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Abstract. This contribution is devoted to investigation by methods of mathemat-
ical modelling of multiwave Volume Free Electron Laser (VFEL). Special emphasis
is placed on consideration of three-wave VFEL. Mathematical modelling carried out
confirmed some preliminary physical estimates. Computer code VOLC for simula-
tion of different schemes of two- and three-wave VFEL is described.
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1. Introduction

At present time FELs (Free Electron Lasers) based on different radiation
mechanisms are constructed for a wide wavelength range: from centimeter to
ultraviolet [10]. Volume Free Electron Laser (VFEL) based on mechanism of
multiwave volume distributed feedback (VDFB) was proposed firstly in [4],
theoretically developed in [2] and constructed in 2001 [1]. VDFB allows to
reduce significantly starting currents and to tune laser frequency. It provides
also mode discrimination in oversized systems (systems with transverse linear
sizes essentially exceeding generation wavelength). This gives a possibility for
generation of laser beams in large volume regions, distribution of high current
beam over large cross-section and reducing of electrical load on laser elements.

This article is devoted to investigation by methods of mathematical mod-
elling of multiwave VFEL. Our previous investigations were devoted to nu-
merical modelling of VFEL with two-wave distributed feedback. Theoretical
investigations show the great advantage of different multiwave diffraction ge-
ometries and in particular of three-wave diffraction geometry. Generation in
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multiwave distributed feedback geometry has many advantages including las-
ing in inaccessible for traditional schemes ranges of parameters.

2. Brief Review of Basic VFEL Operation Principles

Electron beam with initial electron velocity u and current density j in VFEL
(see Fig. 1) can move close to the target or through the target that is a three-
dimensional spatially-periodic structure of the length L. Under diffraction
conditions some strongly coupled waves are generated. Under proper phase
conditions electrons of the beam are grouped in a deceleration phase and they
produce the stimulated emission. In the case of amplification regime external
electromagnetic waves are incident to the target. A regime of oscillator can be
produced and this oscillator regime is implemented without external waves.
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Figure 1. Three-wave VFEL (Bragg-Bragg geometry).

There are three possible geometries in the three-wave system. In the Bragg-
Bragg case, depicted in Fig. 1, we deal with the following geometry:

(k1,n) > 0, (k2,n) < 0, (k3,n) < 0, (2.1)

where n is a normal vector relative to the surface. The Laue-Laue geometry is
implemented when (k1,n) > 0, (k2,n) > 0, (k3,n) > 0. We have the Bragg-
Laue geometry, when waves are oriented so that (k1,n) > 0, (k2,n) < 0,
(k3,n) > 0.

3. Mathematical Model of VFEL

The system of equations for VFEL is obtained from the Maxwell equations
by using the slowly-varying envelope approximation. The dynamics of the
electron beam is modelled by averaging over initial phases of electrons.
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The mathematical model describing nonlinear processes developing in
three-wave VFEL has the following form:

∂E1

∂t
+ a1

∂E1

∂z
+ b11E1 + b12E2 + b13E3 = I, E1(t, 0) = E0

1 ,

∂E2

∂t
+ a2

∂E2

∂z
+ b21E1 + b22E2 + b23E3 = 0, E2(t, L2) = E0

2 , (3.1)

∂E3

∂t
+ a3

∂E3

∂z
+ b31E1 + b32E2 + b33E3 = 0, E3(t, L3) = E0

3

I = Φ

∫ 2π

0

2π − p

8π2
(exp(−iΘ(t, z, p)) + exp(−iΘ(t, z,−p)))dp,

d2Θ(t, z, p)

dz2
=Ψ

(
k −

dΘ(t, z, p)

dz

)3

Re
(
E1

(
t −

z

u
, z
)
exp(iΘ(t, z, p)

)
, (3.2)

Θ(t, 0, p) = p,
dΘ(t, 0, p)

dz
= k −

ω

u
, (3.3)

Ei(0, z) = 0, i = 1, 2, 3, (3.4)

where t > 0, z ∈ [0, L], p ∈ [−2π, 2π]. We get a system of integro-differential
equations with temporal argument t, spatial coordinate z and initial electron
phase p. Amplitudes of electromagnetic field E1(t, z), E2(t, z), E3(t, z) and
coefficients a and b are complex-valued, Φ is imaginary constant. Function
Θ(t, z, p) describes a phase of electron beam relative to electromagnetic wave.
Θ and coefficient Ψ are real valued, k is a projection of the wave vector k1 onto
axis z, ω is a field frequency. Values of boundaries L2 and L3 for wave vectors
k2 and k3 are equal to 0 or L depending on a specific geometry considered in
applications. We suppose that all functions are smooth, bounded and slowly
varying.

