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Analysis of nonstationary stage of quasi-Cherenkov instability in different VFEL (Volume Free
Electron Laser) schemes is carried out. Results of numerical experiments are discussed. Typical
bifurcational behavior of the solution at varying physical system parameters is obtained. Common
system for modelling of different VFEL with multiwave volume distributed feedback is proposed.
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1 Introduction

This paper is devoted to the analysis of non-
stationary dynamics of electron beam quasi-
Cherenkov instability in different realizations of
VFEL.

The interest to Free Electron Lasers (FEL)
that allows to obtain generation of high intensity
and spectral brightness arose more than twenty
years ago. Wavelength range for working or pro-
jected FEL extends at present time from centime-
ter to X-ray. VFEL with Volume Distributed
Feedback (VDFB) is one of the most promis-
ing direction of FEL development. Main useful
VFEL feature is effective electromagnetic wave-
electron beam interaction in large volume when
transverse sizes of electron beam essentially ex-
ceed radiation wavelength. This possibility is re-
alized due to Bragg dynamical diffraction which
selects modes in large interaction volume. As
a result, high output power may be produced
in such a system. Next important VFEL prop-
erty is frequency tuning in wide spectral range.
Conception of VFEL based on parametric (quasi-
Cherenkov) beam instability was proposed firstly
in [1] for generation in X-ray range. Then it

was developed in [2]-[8] for other spectral ranges.
First lasing of VFEL in millimeter range based
on principal ideas referred above was recently ob-
tained by the group from Institute for Nuclear
Problems [9]. Experimental work on VFEL goes
on [10]-[11]. Investigations on VFEL lead to cre-
ation of fundamentally new direction in the do-
main of high technology. In the future VFEL can
be adopted for thermonuclear plasma heating, ra-
diolocation, energy transfer on long distance etc.

Linear regime of VFEL operation was inves-
tigated in [1]-[8] and other works. This stage
of generation is limited by quite short time pe-
riod (10−8–10−9 s and less) depending on phys-
ical parameters. And most part of energy is
extracted from electron beam during nonlinear
stage. Analysis of this stage requires severe nu-
merical simulations which based on a system of
multidimensional first-order nonlinear partial dif-
ferential equations (PDEs). Boundary conditions
can be written at different boundaries and can
be PDEs too. Therefore we have to use numer-
ical methods for solving such type of differential
problem. Equations to be solved are hyperbolic
or of mixed type with nonlinearities holding in-
tegrals in right-hand sides. We called them as
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generalized transfer equations [12]. In our works
[13]-[18] we considered mathematical models of
different types of VFEL. Details of simulation of
quasi-Cherenkov VFEL in millimeter, optical and
X-ray region and proposal of common system of
PDEs for modelling of different types of VFEL
with multiwave VDFB are the goal of the work
presented.

FIG. 1. Simple scheme of quasi-Cherenkov VFEL in
Bragg geometry

2 Mathematical model of
volume scheme of VFEL

In preceding works [17]-[18] simple scheme of
VFEL (see Fig. 1) in millimeter region was con-
sidered. The same scheme is suitable for X-ray
VFEL. An electron beam with initial electron ve-
locity u and density nb passes through the target.
This target of length L is a periodic structure.
Incident electromagnetic waves 1 or 2 or 1 and 2
simultaneously emerge at it. Two strong waves
3 and 4 excited in the target have the wave vec-
tors k and kτ = k + τ , where τ is the reciprocal
lattice vector. When specific conditions

2kzτz ≈ −2k⊥τ⊥ + τ2, (1)

(so-called Bragg conditions) are fulfilled for
generation of quasi-Cherenkov radiation and if
Cherenkov synchronism condition is fulfilled:

|ω − ku| ≤ εω, (2)

electron beam emits coherent electromagnetic ra-
diation. Different generation regimes are possible
in such VFEL. If electron beam is in synchronism
with the wave having positive group velocity, am-
plification takes place. Such regime is realized in
TWT (travelling wave tube). When group ve-
locity is negative the regenerative and oscillation
regimes are possible (BWO - backward wave oscil-
lator). There is also a mixed regime when beam-
wave synchronism is satisfied for two modes si-
multaneously (BWO-TWT) [19]. In Bragg geom-
etry (Fig. 1) the transient wave 3 and diffracted
wave 4 are directed in opposite directions. In
Laue geometry two waves propagate in the same
direction.

