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of the scattered proton. [The imaginary term in the potential, as discussed
by Heckrotte (H 56), corresponds to the absorption being spin-depen-
dent.]

A strong maximum in the polarization at 20°, a negative maximum
at 14°, and another maximum near 10° was found. The locations of
these peaks were not sensitive to the value of U;. In the scattering
cross section a minimum at 14° and a maximum at 18° was predicted.
It must be remembered in applying these calculations, that they were
made for silver bromide which represents only 769, of the cross section
in emulsion.

The use of diluted emulsion for experiments on polarization by
scattering in emulsion might have great advantages. An obvious one is
that the Coulomb scattering is reduced. Another could be that at some
practical ratio of gel to halide, the average polarization on scattering
might pass through a maximum. These possibilities have not as yet been
studied in detail.

A recent important application of emulsion as a polarization detector
has been made by Maloy et al. (M-S 60.1). The polarization of protons
recoiling from the reaction y + p — 7° + p was measured.

8.4 Multiple Scattering

The change in direction of motion, 6, that a particle experiences in
penetrating a thickness, ¢, of matter is a random variable. The probability
distribution of @ is affected by the nature of the particle and its velocity
as well as by the composition of the scattering material. The average
value {62) of 62 increases in close proportion to £. A variable

e
g
b dt

(8.4.1)

which depends on the kind of particle and the scattering material, is a
parameter measuring the scattering. It is the same as the 6% introduced
by Rossi (R52). As long as the scattering consists of many small deflec-
tions 6, is sufficient to describe it, for then, in virtue of the Central
Limit Theorem, (C 46), the resultant distribution of angles will be
Gaussian.

For small thicknesses of matter, however, the number of deflections
may not be large, so that the form of the elementary law of scattering
affects the resultant distribution. For the present, the energy loss in the
absorber is neglected.
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As long as 6, is small, the mean square projected angle ($?> is related
to 62 about as follows:

¢ 1.
L (8.4.2)
Assuming 6, to be roughly constant this can be integrated to give:
92
@D = ?S t (8.4.3)

This implies that the average projected angle of deflection of a particle
also varies with the square root of the thickness of matter penetrated.

The Coulomb scattering of a charged particle is caused by the same
electric fields that induce bremsstrahlung (Chapter 5 in Volume II). For
an absorber thickness comparable to the electron radiation length,
and for B & 1, the two effects can be directly related (R 52). Under these
conditions:

g o (8.4.4)
PP/

where x, is the radiation length, and p is in Mev/c. This is a valid
approximation only when the absorber thickness is great, so that a large
number of scattering events are represented in the net deflection of a
single particle. For Eq. (8.4.4) to be valid it is also required that the
particle energy be high. This insures that 6, be small. Moreover, the
particle must not interact strongly with atomic nuclei. For these reasons
the expression is useful only for high energy u mesons. Because of their
rapid rate of energy loss by radiation, electrons seldom penetrate more
than a few radiation lengths.

When strongly interacting particles penetrate a large thickness of
matter, the conditions leading to the Central Limit Theorem are not
satisfied. The occasional large deflections that occur both from Coulomb
and non-Coulomb interactions may dominate the observed angular
distribution. Whereas the root-mean-square multiple scattering angle
increases only with the square root of the absorber thickness, the number
of particles that penetrate the absorber without suffering a large deflec-
tion falls exponentially with its thickness. (This assumes that the
particle velocity is so high that its energy is not appreciably changed
in the absorber.) After a beam penetrates a distance equal to a mean
free path for nuclear interaction, a large fraction of the particles no
longer will lie in the Gaussian distribution.
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This is illustrated by Fig. 8.4.1 which shows the projected angular
distribution of a beam of negative pions. The beam originally had a
negligible angular dispersion and its momentum was 700 Mev/c. The
angular distribution after it penetrated to a depth of 20.3 cm.in a large
stack of emulsion is shown. This distance is somewhat more than half the
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Fic. 8.4.1. Observed multiple and plural scattering of pions compared with the
Moliére Theory.

mean free path for a non-Coulomb interaction so a considerable fraction
of the surviving particles will have been scattered through a large angle.
The curves shown were calculated from the Moliére theory (see
Section 8.8), which gives the total Coulomb scattering in the screened
electric field of a point nucleus. Curve I is the Gaussian part of the
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Moli¢re scattering alone. It represents the true multiple scattering.
Curve II includes the effect of single and plural scattering in the Coulomb
field according to Moli¢re. This part of the curve is affected by the
elementary scattering law, and by the approximations of his theory. One
can see that, owing to the strong interaction between pions and atomic
nuclei, the experimental points in the single and plural scattering region
lie much higher than predicted by the Moliére theory. Muon scattering
is affected oppositely.

We shall now analyze, in some detail, the measurable features of a
particle track that have their origin in its scattering. The development is
new and contains a number of relations not published elsewhere. Since
it is hoped that the readers of this book include some people who may
not be trained mathematicians, we have obtained these results employing
only elementary mathematical operations. The avoidance of all abstract
notation is, of course, impossible.

The summation sign, X, and its limiting form, the integral, [, along
with the mean value sign, ( ), are the most horrendous symbols required
in this section. Nevertheless, there are several subtle considerations
regarding the independence of variables, and the reader must be prepared
for situations in which he must think clearly for himself about the process
of measurement and the probability of occurrences.

Other approaches to the analysis of the scattering have been made by
Moli¢re (M 47, M 48, M 55), Moyal (M 50), and d’Espagnat (D 51.1,
D 52.1). Moliére’s treatment, especially, is quite different from that
offered here and the serious student is referred to these papers to obtain
other viewpoints.

In this analysis the track is considered to lie generally parallel to the
x axis. At abscissa points spaced a distance ¢ apart, y coordinates are
measured. The track segment between two points of measurement is
known as a cell. The arrangement is the usual one for multiple scattering
measurements as introduced by Fowler (F 50.1).