Let us formulate the system of equations and boundary conditions for a
general n-wave distributed feedback geometry:

∂E

∂t
+ A

∂E

∂z
+ BE = G(I), (3.5)

where E = (E1, E2, . . . , En)T . Boundary conditions are described in the fol-
lowing form:

Ei(t, Li) = E0
i , i = 1, . . . , n. (3.6)

Diagonal matrix A contains direction cosines of wave vectors ki. Matrix B

describes dynamical diffraction in the system. E0
i are amplitudes of the exter-

nal incident electromagnetic waves. If E0
i = 0 for all i, we deal with oscillator

regime. The vector of right-hand sides G contains components I for waves
that are in synchronism with electron beam and are equal to zero for the
other waves.
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4. Numerical Algorithms

Numerical methods to solve the system (3.5), (3.6), (3.2) – (3.4) are similar
to methods proposed in [7], [6] for simulation of two-wave VFEL.

Let us introduce in domain Ω = {0 ≤ z ≤ L, −2π ≤ p ≤ 2π}
⋃
{t > 0}

uniform grids:

ωz = {zm : zm = mhz, m = 0, 1, . . . , M, Mhz = L},

ωp = {pj : pj = hpj, j = −N, . . . ,−1, 0, 1, . . . , N, hpN = 2π},

ωt = {tl : tl = lht, l = 0, 1, . . .}.

Discrete functions are defined on the grid ωt × ωz × ωp, they are denoted by

El
m = E(tl, zm), Θl

m,j = Θ(tl, zm, pj).

We approximate the differential problem (3.2), (3.5) by the following finite-
difference scheme:

Θl+1
m+1,j− 2Θl+1

m,j + Θl+1
m−1,j

h2
z

=Ψ

(
k −

Θl+1
m+1,j− Θl+1

m−1,j

2hz

)3

Re
(
Ẽl

m exp(iΘl+1
m,j)

)
,

(4.1)

E
l+1
m − E

l
m

ht

+ AC
E

l+1
m − E

l+1
m±1

hz

+ B
E

l+1
m + E

l+1
m±1

2
= G(I), (4.2)

I = Φ

N∑

j=0

cj

(
exp(−iΘl+1

m,j) + exp(−iΘl+1
m,−j)

)
,

where Ẽl
m = E(tl − αtm, zm), α = hz/(htu). We take the integer part of

α. When tl − αtm < 0 we assume that Ẽ = E(0, zm). cj are coefficients of
quadrature formula and we use the trapezoidal rule for approximation of the
integral.

The convection term is approximated by the upwind finite-difference for-

mula C
E

l+1
m − E

l+1
m±1

hz

. We choose a proper right or left finite-difference deriva-

tive with respect to z in dependence of the wave spread direction. Here C is a
diagonal matrix with coefficients equal to ”+1” or ”-1”, corresponding to the
left or right finite-difference derivative respectively for each wave amplitude
E1, E2, . . . , En (see e.g. (2.1)). So, for two-wave VFEL if for example wave
with Let consider the example of two-wave VFEL, when laser beam E1 goes
from the left boundary to the right one and E2 goes in opposite direction
(that is A11 > 0, A22 < 0). Then system (4.2) has the following form:

El+1
1,m − El

1,m

ht

+ A11

El+1
1,m − El+1

1,m−1

hz

+ B11

El+1
1,m + El+1

1,m−1

2

+ B12

El+1
2,m + El+1

2,m−1

2
= I,
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El+1
2,m − El

2,m

ht

− A22

El+1
2,m − El+1

2,m+1

hz

+ B21

El+1
1,m + El+1

1,m+1

2

+ B22

El+1
2,m + El+1

2,m+1

2
= 0.

Investigation of stability of difference scheme (4.1)-(4.2) is a very difficult
problem, thus we restrict ourselves to mark that the linearized problem is ob-
viously stable with respect to initial conditions and right-hand sides. Stability
of the full system (4.1)-(4.2) was confirmed in many numerical experiments.

Equation (4.1) is solved by using the Picard type iterative process as it
was proposed in [5] and the number of required inner iterations is small.

We note that the proposed algorithm allows us to use parallel processing.
The main work content is the computation of Θl+1

m+1,j in (4.1). Since all calcu-

lations are independent with respect to j, so all Θl+1
m+1,j can be computed in

parallel on standard SMP computing system, where processors use a shared
memory.
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Figure 2. Block-scheme of VOLC.

5. Computer Code VOLC

There are a wide number of different computer codes for modelling FEL [9].
The successful FEL operation depends on a large number of input parameters.
It is clear that only computer simulations allow us to choose the optimal set of
parameters in order to obtain the greater radiation output. In [9] a comparison
of different existing FEL code with respect to dimensionality, time-dependents
of simulation, type of model for description of particle beam is presented. It
is shown that a beam description by collective variables allows the faster
integration in time than the method of Particle-in-Cell.

Computer code VOLC that means VOLume Code was developed on the
basis of multiple Fortran codes, created in 1991–2005 years. This code imple-
ments different geometries of two- and three-wave VFEL (i.e. n = 2 or n = 3
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in (3.5)). In the future we plan to expand the possibility of VOLC up to n = 6.
The beam is modelled by averaging over initial phases of electrons that means
by collective variables. Dimensionality is 2D (one spatial coordinate and one
phase space coordinate) plus time. A block-scheme of VOLC is presented in
Fig. 2. Its interface is presented in Fig. 3.

