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Abstract

The equations providing to describe generation process in FEL with varied parame-

ters of diffraction grating (photonic crystal) are obtained. It is shown that applying

diffraction gratings (photonic crystal) with the variable period one can significantly

increase radiation output. It is mentioned that diffraction gratings (photonic crystal)

can be used for creation of the dynamical wiggler with variable period in the sys-

tem. This makes possible to develop double-cascaded FEL with variable parameters

changing, which efficiency can be significantly higher that of conventional system.
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1 Introduction

Generators using radiation from an electron beam in a periodic slow-wave

circuit (travelling wave tubes, backward wave oscillators, free electron lasers)

are now widespread [1].

Diffraction radiation [2] in periodical structures is in the basis of operation

of travelling wave tubes (TWT) [3,4], backward wave oscillators (BWO) and

such devices as Smith-Purcell lasers [5,6,7] and volume FELs using two- or

three-dimensional distributed feedback [8,9,10,11].

Analysis shows that during operation of such devices electrons lose their en-

ergy for radiation, therefore, the electron beam slows down and gets out of

synchronism with the radiating wave. These limits the efficiency of generator,

which usually does not exceed ∼ 10%.

In the first years after creation of travelling wave tube it was demonstrated

[4] that to retain synchronism between the electron beam and electromag-

netic wave in a TWT change of the wave phase velocity should be provided.

Application of systems with variable parameters in microwave devices allows

significant increase of efficiency of such devices [4,12].

The same methods for efficiency increase are widely used for undulator FELs

[13].

In the present paper we consider generation process in Smith-Purcell FELs,

volume FELs, travelling wave tubes and backward wave oscillators using pho-

tonic crystal built from metal threads [14,15,16,17]. It is shown that applying

diffraction gratings (photonic crystal) with the variable period one can sig-
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nificantly increase radiation output. It is also shown that diffraction gratings

(photonic crystal) can be used for creation of the dynamical wiggler with vari-

able period in the system. This makes possible to develop double-cascaded

FEL with variable parameters changing, which efficiency can be significantly

higher that of conventional system.

2 Lasing equations for the system with a diffraction grating (pho-

tonic crystal) with changing parameters

In general case the equations, which describe lasing process, follow from the

Maxwell equations:

rot ~H =
1

c

∂ ~D

∂t
+

4π

c
~j, rot ~E = −

1

c

∂ ~H

∂t
,

div ~D = 4πρ,
∂ρ

∂t
+ div~j = 0, (1)

here ~E and ~H are the electric and magnetic fields, ~j and ρ are the current

and charge densities, the electromagnetic induction Di(~r, t
′) =

∫

εil(~r, t −

t′)El(~r, t
′)dt′ and, therefore, Di(~r, ω) = εil(~r, ω)El(~r, ω), the indices i, l =

1, 2, 3 correspond to the axes x, y, z, respectively.

The current and charge densities are respectively defined as:

~j(~r, t) = e
∑

α

~vα(t)δ(~r − ~rα(t)), ρ(~r, t) = e
∑

α

δ(~r − ~rα(t)), (2)

where e is the electron charge, ~vα is the velocity of the particle α (α numerates

the beam particles),

d~vα

dt
=

e

mγα

{

~E(~rα(t), t) +
1

c
[~vα(t)× ~H(~rα(t), t)]−

~vα

c2
(~vα(t) ~E(~rα(t), t))

}

, (3)
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here γα = (1 − v2α
c2
)−

1

2 is the Lorentz-factor, ~E(~rα(t), t) ( ~H(~rα(t), t)) is the

electric (magnetic) field in the point of location ~rα of the particle α. It should

be reminded that the equation (3) can also be written as [?]:

d~pα

dt
= m

dγαvα

dt
= e

{

~E(~rα(t), t) +
1

c
[~vα(t)× ~H(~rα(t), t)]

}

, (4)

where pα is the particle momentum.

Combining the equations in (1) we obtain:

−∆ ~E + ~∇(~∇ ~E) +
1

c2
∂2 ~D

∂t2
= −

4π

c2
∂~j

∂t
. (5)

The dielectric permittivity tensor can be expressed as ε̂(~r) = 1 + χ̂(~r), where

χ̂(~r) is the dielectric susceptibility. When χ̂ ≪ 1 the equation (5) can be

rewritten as:

∆ ~E(~r, t)−
1

c2
∂2

∂t2

∫

ε̂(~r, t− t′) ~E(~r, t′)dt′ = 4π

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

.(6)

When the grating is ideal χ̂(~r) =
∑

τ χ̂τ (~r)e
i~τ~r, where ~τ is the reciprocal lattice

vector.