Let us look for a solution of Maxwell’s equa-
tions in the next form:

E = eEei(kr−ωt) + eτEτe
i(kτr−ωt), (3)

where ω is the frequency and e, eτ are the vectors
of wave polarizations.

We consider dependence on one spatial coordi-
nate z only. The system of equations for nonsta-
tionary quasi-Cherenkov instability has the fol-
lowing form:

∂E

∂t
+ γ0c

∂E

∂z
+

iω

2
(l − χ0)E − iωχτ

2
Eτ

=
4πenbΦu

k2

∫ 2π

0

2π − p

8π2
(exp(−iΘ(t, z, p)

+ exp(−iΘ(t, z,−p)))dp, (4)

∂Eτ

∂t
+ γ1c

∂Eτ

∂z
+

iωχ−τ

2
E +

iω

2
(l1 − χ0)Eτ = 0,

(5)
E(t, 0) = E0, Eτ (t, L) = E1, (6)

E(0, z) = 0, Eτ (0, z) = 0, (7)

d2Θ(t, z, p)
dz2

=
eΦ

mγ3ω2

(
kz − dΘ(t, z, p)

dz

)3

×

Re (E(t− z/u, z) exp(iΘ(t, z, p)) , (8)

Θ(t, 0, p) = p,
dΘ(t, 0, p)

dz
= kz − ω/u, (9)

where t > 0, z ∈ [0, L], p ∈ [−2π, 2π].
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In (4)-(9) the following designations are used:

k = ω/c, γ0 =
kz

k
, γ1 =

kτz

k
,

l = l0 + δ, l1 =
χτχ−τ

l0
,

Φ =
√

l0 + χ0 − 1/(βγ)2,

where χ0, χ±τ are Fourier components of the di-
electric susceptibility, l0 is the geometry param-
eter, δ is the deviation from Cherenkov synchro-
nism, β is the diffraction asymmetry factor, γ is
Lorentz-factor of a beam, e, m are charge and
mass of an electron respectively.

Eqs. (4)-(9) is the system of integro-differential
equations. In addition to temporal argument
there are two independent arguments: spa-
tial coordinate z and initial electron phase
p. Amplitudes of electromagnetic fields E(t, z),
Eτ (t, z) are complex-valued. Function Θ(t, z, p)
is the phase of electron in electromagnetic wave.
Boundary conditions (6) are written for the case
of Bragg geometry.

Equation (8) describes electron beam propaga-
tion in VFEL with two-wave VDFB. We model it
by averaging over initial phases of electrons. This
method is well-known [20] and widely used in
simulation of BWT (backward wave tube), TWT,
FEL and other electronic devices. Magnetized
electron beam with one-dimensional dynamics is
considered. Derivation of (8) was proposed in
[18].

As was mentioned above we should use numer-
ical methods to solve the system (4)-(9). They
were proposed in [18]. We are interested in inves-
tigation of dynamics of the whole system, since
it is well-known that in laser systems different
types of instabilities (bistability, pulsed solutions,
chaos) can appear ([21], [22]). So, different types
of instabilities and bifurcations leading to transi-
tions between these types of instabilities arising
in VFEL were studied on the basis of (4)-(9).

Sequence of bifurcations are generated by vari-
ation of control parameters such as current, in-
teraction length L, asymmetry factor β and so
on. As an example of simulations carried out,

Fig. 2 and Fig. 3 demonstrate saturation and dif-
ferent bifurcations in Bragg geometry in millime-
ter range with changing current density without
and with absorption Im(χ0). It is evident, that
the current threshold is higher with absorption.
Curves form (oscillation period, set of main fre-
quencies) is changed sharply.

FIG. 2. Numerical solution for different current den-
sities without absorption
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FIG. 3. Numerical solution for different current den-
sities with absorption

The next Fig. 4 demonstrates the presence of
different bifurcation regimes for different diffrac-
tion geometries and decreasing of the field ampli-
tude with the increase of the parameter l0. The
case of l0 ≥ 4 corresponds to BWT.