In a path of length ¢, the particle experiences an average number,
Not, of elementary acts of scattering. In the Ith such collision it is
deflected through a projected angle w, The probability that the
scattering angle, w, is in the interval dw is p(w)dw. Now we define
{w® = [w?p(w)dw. The quantity No above is the product of the
number N of scattering centers per unit volume and the total scattering
cross section, o. Then {(¢?) — Not(w?). This is the mean square angular
change of the projected particle direction in one cell length.

We shall make the small-angle approximation in which sin w is
taken equal to w. This introduces no significant error in the analysis
of the scattering of fast particles.
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At the Kth abscissa point along the track, let ¢x be the projected angle
of inclination of the track to the x axis. Then

K1

¢x = dxo + 2 w, (8.4.5)

where ¢x_,; is the angle of inclination at the (K — 1)st measurement

point, and ny is the number of elementary acts of scattering in the
Kth cell.

The relationship of yg,,, measured track ordinate at the (K 4 1)th
measurement point, to that at the Kth is:

i i
Vi =Yk b+ DA D wp + By — Ok (8.4.6)

i=1  p=1

In this expression A; is the path length between jth and the (j 4 1)st
scattering event in the Kth cell, and 8y is the “noise error’” in the Kth
measurement. Then the first difference, Dy, constructed on yy is:

Dg = ¥k — ¥k = 8 — Ok +idg + z A 2 wp (8.4.7)
=1 f=1
The second difference Dy constructed on yx is similarly:

D = Dig oy — Di(= Ve — 2941 + Vicso)

When the contributions from the two cells, and the independent
errors at the points of measurement K, K + 1, and K + 2 are written
as separate terms:

K1 i

K ™m
Dy =2 A, + Ewmﬁz Mooy + 8 + 84 — gy (8:4.8)
i=1 y=1 m=1 =1

The quantities

"K i
Se =5 > o (8.4.9)
1= y=1

and
i

K
Te =S ;Y A 8.4.10
K 2_210-’ ; -1 ( )
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shall be called the respective fore and aft scatter moments of cell K,
They are statistical variables that fluctuate from cell to cell. Each has an
expectation value of zero.
One may notice that:
K

Sk + T = 1 2 0, = tlrcsn — b) = 2 (8:4.11)

is ¢ times the angle turned through in the Kth cell. We define another
variable, yg, as follows:

Ixx = Sk — Tx (8.4.12)

The mean value (S%)> of S% is equal to the mean value T ot T
Therefore the mean value

ey = £ [{SE> —<TE] =0
The following, then, are rather obvious:
by = xxdp = Prdx> = {Pd)) = 0

These are mean values for very large samples or expectation values.
Also, for K £ I:

&by = ey = xxy =0
and
TIKf

Wi =3 =

{w?

The variables ¢, x, and § are therefore independent statistical variables.
The average value of ng is Not, so we have the exact relations:

47 =834 = 8D = (2/3) NotXw?) = 2/3t%(¢2) = (1/3)821

Here 47 is the mean square noise-corrected second difference derived
from cell # without cut off.
It is proved by induction that the rth difference, D, constructed on

Vi 1s:

il‘r—a —2!205—1'_1
2( : (r(i- a)!)(a(_ ] )Sﬂxﬂ_l

E: E_((—___W el (8.4.13)
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8.4 MULTIPLE SCATTERING 289

Differences, D% of all orders are homogeneous linear combinations of
the independent quantities ¢, y, and 8. Difference products are homo-
geneous quadratic expressions in these quantities. In the mean values,
cross products do not occur. In general:

e o L e )
<DK K+1> = g 8 S
r— 1P+ 3Re—r—DN2+2A—7r—1)
[2 F— ) eI —a— D+ I—1) (8.4.14)
+ ()RS I

s —B—DIE+D(r—ppl
As particular examples,
(D™ = 47+ 648%

AZ
(DUDY> =St — &8

{(DgDg,p» = <&

(DYt — 3242 4 20482

etc.

The relations in Eq. (8.4.14) are exact if one measures tracks for
which the small-angle approximation is valid. In particular, the relations
do not depend for their validity on assumptions regarding the scattering
distribution law. Unless it makes for much greater convenience to do so,
and accuracy can be sacrificed, it is better not to assume a Gaussian
distribution. For a scattering variable X, a Gaussian distribution would
imply { | X | > = (2/m) /3 XZ)1/2,

In later applications of the scattering formulas there may arise some
confusion regarding symbols unless they are summarized here. By Dy
we mean the algebraic value (calculated on ordinate yg) of ¥y — 2yx
+ Yxis By (D" we mean the value of the quantity Dy’ averaged
over many successive cells. By DgDy,; we mean the product of the
algebraic values Dg and Dy, ; of measurements calculated on yg and
Yx.s- By 4% we mean the value Dg? corrected for noise. By 47 we mean
A% averaged over many cells of length ¢. By Dy we mean | Dy | corrected
for noise. By D, we mean the average value of Dy from many cells. In the
Gaussian approximation 43 = (7/2)Dj. The quantity Dy, is the algebraic
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second difference yx — 2yx,,. + 2¥x o calculated on ordinate K with
cells each consisting of the sum of m unit cells. By (| D" |,,> is meant
the mean value of the absolute second difference for a cell of m times the
unit cell. The unit cell is conventionally 100 . in length. The noise-
corrected sagitta D for such a cell carries no subscript. Parallel notation
is extended to the rth differences D’.