Let the diffraction grating (photonic crystal) period is smoothly varied with

distance, which is much greater then the diffraction grating (ptotonic crystal

lattice) period. It is convenient in this case to present the susceptibility χ̂(~r)

in the form, typical for theory of X-ray diffraction in crystals with lattice

distortion [18]:

χ̂(~r) =
∑

τ

eiΦτ (~r)χ̂τ (~r), (7)

where Φτ (~r) =
∫

~τ(~r ′)d~l′, ~τ(~r ′) is the reciprocal lattice vector in the vicinity
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of the point ~r ′. In contrast to the theory of X-rays diffraction, in the case

under consideration χ̂τ depends on ~r. It is to the fact that χ̂τ depends on

the volume of the lattice unit cell Ω, which can be significantly varied for

diffraction gratings (photonic crystals), as distinct from natural crystals. The

volume of the unit cell Ω(~r) depends on coordinate and, for example, for a

cubic lattice it is determined as Ω(~r) = 1
d1(~r)d2(~r)d3(~r)

, where di are the lattice

periods. If χ̂τ (~r) does not depend on ~r, the expression (7) converts to that

usually used for X-rays in crystals with lattice distortion [18].

It should be reminded that for an ideal crystal without lattice distortions, the

wave, which propagates in crystal can be presented as a superposition of the

plane waves:

~E(~r, t) =
∞
∑

~τ=0

~A~τe
i(~kτ~r−ωt), (8)

where ~kτ = ~k + ~τ .

Let us use now that in the case under consideration the typical length for

change of the lattice parameters significantly exceeds lattice period. This pro-

vides to express the field inside the crystal with lattice distortion similarly (8),

but with ~A~τ depending on ~r and t and noticeably changing at the distances

much greater than the lattice period.

Similarly, the wave vector should be considered as a slowly changing function

of coordinate.

According to the above let us find the solution of (6) in the form:

~E(~r, t) = Re

{

∞
∑

~τ=0

~A~τe
i(φτ (~r)−ωt)

}

, (9)
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where φτ(~r) =
∫ ~r
0 k(~r)d~l + Φτ (~r), where k(~r) can be found as solution of the

dispersion equation in the vicinity of the point with the coordinate vector ~r,

integration is done over the quasiclassical trajectory, which describes motion

of the wavepacket in the crystal with lattice distortion.

Let us consider now case when all the waves participating in the diffraction

process lays in a plane (coupled wave diffraction, multiple-wave diffraction)

i.e. all the reciprocal lattice vectors ~τ lie in one plane [21,20]. Suppose the

wave polarization vector is orthogonal to the plane of diffraction.

Let us rewrite (9) in the form

~E(~r, t) = ~eE(~r, t) = ~eRe
{

~A1e
i(φ1(~r)−ωt) + ~A2e

i(φ2(~r)−ωt) + ...
}

, (10)

where

φ1(~r) =

~r
∫

0

~k1(~r
′)d~l, (11)

φ2(~r) =

~r
∫

0

~k1(~r
′)d~l +

~r
∫

0

~τ (~r ′)d~l. (12)

Then multiplying (6) by ~e one can get:

∆E(~r, t)−
1

c2
∂2

∂t2

∫

ε̂(~r, t− t′)E(~r, t′)dt′ = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

.(13)

Applying the equality ∆E(~r, t) = ~∇(~∇E) and using (10) we obtain

∆( ~A1e
i(φ1(~r)−ωt)) = ei(φ1(~r)−ωt)[2i~∇φ1

~∇A1 + i~∇~k1(~r)A1 − k2
1(~r)A1], (14)

Therefore, substitution the above to (13) gives the following system:
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1

2
ei(φ1(~r)−ωt)[2i~k1(~r)~∇A1 + i~∇~k1(~r)A1 − k2

1(~r)A1 +

+
ω2

c2
ε0(ω,~r)A1 + i

1

c2
∂ω2ε0(ω,~r)

∂ω

∂A1

∂t
+

ω2

c2
ε−τ (ω,~r)A2 + i

1

c2
∂ω2ε−τ(ω,~r)

∂ω

∂A2

∂t
] +

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

,

1

2
ei(φ2(~r)−ωt)[2i~k2(~r)~∇A2 + i~∇~k2(~r)A2 − k2

2(~r)A2 +

+
ω2

c2
ε0(ω,~r)A2 + i

1

c2
∂ω2ε0(ω,~r)

∂ω

∂A2

∂t
+

ω2

c2
ετ (ω,~r)A1 + i

1

c2
∂ω2ετ(ω,~r)

∂ω

∂A1

∂t
] +

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

, (15)

where the vector ~k2(~r) = ~k1(~r)+~τ , ε0(ω,~r) = 1+χ0(~r), here notation χ0(~r) =

χτ=0(~r) is used, ετ (ω,~r) = χτ (~r). Note here that for numerical analysis of

(15), if χ0 ≪ 0, it is convenient to take the vector ~k1(~r) in the form ~k1(~r) =

~n
√

k2 + ω2

c2
χ0(~r).