Figure 3. Interface of computer code VOLC.

6. Results of Numerical Experiments

VOLC was tested with carping. Different regimes, such as oscillator and ampli-
fier regimes, SASE (Self-Amplified Spontaneous Emission), BWT (backward
wave tube), TWT (travelling wave tube), BWT-TWT were investigated. All
results correspond well to predictions of physical theory.

In this section we present some results of numerical experiments carried
out using code VOLC. Different regimes of three-wave VFEL operation were
investigated. We obtained various examples of establishment of nonstation-
ary solutions, including steady-state smooth solutions, oscillations, as well as
chaotic regimes. The stationary regime is realized when the beam current ex-
ceeds some threshold value. Further increase of beam current density leads
to establishing of different periodic regimes. In Fig. 4 the periodic regime of
VFEL intensity in the Bragg-Bragg and the corresponding phase space por-
trait are given.

It is evident that after establishing of asymptotic regime we deal with
periodic 1T and 5T regimes, perturbed with some computational noise. This
is illustrated in Fig. 5 and Fig. 6.
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Figure 4. Periodic regimes of VFEL: (a) intensity, (b) the corresponding phase
space portrait
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Figure 5. Fourier 1T periodic regimes corresponding to the amplitudes: (a) E2,
(b) E3 from Fig. 4

One of the important parameters in VFEL operating is the current thresh-
old jth. It is a minimal current density at which the process of generation
begins. The possibility to reduce the current threshold is one of the main ad-
vantages of VFEL as compared with the other generators of electromagnetic
energy. This reduction is attained due to the fact that VFEL allows to have
some modes in synchronism. This is one of the main VFEL features since
synchronism suppresses parasitic modes in the system. If only one mode is

in synchronism with the electron beam, the threshold current jth ∼
1

(kL)3
,

where k = ω/c (see [3]). If two modes are in synchronism with electrons, then

we have the estimate jth ∼
1

(kL)5
, and in general case when n modes are in

synchronism with electrons, then jth ∼
1

(kL)3+2(n−1)
.
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Figure 6. (a) Fourier 5T periodic regime corresponding to amplitude E1 from
Fig. 4, (b) dependence of the current threshold jth on length of the target L for
two-wave VFEL (solid line) and three-wave VFEL (dashed line)

Thus the threshold current can be significantly decreased when modes are
degenerated in multiwave diffraction geometry. On the other hand interaction
length can be reduced at a given current value.

The theoretical results were confirmed by numerical experiments. In
Fig. 6b the comparison of dependence of current threshold jth on the length of
the target L is demonstrated for two- and three-wave geometry. This is a good
illustration of effectiveness of volume distributed feedback. It is evident that
the threshold current can be significantly decreased in multiwave diffraction
geometry.

Synchronism of several modes with electrons corresponds to roots degen-
eration of dispersion equation. As it was mentioned above, the necessary con-
dition for VFEL operation is the execution of diffraction conditions [8]. For
this the initial parameters should be chosen close to the point of degeneration
of dispersion equation. For system (3.5) the root degeneration is selected from
the following equation:

det(B) = 0, (6.1)

where B = B(k1), k1 is a projection of wave vector k1 on axis z. We did
not write explicitly all coefficients of the system (3.5) here. In the two-root
degeneration mode the additional condition

det

(
∂B

∂k1

)
= 0 (6.2)

should be fulfilled together with (6.1). The following extra equation

det

(
∂2

B

∂k2
1

)
= 0 (6.3)

corresponds to generation in three-root degeneration mode. Each next equa-
tion narrows the domain of permissible parameters and allows to obtain more
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Figure 7. One mode synchronism case: (a) dependence on detuning from exact
Cherenkov condition δ (arbitrary units), (b) dependence on δ and system parameter
l1 for amplitude E1 in one-mode synchronism.
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Figure 8. (a) Two-root degeneration case, (b) three-root degeneration case.

radiation at smaller beam current. This was confirmed in numerical exper-
iments and some results are presented in Fig. 7 and Fig. 8. So, if only one
mode is in synchronism (i.e. system parameters satisfy only the first disper-
sion equation) one can see dependence on so-called detuning from the ex-
act Cherenkov condition δ. Three peaks correspond to three possible roots
(Fig. 7a). In Fig. 7b we present an example of dependence of amplitude E1

on δ and one of the system parameters l1. Previous figure is a normal cut at
fixed value of l1. The picture in Fig. 8a presents two-root degeneration case
with two peaks. And the last figure Fig. 8b shows three-root degeneration case
with one peak corresponding to the single solution of the system of dispersion
equations (6.1)–(6.3).
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7. Conclusions

Mathematical models and computer code VOLC described here can be used
effectively in modelling of nonlinear regimes of VFEL operation. They will
be useful for providing experiments on VFEL on the installations created at
the Research Institute for Nuclear Problems of Belarusian State University.
Authors thank Prof. Baryshevsky for permanent interest to their work.
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