So, system (4)-(9) can be used for simulation
of nonlinear stage of quasi-Cherenkov instability
in X-ray VFEL. Such simulation was carried out
for Bragg geometry. As an example we chose the
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FIG. 4. Numerical solution for different geometry pa-
rameter

crystal of LiH with thickness 1 cm and we took
the wave length λ = 4.09Å. As one can see in
the Fig. 5 the current density threshold is ex-
ceeded approximately at current density j = 300
MA/cm2. The moderate bifurcations (transition
to oscillation regime is considered as bifurcation
also) take place here. However, because of prob-
lems with multiple scattering of electrons and de-
terioration of crystals by electron beam advancing
X-ray VFEL cannot be realized yet. X-ray VFEL
generation can be realized on electron beams of
projected by International collaboration acceler-
ating machines DESY-TESLA.
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FIG. 5. Numerical solution for X-ray VFEL

3 Mathematical model of
surface scheme of VFEL

The surface scheme of quasi-Cherenkov VFEL
(where a particle beam moves over a periodic
target or at a small angle to this target) was
firstly considered in [5]. In [23] the visible qiasi-
Cherenkov VFEL was analyzed. In the surface
case radiation is formed along to the whole par-
ticle trajectory in vacuum and inside a target
without multiple scattering. At the same time
VDFB is formed by dynamical diffraction from
volume optical diffraction grating. Papers [14],
[16] were devoted to the detailed analysis of the
optical quasi-Cherenkov VFEL. Let us consider
the simple scheme of surface VFEL (see Fig. 6).
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FIG. 6. Surface quasi-Cherenkov VFEL

Domains I and IV are vacuum, domain II is
an electron beam, domain III is a spatially peri-
odic target. Here we introduce the following wave
vectors: k = (k⊥, kz), kref = (k⊥,−kz), k(+) =
(k⊥, kz0), k(−) = (k⊥,−kz0), kτ = (k⊥+τ⊥, kτz),
kref

τ = (k⊥ + τ⊥,−kτz), k(+)
τ = (k⊥ + τ⊥, kτz0),

k(−)
τ = (k⊥ + τ⊥,−kτz0), kz = (ε0ω

2/c2 − k2
x)1/2,

kz0 = (ω2/c2 − k2
x)1/2, kτz = (ε0ω

2/c2 − (kx +
τx)2)1/2, where ε0 = 1 + χ0 is a dielectric permit-
tivity of the target; kτz0 = (ω2/c2−(kx+τx)2)1/2.
The wave amplitudes of corresponding wave vec-
tors are denoted as E, Eref , E(+), E(−), Eτ , Eref

τ ,
where E and Eref are the radiation wave inside a
target and its reflective wave, E(+) and E(−) are
that outside the target, Eτ and Eref

τ are the same
for the diffracted wave. We can assume without
losses of generality that ky = ty = 0.

In [14], [16] we proposed detailed mathe-
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matical models describing nonstationary quasi-
Cherenkov instability surface VFEL for optical
regime. Let us write some resulting equations.

First: in vacuum for the wave with amplitude
E and wave vector k:

∂E

∂t
+

kzc
2

ω

∂E

∂z
+

kxc2

ω

∂E

∂x
= −2πi

ω

∂j

∂t
−2πj (10)

where j is a beam current density.
Second: in the target for the wave with ampli-

tude E and wave vector k that does not satisfy
to Bragg diffraction conditions:

∂E

∂t
+

kzc
2

ωε0

∂E

∂z
+

kxc2

ωε0

∂E

∂x
= 0. (11)

Third: in the target for two waves with ampli-
tude E and Eτ and wave vectors k, kτ respec-
tively, which satisfy to Bragg conditions:

∂E

∂t
+

kzc
2

ωε0

∂E

∂z
+

kxc2

ωε0

∂E

∂x

+
i(k2 − ω2/c2ε0)

2ωε0
E +

iωχτ

2ε0
Eτ = 0, (12)

∂Eτ

∂t
+

kτzc
2

ωε0

∂Eτ

∂z
+

kτxc2

ωε0

∂Eτ

∂x

+
iωχτ

2ε0
E +

i(kτ
2 − ω2/c2ε0)

2ωε0
Eτ = 0. (13)

Boundary conditions are obtained from the
continuity of tangential components of electric
and magnetic field. They have the generalized
form:

A−l
∂El

∂t
+ B−

l

∂Ei

∂x
+ C−

l El + DlE3

+A+
k

∂Ek

∂t
+ B+

k

∂Ek

∂x
+ C+

k Ek = fk(x, t, E
(0)
k , j),

(14)
where l = 1, 2 and k = 2, 1 for two boundaries
with respect to z. E

(0)
k is the amplitude of the

wave incident to considered boundary from the
outside. Waves with amplitudes E1 and E3 sat-
isfy to Bragg diffraction conditions.