8.5 Correlation between Track Direction and Track Displacement

When a charged particle, originally directed along the x axis, has
penetrated a scattering medium a distance ¢, it will be found displaced
a distance y along the y axis. Also, it will be directed along a line making
an angle ¢ in the x, y plane with its original direction. The displacement,
¥, and the angle, ¢, are random but correlated variables. Fermi (R 52)
solved the problem of their correlation with certain simplifying assump-
tions. These are: (a) the energy loss in the absorber is neglected; (b) the
angle ¢ is small; (c) the effects of particle polarization are not considered;
() both the angle ¢ and the displacement, ¥, are the resultants of many
small scattering events.

Following the general method of Fermi let F(t, y, $)dyd$ be the
probability that at the depth of penetration, #, the particle will be found
in the (y, ¢) interval dydg. Also, let p(w, df)dw be the probability that in
moving a distance d¢ that the particle will be deflected through an
angle between w and w -+ dw.

Then:
plw, dit) = p(—w, dt)

00

f pdw =1

© 2.2
[ o dydo = e = DL

These limits of integration mean that the integral is to be made over all
angles of deflection. K is a scattering “constant” for the unprojected
scattering angles, so the factor 2 appears in the denominator. Now the
displacement probability distribution varies with ¢ as follows:
F(t + dt, y, $) = F(t,y — $dt, $) = F{(, ¥, ) — (oF|oy)ddt + ---.

The angular probability distribution is also altered in traversing
the path interval df. From the definition of p: F(t+ dt, y, ¢)

= [° F(t,y, ¢ — w) p(w, dt) duw.
In order to carry out the integration, F(z, y, ¢ — w) may be expanded
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in powers of w, since p becomes very small for large values of w. On
dropping terms higher than the second degree in w this gives:

1 &*F

F(t,y,¢ —w) =F(t,y,¢) — w cf) +_?&w2
Therefore
F(t + dt, y,¢) = F(t, v, ¢) 41 2;; : fzﬁz it 8.5.1)

The total change of F' in the layer dt is then

| LKi? R
( 9‘5 ay T3pe a¢2) 2
so that
oF oF 6% &°F

We have defined 1/6, = (pB)/(2K,). Fermi found the solution of Eq.
(8.5.2) corresponding to a single incident particle to be:

23t 1 [ #* ¢

F(t,3,4) = =2— gz exp ——HZ-(T-——+ )] (8.5.3)

This solution was obtained in a different way by Moliére (M 55). On
integrating it over y, one obtains the angular distribution G(z, ¢):

Gt $yr= ()”2 e:m exp [~ Biz;] (8.5.4)

If, instead, we integrate over ¢ we obtain the distribution H(¢, y) in y:

M= = e [7 ﬁ] (8.5.5)

(w72 61302 6213

The circumstance that Eqs. (8.5.4) and (8.5.5) are Gaussian in ¢ and y
is, of course, a result of the simplifications introduced by dropping
terms of higher degree than d¢ and w2 This sometimes may be quite
unjustified.

Eq. (8.5.3), however, elegantly describes not only the angular distri-
bution for each particular displacement, but also the displacement
distribution for any given scattering angle, subject to the conditions

(a), (8), (c), and (d).
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This solution is valid for noninteracting particles of high velocity
in a thick absorber. At low velocities the assumption of no energy loss
along the track is not justified. Eyges (E 48) has found a solution of
Eq. (8.5.2) when 6, is a function of ¢.* In Section 8.11 we calculate
{»*> and {¢*) in a simpler way including the energy-loss effect.

8.6 Scattering Caused by Electrons

The main effect of the electronic charge density in the atom on the
scattering of an energetic charged particle is that of nuclear screening.
The electron cloud is not a structureless fluid, however, and effects of the
finite mass and concentrated charge of the electron are also manifested
in the scattering.

In a close collision with an electron at rest, a heavy particle of momen-
tum p will suffer a small deflection 6,, which is given by:

cosf, =~ 1 — —

In this equation w is the energy transfer to the electron. When = exceeds
a few electron kilovolts the electron is called a delta ray.
As long as 0, is small one may also write:

6 ~ 2;:2:0
The cross section for transfer of energy between w and w + dz to an
electron by a particle of charge ze is given by Eq. (9.1.1).
In a medium where there are n electrons per unit volume, the mean
square value, {62),, of the deflection produced by electrons is found
using Eq. (9.1.1). Itis

(8.6.1)

6, =n J‘ 6 ;—; dw per cm

or
D, = %Zﬁ w0 (i) dw per cm (8.6.2)

dw

Aside from a factor (m/p*) this is the same as the expression in Eq.
(9.2.1) which gives the energy loss in unit path of the heavy particle.
Therefore,

0%, ~ 2U$e> = mI[p? (8.6.3)

*In Eyges’ Eq. (15) there is an error. The exponent should not contain the factor ¢
that appears in the denominator.
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The mean square angle of nuclear scattering of an atom is pro-
portional to the square of its atomic number while the electronic
scattering effect increases only proportional to the atomic number.
Therefore, the electronic scattering is important in hydrogen, but of
decreasing importance as the atomic number increases.

Williams (W 40) has approximated the specific scattering effect
of electrons merely by writing Z(Z + 1) for Z2 in the atomic scattering
formulas. From Section 8.7, the mean-square projected scattering angle
is given by

252
@ = T
(18)°p7p

The ratio ($2),/{¢$?> in emulsion, therefore, is about 0.0l for a
relativistic particle. The factor <1 + (1/Z)) is seen somewhat to over-
estimate the scattering by the electrons in emulsion. Of course, the
effect estimated by Eq. (8.6.4) is solely of the inelastic scattering. The
adiabatic interactions produce the nuclear screening, and Eq. (8.2.1)
would seem to include their scattering effect.

(8.6.4)

8.7 The Scattering Factor

Thus far we have been concerned with a description of the multiple
scattering that did not require explicit evaluation of the elementary
differential scattering cross section. Now we must determine, as accura-
tely as possible, the deflections w in atomic fields, and calculate the
resultant of plurality of such deviations.

