiments

Numerical methods for VFEL simulation
were developed and used e�ectively for their
di�erent types [13]�[20]. These methods allow to
use parallel processing e�ectively.

Let us consider here results of simulation of
two-wave two-beam VFEL with parameters close
to VFEL exprerimental setup [11].

In Fig. 3 we vary current density of the �rst
electron beam j1 from 100 to 250 A/cm2 at �xed
j2=2 kA/cm

2. Let us note, that in the absence of
the second beam the threshold current density in
the system is equal j1=300 A/cm

2. In the absence
of the �rst one the threshold current density
of the second beam is equal to j2=6 kA/cm2.
So, using two beams allows considerably decrease
the current thresholds. Moreover, one can see
considerable changing of the type of solution with
changing of currant values. Analogous examples
were obtained changing second beam at the �xed
�rst one. So, this can be considered as one way of
chaos control in VFEL.

Below we consider one-beam VFEL. So,
other way of chaos control in VFEL can be
realized via varying external electromagnetic
waves in VFEL. In this paper we consider the

(a)

(b)

(c)

(d)

FIG. 3. Amplitudes of transmitted (grey lines) and
di�racted (black lines) waves for j1 = 100 A/cm2 (a),
j1=150 A/cm

2 (b), j1=200 A/cm
2 (c),j1=250 A/cm

2

(d).
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in�uence of external incident wave E0(t) at z =
0. The parameters of the system correspond to
parameters of VFEL with a grid resonator [11].
Various types of waves E0(t) were considered.
Here we give only two cases: E0(t) = 100 (black
curves in Fig.4) and E0(t) = 100+20sin(3t)+20a
(grey curves), where a is a random number in
the interval [0, 1]. The results of simulation for
transmitted waves at z = L are shown in Fig.4b-
d for di�erent parameter of di�raction geometry
τx.

It is obvious, that the chaotic component
introduced by the generator of random numbers
is suppressed when we deal with periodic regimes
(Fig.4b and c)). Moreover in chaotic regime
(Fig.4d)) without such suppression should have
been substantially more "shaggy". This is the
manifestation of one of the main VFEL properties
� the suppression of parasitic modes in the
system.

Besides traditional changing of system
parameters one another way of chaos control in
VFEL also can be realized via changing VDFB
geometry. In [20] it was shown that variation
from one-dimensional to non-one-dimensional
geometry leads to changing in the type of
dynamical solution. So, the choice of VFEL
geometry can implement periodic dynamics
rather chaotic regime.

5. Conclusions

We propose a generalizes system of
equations describing the various options for
multiple beam multiwave VFEL. It takes into
account multi-section resonators, the dispersion
of electromagnetic waves in the system, external
re�ectors, etc. Mathematical modeling of two-
beam two-wave VFEL was carried out using
proposed system of equations. It was shown
that changing the electron beam current density
leads to change VFEL chaotic dynamics and can
signi�cantly reduce the threshold current values
in the system. It is also one of the mechanisms of
chaos control in the system.

(a)
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FIG. 4. Suppression of chaotic component introduced
by the random number generator. a: External incident
waves at z = 0 E0(t) = 100 (black curve) and E0(t) =
100 + 20sin(3t) + 20a (grey curve). b, c, d: Output for
corresponding transmitted waves at z = L for τx =
1.0, τx = 1.1, τx = 1.4, respectively.
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The way of chaos control in VFEL can
be occurred via changing system parameters,
geometry of volume distributed feedback,
via external electromagnetic waves in VFEL,
parameters of electron beams etc. Changing
these VFEL parameters leads to changes in the
type of dynamic chaotic solutions and by the
proper choice of parameters one can realized

VFEL periodic dynamics rather chaotic one and
vice versa.

The in�uence of external electromagnetic
waves on the nature of the VFEL generation
demonstrates that by a special choice of the
parameters of external signals one can obtain
higher values of the �eld amplitudes as well as
a fundamentally di�erent type of solution.
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