For better understanding let us suppose that the diffraction grating (photonic

crystal lattice) period changes along one direction and define this direction as

axis z.

Thus, for one-dimensional case, when ~k(~(r)) = (~k⊥, kz(z)) the system (15)

converts to the following:

1

2
ei(

~k⊥~r⊥+φ1z(z)−ωt)[2ik1z(z)
∂A1

∂z
+ i

∂k1z(z)

∂z
A1 − (k2

⊥
+ k2

1z(z))A1 +

+
ω2

c2
ε0(ω, z)A1 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A1

∂t
+

ω2

c2
ε−τ(ω, z)A2 + i

1

c2
∂ω2ε−τ (ω, z)

∂ω

∂A2

∂t
] +

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

,

1

2
ei(

~k⊥~r⊥+φ2z(z)−ωt)[2ik2z(z)
∂A2

∂z
+ i

∂k2z(z)

∂z
A2 − (k2

⊥
+ k2

2z(z))A2 +

+
ω2

c2
ε0(ω, z)A2 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A2

∂t
+

ω2

c2
ετ(ω, z)A1 + i

1

c2
∂ω2ετ (ω, z)

∂ω

∂A1

∂t
] +

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

, (16)
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Let us multiply the first equation by e−i(~k⊥~r⊥+φ1z(z)−ωt) and the second by

e−i(~k⊥~r⊥+φ2z(z)−ωt). This procedure provides to neglect the conjugated terms,

which appear fast oscillating (when averaging over the oscillation period they

become zero).

Considering the right part of (16) let us take into account that microscopic

currents and densities are the sums of terms, containing delta-functions, there-

fore, the right part can be rewritten as:

e−i(~k⊥~r⊥+φ1z(z)−ωt)4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

= (17)

= −
4πiωe

c2
~e
∑

α

~vα(t)δ(~(r)−~(r)α(t))e
−i(~k⊥~r⊥+φ1z(z)−ωt) θ(t− tα) θ(Tα − t)

here tα is the time of entrance of particle α to the resonator, Tα is the time

of particle leaving from the resonator, θ−functions in (ref5) image the fact

that for time moments preceding tα and following Tα the particle α does not

contribute in process.

Let us suppose now that a strong magnetic field is applied for beam guiding

though the generation area. Thus, the problem appears one-dimensional (com-

ponents vx and vy are suppressed). Averaging the right part of (18) over the

particle positions inside the beam, points of particle entrance to the resonator

r⊥0α and time of particle entrance to the resonator tα we can obtain:

e−i(~k⊥~r⊥+φ1z(z)−ωt)4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

=

= −
4πiωρ ϑ1 u(t) e

c2
1

S

∫

d2~r⊥0
1

T

t
∫

0

e−i(φ1(~r,~r⊥,t,t0)+~k⊥~r⊥0−ωt)dt0 =

= −
4πiωρ ϑ1 u(t) e

c2
<< e−i(φ1(~r,~r⊥,t,t0)+~k⊥~r⊥0−ωt)dt0 >>, (18)

where ρ is the electron beam density , u(t) is the mean electron beam velocity,
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which depends on time due to energy losses, ϑ1 =
√

1− ω2

β2k2
1
c2
, β2 = 1 − 1

γ2 ,

<< >> indicates averaging over transversal coordinate of point of particle

entrance to the resonator r⊥0α and time of particle entrance to the resonator tα.

According to [22] averaging procedure in (18) can be simplified, when consider

that random phases, appearing due to random transversal coordinate and time

of entrance, presents in (18) as differences. Therefore, double integration over

d2~r⊥0 dt0 can be replaced by single integration [22].

The system (16) in this case converts to:

2ik1z(z)
∂A1

∂z
+ i

∂k1z(z)

∂z
A1 − (k2

⊥
+ k2

1z(z))A1 +

+
ω2

c2
ε0(ω, z)A1 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A1

∂t
+

ω2

c2
ε−τ(ω, z)A2 +

+i
1

c2
∂ω2ε−τ (ω, z)

∂ω

∂A2

∂t
= i

2ω

c2
J1(k1z(z)), (19)

2ik2z(z)
∂A2

∂z
+ i

∂k2z(z)

∂z
A2 − (k2

⊥
+ k2

2z(z))A2 +

+
ω2

c2
ε0(ω, z)A2 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A2

∂t
+

ω2

c2
ετ(ω, z)A1 +

+i
1

c2
∂ω2ετ (ω, z)

∂ω

∂A1

∂t
= i

2ω

c2
J2(k2z(z)),

where the currents J1, J2 are determined by the expression

Jm = 2πjϑm

2π
∫

0

2π − p

8π2
(e−iφm(t,z,p) + e−iφm(t,z,−p)) dp, m = 1, 2 (20)

ϑm =

√

√

√

√1−
ω2

β2k2
mc

2
, β2 = 1−

1

γ2
,

j = en0v is the current density, A1 ≡ Aτ=0, A2 ≡ Aτ , ~k1 = ~kτ=0, ~k2 = ~k1 + ~τ .