8.7.1 Multiple Scattering Distribution Function

At a depth of penetration #, let the fraction of projected angles, ¢,
in the interval dé be f(¢, t) dp. The angle ¢ may be the resultant of
many individual deflections. In the scattering process, let the fraction of
projected elementary deflections that lie between w and w - dw be
p(w) dw. Then we can construct the following equation.

of(¢, ¢t =
VD _ Na [” 166 — w,1) — b N pley s (E21)
Where N is the number of scattering atoms per unit volume and o is the

total scattering cross section of an atom. Following the method of
Snyder and Scott (SS 49), we find the solution of Eq.(8.7.1) in the form:

i) — Mfw

S=—00

cos (¢s) exp [Not | e B do] ds (87.2)
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The connections between the moments of the w-distribution and the
¢-distribution are of considerable practical importance. Since

‘f’zi‘“i

where 7 is the number Not of deflections in path #, (¢ = (Zw,).
All the moments of the multiple scattering distribution, therefore, can be
derived from the elementary scattering distribution. Thus

{¢*»> = Not{w?®)

(Pt = Notl{e®y + 3(N0-I<w2>)2

4% = Not(w® + 15(Nat)w?(w® + 15(Nat(w?))?
etc.

For unpolarized particles, the odd moments vanish, and in general:

LF B @m)l () (gt
& =N T i oy
Now one can invert the problem and ask for the moments of the

elementary scattering distribution, having measured only the multiple
scattering distribution. He finds:

(w?) = ($%/(Not)

(8.7.3)

(o) = (¢ — 3($BY)/(Not) (8.7.4)
(@ = [(6% — 15¢¢*) (%> + 30{$>?]/(Not)
etc.

It should be noticed that the value of Not and the moments of the
elementary scattering distribution depend very much on the small-angle
distribution given by the screening calculation. The product Not{w?™>,
however, is not sensitive to this calculation if the theory has been carried
through consistently. Thus, for example, if Moliére’s theory of screening

is applied, it is essential that his £ [Eq. (8.7.13)] be adopted as the
estimate of Not.

8.7.2 Introduction of the Scattering Factor

For small angles, Eq. (8.1.4) for the probability of scattering into dw
in unit emulsion path becomes
2.352% dw

s
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As discussed in Section 8.2, electron screening and the finite size of the
nucleus affect this cross section by a factor O = Q(B, w). The exact
formula for small angles is:

235220 duw
and
2.352% ° _ dw
rp e SRR
<¢> == Pgﬁg f—m w
Now
1.567tz2 = de
i il e
@ =B @h =S5 0%
In the Gaussian approximation {a2) = =/2(a)% So, when expressed in
degrees:
£ ©  dw Mozt U2
i=sn[] 0] 25 \i00) )

In Eq. (8.7.6), t is to be expressed in microns. The quantity
0 dew 11/2
k—sm[[" 0]

is sometimes called the scattering “constant.” It is better described as the
scattering ““factor.” Because () varies slowly with velocity, and the
Gaussian approximation has been made, K is not strictly a constant. It
varies with particle velocity and cell length in a particular scattering
material such as emulsion. Its numerical value depends somewhat on the
theory used in its calculation, and the cut-off procedure applied (see
below).

We shall make some comparisons later of theories, and also of theory
with the observations.

The absolute mean scattering angle, @, between successive chords
conventionally is written:

Kz  t\12

5 i)
Here a is measured in degrees, K in Mev/c, ze is the charge on the
moving particle, and # is in microns. Measurements are seldom reduced
to an angle in current practice, however. If the mean absolute second
difference corrected for noise and measured in microns is D, then

& =

(8.7.7)

o _ Katn
SR S b
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Consequently, pB/z = (K#*/2)/(573D,). When, as recommended below,
a cut off has been applied, one uses the formula

B _ K2

Aoa 305

(8.7.8)

8.7.3 Cut Off of Large Deflections

As long as the scattering is by the nuclear electric field alone, the
behavior of all elementary charged particles is the same. Nuclei are
finite in size, however, and in their interaction behavior various particles
differ profoundly. Multiple scattering measurements can be carried out
in such a way as to eliminate the effects of strong interactions as well
as the occasional large-angle Coulomb deflections. To accomplish this
it 1s usual to exclude large angles according to some prescription. In the
Fowler method of measurement, it is conventional to eliminate second
differences exceeding four times the resultant mean second difference.

Suppose that the small-angle scattering is described by a Gaussian of
variance o2, Then the mean value ¢ | x | > of the variable with cut off

18
A< ] 2 .
—x2/20%) d.
7 st Jo  xexp (—x%20%) dx 8.7.9)

3<1x| > exp (—x%/20%) dx

Solving this equation for { | x| >, we find ( | x| ) = 0.993(2/m)172 g.
A Gaussian without cut off gives (2/m)!/? g, so that usually one need not
distinguish between a cut off Gaussian and a Gaussian, whereas a non-
Gaussian tail may be largely eliminated.

Another cut-off method has been devised by Lipkin, Rosendorff,
and Yekutielli (LRY 55) which is specifically designed to minimize
fluctuations caused by the tail of the Moli¢re distribution (see below).

A correctly applied cut off procedure eliminates occasional large
fluctuations in the measurements, and also insures that the measured
scattering is the response of the particle to electric forces alone. The
method in which large deviations are replaced by the maximum permitted
deviation is a possible alternative, but it is somewhat erroneous in
principle. For a given pf/z, an effect of strong interactions will still be
present in the measured mean scattering angle because the number of
large deviations depends on the nature of the interaction. In practice this
is rather a fine point, however, because the mean free path for nuclear
interaction is great.