So, the full scheme of surface VFEL from Fig. 7
is outlined by the system (12)-(13), two equations

of type (11) and two equations of type (10) plus
three pairs of (14).

For optical VFEL induced by beam-wave in-
teraction, the current was simulated on the basis
of kinetic equations for electron distribution func-
tions [14], [16].

Ibid, for solving the system of nonlinear first-
order differential equations with boundary condi-
tions given also by the nonlinear first-order PDEs
we proposed an algorithm of the multicomponent
modification of the alternating direction method
[24]. It is efficient and unconditionally stable for
multidimensional problems in domains with com-
plicated geometry and proved to be effective also
when operating with complex arithmetic.

FIG. 7. Optical surface quasi-Cherenkov genera-
tion. Dependence of amplification on deviation from
Cherenkov synchronism and Bragg condition

Let us demonstrate some examples of optimiza-
tion of VFEL with two wave distributed feedback.
At Fig. 7 dependence of amplification on detun-
ing from the synchronism condition ε ( see (2))
and the Bragg condition s = (l1−l)

√−γ1/γ0/|χτ |
(see parameters expansion above) is shown. It is
obvious that there is the optimal correlation be-
tween these two parameters where the amplifica-
tion process is developed most effectively.

4 System of PDEs for modelling
of VFEL with multiwave
distributed feedback

All above mentioned systems and numerical re-
sults were produced in the case of two-wave Bragg
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distributed feedback. Theoretical investigations
show the great advantage of multiwave diffraction
geometry. System of equations for such a geom-
etry can be derived by the same way as for two-
wave geometry. System for modelling of VFEL
with multiwave distributed feedback has the fol-
lowing form:

∂E

∂t
+

N∑

i=1

Ai
∂E

∂xi
+ CE = F (j), (15)

where E is the vector of dimension M of ampli-
tudes of electric field strength inside the target, j
is the beam current density.

Matrixes Ai and C are complex-valued. Ai

are diagonal. Nonzero lines of C correspond to
diffraction components in the system. Initial con-
ditions for (15) can be put equal to zero. Bound-
ary conditions with respect to x1 are the follow-
ing:

B
∂E

∂t
+

N∑

i=2

Pi
∂E

∂xi
+ QE = G(j, E0). (16)

Each of M lines of the system (16) corresponds
to one boundary condition. Number of lines M is
equal to the number of desired field amplitudes.
E0 is a vector of amplitudes of incident to the
system waves.

So, for the first model from Section 1 we have
to take N = 1, M = 2, E = (E, Eτ )T , F2 = 0, B
is a null matrix, Q is an unitary matrix. G1 = E0

is specified at x1 = 0, G2 = Eτ0 is specified at
x1 = L.

For two-wave surface VFEL (Section 3) we
have to take N = 2, M = 6, E =
(E,Eτ , E

ref , Eref
τ , E(+), E(−))T . C has two first

nonzero lines, corresponding to E and Eτ . F has
two last nonzero lines, corresponding to E(+) and
E(−). In (16) in each line only ingoing and out-
going from this boundary waves are involved.

For each case we have to write out accurately
coefficients of the system obtained and to solve
the problem of electron beam simulation.

To solve obtained system of equations we pro-
pose to use multicomponent numerical algorithms

[12], [14] if the number of spatial variables N ≥ 2.

5 Conclusions

Mathematical models and proposed numerical al-
gorithms can be used effectively in modelling of
operation of different VFEL schemes. They will
be useful for experiments on VFEL on the VFEL
setup formed in the Institute for Nuclear Prob-
lems of Belarusian State University.

Authors thanks prof. Baryshevsky for persis-
tent interest to this work.
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