The expressions for J1 for k1 independent on z was obtained in [22].

When more than two waves participate in diffraction process, the system (20)

9



should be supplemented with equations for waves Am, which are similar to

those for A1 and A2.

Now we can find the equation for phase. From the expressions (11,12) it follows

that

d2φm

dz2
+

1

v

dv

dz

dφm

dz
=

dkm

dz
+

km

v2
d2z

dt2
, (21)

Let us introduce new function C(z) az follows:

dφm

dz
= Cm(z)e

−

∫

z

0

1

v

dv

dz′
dz′ =

v0

v(z)
Cm(z), (22)

φm(z) = φm(0) +

z
∫

0

v0

v(z′)
Cm(z

′)dz′

Therefore,

dCm(z)

dz
=

v(z)

v0

(

dkm

dz
+

km

v2
d2z

dt2

)

. (23)

In the one-dimensional case the equation (4) can be written as:

d2zα

dt2
=

eϑ

mγ(zα, t, p)
ReE(zα, t), (24)

therefore,

dCm(z)

dz
=

v(z)

v0

dkm

dz
+

km

v0v(z)

eϑm

mγ3(z, t(z), p)
Re{Am(z, t(z))e

iφm(z,t(z),p)}, (25)

dφm(t, z, p)

dz
|z=0 = kmz −

ω

v
, φm(t, z, p)|z=0 = p,

A1|z=L = E0
1 , A2|z=L = E0

2 ,

Am|t=0 = 0, m = 1, 2,
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t > 0, z ∈ [0, L], p ∈ [−2π, 2π], L is the length of the photonic crystal.

These equations should be supplied with the equations for γ(z, p). It is well-

known that

mc2
dγ

dt
= e~v ~E. (26)

Therefore,

dγ(z, t(z), p)

dz
=
∑

l

eϑl

mc2
Re{

∑

l

Al(z, t(z))e
iφl(z,t(z),p)}. (27)

The above obtained equations (20,23,25,27) provide to describe generation

process in FEL with varied parameters of diffraction grating (photonic crys-

tal). Analysis of the system (25) can be simplified by replacement of the

γ(z, t(z), p) with its averaged by the initial phase value

< γ(z, t(z)) >=
1

2π

2π
∫

0

γ(z, t(z), p) dp.

Note that the law of parameters change can be both smooth and stair-step.

Use of photonic crystals provide to develop different VFEL arrangements (see

Fig.1).

It should be noted that, for example, in the FEL (TWT,BWO) resonator

with changing in space parameters of grating (photonic crystal) the electro-

magnetic wave with depending on z spatial period is formed. This means that

the dynamical undulator with depending on z period appears along the whole

resonator length i. e. tapering dynamical wiggler becomes settled. It is well

known that tapering wiggler can significantly increase efficiency of the undu-

lator FEL. The dynamical wiggler with varied period, which is proposed, can

11



kt1kt2

k

k

kt

kt1

kt2

k

kt3

e-beam

photonic crystal

Fig. 1. An example of photonic crystal with the thread arrangement providing

multi-wave volume distributed feedback. Threads are arranged to couple several

waves (three, four, six and so on), which appear due to diffraction in such a struc-

ture, in both the vertical and horizontal planes. The electronic beam takes the whole

volume of photonic crystal.

be used for development of double-cascaded FEL with parameters changing in

space. The efficiency of such system can be significantly higher that of conven-

tional system. Moreover, the period of dynamical wiggler can be done much

shorter than that available for wigglers using static magnetic fields. It should

be also noted that, due to dependence of the phase velocity of the electromag-

netic wave on time, compression of the radiation pulse is possible in such a

system.

3 Conclusion

The equations providing to describe generation process in FEL with varied

parameters of diffraction grating (photonic crystal) are obtained. It is shown

that applying diffraction gratings (photonic crystal) with the variable period

one can significantly increase radiation output. It is mentioned that diffrac-

tion gratings (photonic crystal) can be used for creation of the dynamical

12



wiggler with variable period in the system. This makes possible to develop

double-cascaded FEL with variable parameters changing, which efficiency can

be significantly higher that of conventional system.
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