On the other hand, sometimes something about the nature of a
particle producing a long track can be determined by an analysis of



8.7 THE SCATTERING FACTOR 297

the large angular deviations. The smallest deflection consistently
measureable with a field of 200 » and a magnification of 600 is perhaps
0.5° (G 50). An analysis of antiproton tracks was carried out in this way
by Goldhaber and Sandweiss (GS 58). They recorded elastic scattering
events of a projected angle greater than 2°. They found for antiprotons
of energy 50-200 Mev that the scattering is as if each nucleus had an
effective radius 7,43 with r, = 1.64 x 103 cm inside of which all
partial waves of the antiproton were absorbed. This radius corresponds
to the measured annihilation cross section of emulsion nuclei.

8.7.4 Moliére’s Angular Distribution

Currently, the best-known theory of multiple scattering is that of
Moliére (M 48, M 55) although the writings of Wentzel (W 22), Bothe
(B 29), Williams (W 39, W 40), Olbert (O 52), Goudsmit and Saunderson
(GS 40), Snyder and Scott (SS 49), Lewis (L 50.2), Scott (S 52), and
others have made important contributions to the thinking on this
subject. Even the Moliére theory adopts an approximation for the
atom model of Thomas-Fermi in calculating the elementary scattering
distribution. Moreover, Moliére makes no allowance for the finite size
of the nucleus. The angular distribution at large angles of deflection
is derived by considering only the Coulomb force of a point nucleus.
Finally, Moliére’s mathematical procedures have been questioned
(NSW 59). Nevertheless, considerable empirical evidence confirms the
general correctness of his distribution except in the tail.

For small scattering angles Moliére’s distribution becomes the same
as that derived with the Born approximation and for large angles the
same as the Rutherford Law. The intermediate angles are bridged by
the WKB method.

For calculating the multiple scattering it is necessary to have an
accurate elementary scattering law, and also to evaluate correctly the
effective number of scattering events contributing to the resultant
deflection.

Let o be the “total” scattering cross section of an atom. Then the
average number of collisions in path ¢ is Not, but most of these collisions
contribute virtually nothing to the multiple scattering. They consist of
small deflections experienced in traversing the interpenetrating outer
envelopes of atoms. In this region the nuclei are heavily screened and
calculations are difficult. A screening angle, y,, which for the purposes of
multiple scattering calculations may sufficiently describe the elementary
scattering distribution was introduced by Moliére (M 47). He symbolized
by ¢(x) the ratio of the atomic scattering cross section for space angle x
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to the Rutherford cross section. Then ¢(x) was expressed approximately
by the simple formula

4

seet ol S
0+ 2 (8.7.10)

q(x) =

In this formula y,, the screening angle is chosen so that with the
function of Eq. (8.7.10) the same mean absolute scattering angle is
predicted as he finds from detailed calculations with an approximation
to the Thomas-Fermi atom. The single angle, y,, determines the
scattering. It is calculated from

where a is the radius of the Thomas-Fermi atom (0.885a,Z-1/%), and
4, is the Bohr radius, #%/me?. An angular unit y, is defined by

2 AnNte'Z(Z 1 1) 2
= (PB)?

(8.7.12)

The total probability is unity that in path ¢ the particle will scatter
through an angle greater than y,.
The effective number of collisions in path # (in centimeters) is

1.47 X 10-N22Z15(Z + 1)

Q=i o £ XD MEZ

(8.7.13)

A quantity B, related to £2 enters the theory frequently. It is found from
InQ2=0.115+B—1InB (8.7.14)

A more convenient approximation for B has been given by Scott (S 52).
Itis

B = 1.153 + 2.583 log;, 2 (8.7.15)

for £2 > 100.

Moliére employed a transport equation specialized to his elementary
scattering law. It is otherwise equivalent to Eq. (8.7.1). By a Bessel-
Fourier integral transformation and other rather formal analytical



8.7 THE SCATTERING FACTOR 299

procedures he develops the solution for the projected multiple scattering
angle ¢ in inverse powers of B as follows:

de
x(B)'* (8.7.16)
e

1
Xg(—w)zﬂz‘exp(*zggﬂéf‘” [ﬁ]*?ﬂ”[ﬁw]*“ |

The function f™ and f* have been tabulated in Moliére’s (M 48) paper.

fig, 1) dp =

8.7.5 Numerical Evaluation of Scattering Factors for Emulsion

Although Eq. (8.7.16) is relatively simple for a pure element, it
becomes rather cumbersome if one considers all the elements making up
emulsion. Some approximation is necessary. Fortunately the dependence
of B on Z is slight so that the method of averaging over the emulsion
elements is of little importance.

To evaluate the scattering factor, Scott (S 52) first compared the
theory of Moli¢re (M 48) with that of Snyder and Scott (SS 49). The
theories were found to be mathematically equivalent if the single
scattering formula and screening angle of Moli¢re were introduced into
Snyder and Scott’s theory. Scott then calculated scattering factors with
various cut-off assumptions. Some of his results are given in Table 8.7.1.
The absolute mean angle without cut off given by Moliére’s theory is
inapplicable because he assumed a point nucleus, and the “no cut off”
scattering factors are included here only for comparison. The mean-
ings of the various symbols we use are as follows:

(a) K, scattering factor for mean absolute projected angle, a, between
chords without cut off;

(b) K,, scattering factor for mean absolute projected angle, a,
between chords with cut off at four times the cut off mean;

(c) K, scattering factor for a mean projected angle, a,, between chords
corresponding to an ordinate |/e times the maximum ordinate;

(d) K’, the scattering factor for the mean absolute projected angle,
{| ¢ | >, between tangents without cut off.

(e) K',, the scattering factor for the mean absolute projected angle,
{| ¢ | >, measured between tangents and cut off at 4¢ | ¢ | >,; and

(f) K',, the scattering factor for a mean projected angle, ¢,, between
tangents corresponding to an ordinate lower by a factor e than the
ordinate at ¢ = 0. The scattering factor in each case can be written

K2 = 675[a + b logy, €] (8.7.17)
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Table 8.7.1 gives the values of @ and & for each scattering factor.

TABLE 8.7.1
COEFFICIENTS @ AND b FOR CALCULATING SCATTERING FACTORS

Coef. K K, K, K’ K K,
a 0.299 0.090 —0.105 1.044 0.418 0.253
b 0.269 0.272 0.879 0.809 0.818 2.636

Scattering factors for cut off and replacement by the cut off value are
not quoted for the reason given above.

The part of the Moli¢re formula that applies generally is the Gaussian
term. Each elementary particle has its own characteristic large-angle
scattering behavior, and in a prescription for measuring 8/ one must
eliminate particle idiosyncracies. In this volume we have chosen to limit
the treatment to the conventional cut off at four times the resultant
mean. There is only a slight effect of the Moliére functions £ and /2 at
small angles, and for simplicity, one could disregard them. This is
justified especially because the corrections in this angular range differ
from those of Molitre when more refined atom models than his are
employed.

Mean square scattering angles, because of the small angle approxima-
tion and point nucleus assumed, are undefined in the Moliére theory.

The coeflicient 675 in Eq. (8.7.17) has been adjusted somewhat from
the value given by Scott because we use the more exact emulsion com-
position of Table 3.5.1. From this we calculate TN,Z2? — 3.61 x 102
per ml. In addition we correct for scattering by electrons. The effect of
the Moli¢re factor [8? + (2Z/75)?] is approximately [8% + 0.3022] when
summed over the emulsion elements. Allowance for the velocity and
particle-charge dependence of the scattering factor, accordingly, can
be made if we define an equivalent cell #,, such that

il (0.23 +0.77 —g-:—) t (8.7.18)

This formula gives the cell length ¢ for 8/z 7= 1 that has the same
scattering factor as a cell of length ¢, with 8 = 1.

The scattering factor K, for a, in degrees, p8 in Mevjc, ¢, in microns,
and 8 = 1, as calculated from Eq. (8.7.17), is given in Table 8.7.2.
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TABLE 8.7.2

THE ScaTTERING FacTor K, FOrR B = 1

4 10 102 o 10% 10% 10°
K, 19.3 23.6 27.2 30.4 33.3

We also find from Eq. (8.7.13) that
Q=15 (8.7.19)

and from Eq. (8.7.15)
B — 2.45 4 2.58 logye 1y (8.7.20)

when ¢, is in microns.

8.7.6 Some Studies of the Scattering Factor

Voyvodic and Pickup (VP 52) carried out a useful study of the
scattering factor in which they compared the predictions of the various
scattering theories and studied the effect of cutting off the large scattering
angles. They also compared the predictions with measurements in
emulsion. They improved the theory of Williams (W 39) by making the
transition between the Born approximation and Rutherford regions
through the Moliére factor (B2/2% + 0.30), as in Eq. (8.7.13). With this
adjustment they obtained essentially the same results whether they .
employed the theories of Williams, Snyder and Scott, or Moliére, but
because of its greater simplicity the Williams theory was preferred for
calculations. On the basis of Williams theory, the mean absolute angle a,
after cut off at 44, is given by

& — nj(ds)
1 — /(322

gl (8.7.21)
The adjusted Williams formula for the scattering factor without cut off
mcluding the electron-scattering effect is

18 i { é 2 —1 1/21
K — 121 {1 40837 [; C) + 0.30g logyy (0.941)| 5
The units are degrees, Mev/c, and microns.

The scattering factors calculated by Voyvodic and Pickup were found
to be generally in good agreement with the measurements they made on
fast electrons, and with the published observations (C 51, BLS 51, G-R 51,
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MOR 51) on the scattering of electrons and protons in emulsion. Thus,
for example, K, for electron pairs of 16.7 Mev was calculated to be 22.1
whereas they measured 21.2 4 0.7 using an average cell of 45 . The
energies of the electron pairs were determined by scattering 700 u of
track from each member of the pair. The energy of the pair was found to be
measured with a statistical uncertainty of 10%. Electron-pair energies
have been measured by this method in a number of other studies. For
example, Heckman, Giles, and Barkas (HGB 54), and Giles (G 53),
observed the #°-y-ray spectrum emitted at 90° from a beryllium target
when it was bombarded by 330 Mev protons. On measuring the scat-
tering of pairs produced in 400 p emulsion by monoenergetic 6.14 Mev
photons, it was found that the energy resolution was 1.37 Mev. (This is
the standard deviation of the apparent energy distribution, and the
energy was correctly given by the scattering.)

On tracks of 6.2 Bev protons Biswas, Prasad, and Mitra (BPM 57)
measured a scattering factor about 109 higher than that given by
Voyvodic and Pickup when cells of 1, 2, and 3 mm were employed.

The scattering factor for cells longer than a few millimeters is not
known to be reliable. Recent work with very long cells on tracks of
high-energy pions and muons has led Hossain et al. (HVWE 61) to
recommend a scattering factor of 27.6 - 0.6° Mev/c for cell-size range
from 1 mm to 3 cm.

Scattering measurements have also been made on the tracks of heavy
nuclei. Dainton, Fowler, and Kent (DFK 51) obtained consistent results
using a value of 26° x Mev/c for the scattering factor of multiply
charged particles in cosmic rays.

Backus, Lord, and Schein (BLS 52) found scattering factors K,
of 24.8 - 1.4 for a 250 p cell, and 26.2 + 2.2 for a 500  cell when they
scattered tracks of carbon nuclei, the energies of which varied from 10 to
1000 Mev. Their measurements on protons and pions checked well
with theory.

In the Lawrence Radiation Laboratory W. G. Simon has investigated
the multiple scattering distributions of A% and O ions in gold,
aluminum and zapon. The agreement with Moliére is generally good.

8.8 Measurement Procedure

The scattering of a particle in emulsion is independent of the emulsion
sensitivity, and of its degree of development. If one has a reliable measure
of the scattering, this can be used to determine the product, pf/z, of the
particle magnetic rigidity and its velocity.
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8.8.1 Track Tangent Method

A measurable quantity of this sort is the average absolute change of
the projected particle direction, (| ¢ |> = {| g,y — ¢x|> in path
length ¢. The track direction is observed at many points spaced by a
distance ¢, and the absolute angular changes in direction are averaged.
Early workers (L 48, GKMR 48, DLM 49) projected a real image of the
track and measured the scattering angles on the enlarged projection.

A protractor or goniometer used by Goldschmidt-Clermont (G 50)
consists of a moving arm fixed to the eyepiece of the microscope which
can be adjusted by means of a tangential screw. The moving arm bears
either a good vernier or a reading microscope so that a fraction of a
minute of angle can be read. The eyepiece is fitted with a straight-line
reticle which is placed tangent to the track at points separated by the
cell length ¢. The stage motion was found to be parallel to a straight line
to 2 min for 3- and 7-cm displacements (G 50). The inaccuracy with which
the true tangent to the trajectory is determined with the reticle is the
“noise.” This is reduced by making several reticle settings on the track
at each point of measurement. The lower limit of the total noise is
about 2 min of angle for 400-600 x emulsions.

Rankin (R 54) by a rather simple optical-lever principle was able to
construct a goniometer that enabled him easily to measure ¢ to 0.05°
by means of a scale appearing in the microscope field of view. This made
it unnecessary to take the eye from the track during measurement.
Measurements were made simply and rapidly.

Cosyns (C 51) constructed a split-image microscope so that one image
of a track crossing the center of the field remained stationary and another,
of opposite reflection symmetry, rotated when the system of reflecting
prisms was caused to rotate. At an arbitrary position of the prism system
the two track images crossed in the field. At a critical position the two
images were superimposed. When the track was straight, the two images
of a grain would overlap and the contrast would increase appreciably.
When the images were most exactly superimposed a scale in the field
of view could be illuminated and the angle ¢4 of the track segment could
be read directly.

To fit a tangent to a track locus a finite segment of track must be
considered. This produces a smoothing in the angular changes
¢x — $x_;. Empirically this seems to reduce the scattering effect by
about 49,.

8.8.2 Coordinate Method

When only a small length of track is available for measurement, or
when the particle is strongly scattered, it may sometimes still be useful to
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measure the angle between tangents, but this method of measurement
has now been generally superseded by the coordinate method of Fowler
(F 50.1). When the mean scattering angle is small the coordinate method
is especially preferred.

“Fowler’s method” refers to the following general procedure:

The track is aligned approximately with the direction of microscope
stage motion, which is taken to be the abscissa, x. It is advisable to align
the track well enough so that, if possible, over the interval of measure-
ment, it will remain within the microscope field without changing the
y coordinate of the stage.

One selects a length, ¢, parallel to x as a cell length. Often this may be
100 i or so. The ordinate of the track at an arbitrary x = 0 point is
recorded as y,. Then the plate is displaced a distance # along the x axis and
the ordinate, y,, recorded. By successively displacing the plate and at
each stop recording the track ordinate, a set of numbers, y;, is obtained.
The measurements are the distances of the track from a straight line that
extends generally parallel to the track.

Second differences

Dy = (ks — Vi) — (Vi1 — ¥%)

may then be calculated. The average absolute value { | Dy | > (Section 8.4)
is a measure of the mean angle a between successive chords to the track.

When the reading and recording is not done by automatic equipment,
usually two people can work together advantageously. The observer
operates the microscope controls and reads off the y coordinates. If
another person records the data, the observer need not take his eyes
from the track or his hands from the controls. Oral transmission of the
data to a tape recorder is also possible. Often the human recorder can
also calculate the differences and otherwise process the data in the time
between readings, and they can alternate tasks.

It is obvious that this method, which obtains minute deviations of the
track locus from a straight line, requires special equipment. It is objec-
tionable if irregular stage motion contributes more than a very few
hundredths of a micron to the apparent scattering sagitta. In Section
8.12 we discuss the equipment for such measurements.

8.8.3 The Scattering Sagitta

In order to reduce the labor of multiple scattering calculations when
they are not carried out by automatic methods, it has been common to
to find the absolute second differences, | DY |

| ¥ — Wra + Yool = | DE | (8.8.1)
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The mean value of this quantity over many cells and corrected for noise
and cell length is the scattering sagitta, D. It is derived for a cell of
standard length, normally 100 . Using the Gaussian approximation for
the noise,

el e % G (8.8.2)

is the squared mean absolute second difference for a cell of m times the
standard length. “The mean projected scattering angle between chords,”
a,, is given by a, = (#m'/2D,)/1.8 when D, is in microns, a, is expressed
in degrees, and D, is cut off at four times the resultant mean. Scattering
factors are quoted for the angle 4, in Table 8.7.2.

Sometimes zeros are recorded among absolute second-difference
measurements. When this happens it means that the scale of measure-
ment is too coarse. A systematic error is then introduced. When the least
distance recorded is a, then to correct this error each zero should be
replaced by a/4 (BY 54).

The relationships between the angular and coordinate scattering
measurements are expressed by Egs. (8.4.6) and (8.4.8), and by 2/3#2(¢*>
= 2/3t(¢x — ¢x1)®» = 4i ~ 7/2D}.

High-energy beams of known momenta from the 25 Bev CERN
accelerator have recently subjected the technique and theory of multiple
scattering to severe tests. On the whole the method has been found better
than expected.

8.9 Track Noise and Its Elimination

The particle path is defined only imperfectly by the track in emulsion
because the grains are finite in size and are distributed about the
trajectory. The emulsion is also subject to distortion. Additional
uncertainties in one’s knowledge of the trajectory are introduced during
measurement by instrument faults and human error. These various
effects are sometimes lumped into the general term “‘noise.” On analysis
one finds that they should be subdivided into those that are independent
of cell length and others that are not. The former constitute true noise.
The latter include effects that may be difficult to distinguish from track
scattering.

Biswas, Peters, and Rama (BPR 55) classify noise into four types as
follows: grain noise, reading noise, stage noise, and temperature noise.

8.9.1 Grain Noise and Reading Noise

The grain noise is affected by the particle velocity and charge as well as
by the grain size. It is smaller for emulsion of fine grain and for particles
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of low charge. Grains are caused to develop generally along the particle
path, but a typical grain center will be displaced from it by a projected
distance . The mean square magnitude (€2 of this distance depends on
the emulsion grain size, on its sensitivity, and on the particle velocity.
The dependence on particle velocity arises because crystals somewhat
displaced from the particle path are rendered developable by delta
rays. The primary grains consist only of crystals that develop after they
are actually traversed by the moving particle. Moreover, when grains
develop they may not grow symmetrically about the center of the
unprocessed silver halide crystal. The finite grain size and these dis-
placement effects contribute grain noise to the scattering measurement,
and also (see Chapter 9) interfere with the measurement of the gap-length
distribution in steep tracks. Ekspong (E 54) has evaluated the mean
absolute displacement ( | €| > for G.5 emulsion, presumably using the
tracks of fast particles. He found ¢ |e|> = 0.14 p.

In connection with measurements of #° decay, F. M. Smith (SSB 61)
measured the projected value of (e2)!/2 for tracks in K.5 emulsion. She
found it to be only 0.03 . In this experiment, however, grains thought
to be caused by delta rays were eliminated. The measured grains probably
were penetrated by the particles that produced the tracks.

If one attempts to measure the position of a track extending generally
along the x axis by averaging the y coordinates of several grain centers,
a limitation is encountered. The ordinate of the track cannot be found
with a standard deviation of less than (e21/2/(gl)!/2. Here [ is the length of
the track segment used to establish the y coordinate, and g is the grain
density. If a single grain is used, the uncertainty is (e21/2,

The reading error is minimum when track grains are sufficiently
close so that the average position of several can be used in locating the
true particle trajectory. The error is increased, however, when the
grains are so crowded that the track is broadened.

Ekspong (E 54) states that the reproducibility in reading the projected
position of a grain is 0.02 su. (The reader who is unimpressed by this
figure should Tecall that the wavelength of light used in these measure-
ments is about half a micron.)

The individual errors being about 0.023 x, a total reading error is
introduced into the second difference of 0.056 p in Ekspong’s experience.
Other careful measurements are in agreement with these noise estimates.
For example, the reading noise and the combined reading and grain noise
in Ilford G.5 emulsion was measured on relativistic tracks of particles
with various charges by Biswas, Peters, and Rama (BPR 55). For singly
charged particles the reading and grain noise together amounted to
0.075 p. The increasing grain density causes this to fall to 0.06 x when
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z reaches 3 and the noise passes through a minimum in the interval
g = 3 to 5. Then, because of the increasing track width, it increases
with increasing z, reaching a value of 0.09 p at 2 = 14. The reading noise
remains greater than the grain noise by a factor of about 1.2 for all » in
this interval. For a Koristka MS-2 microscope they found, for 2 = 4,
that the reading and stage noise together amounted to 0.038 p and the
combined reading, grain and stage noise, was 0.057 . Under the same
conditions, the combined noise for a singly charged particle was about
0.076 x. Other observers have found an increase in the noise with
increasing cell length. This probably is to be attributed either to stage
noise or emulsion distortion. Biswas et al. found the noise to be inde-
pendent of cell length from 10 to 200 p.

8.9.2 Stage Noise

One of the figures of merit for a scattering microscope is low stage
noise. The plate is translated between observations of the track position,
and these displacements must be very accurate along a straight line.
Biswas, Peters, and Rama state that the stage noise of a Koristka MS-2
microscope increases their total error by less than 0.005 p for all values of
the cell length up to 2000 .

A microscope defect that may appear to be stage noise is “focusing
noise.” As the objective is raised or lowered relative to the stage, either
it may not move perpendicularly, or there may be a coupling of the
vertical motion with lateral or rotary motions,

The stage noise may depend on the cell length. The total noise of
Cooke M-4000 microscopes was found to vary as 722 by Brisbout et al.
(B-J 56).

Boggild and Scharff (BS 54) determined the stage noise by measuring
the coordinates y,, ¥4, ¥s *** ¥, Of the track a second time with the plate
turned over. The sum of the coordinates then represented the stage
noise and the difference describes the shape of the track.

Optical grating lines of good quality were used by Ekspong (E 54)
for measuring the noise of the stage motion. In order to see the lines he
used phase-contrast optics. Similar measurements on a grating machine
scratch were made by Boeggild and Scharff who evaporated aluminum into
the scratch and then erased the surface so that the scratch would be
visible.

“Straight”” lines satisfactory for measuring stage noise can be pur-
chased from optical houses. The line consists of a scratch through a thin
metal layer on a glass surface. Flat tracks of very high energy particles
in emulsion plates are generally quite satisfactory for over-all noise
measurement.
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A number of the more elaborate commercial multiple scattering
microscopes have as an accessory an optical interferometer.

A very good interferometer is necessary to detect the stage noise
of the best instruments. For example, the Zeiss “Kernspurmess-
mikroskop KSM-1" noise level is stated to be less than 0.02 p for a
I-mm cell.

Stage noise can also be evaluated by the differential sagitta method
(L 50.3), in which one observes yx and yg., in a single field of view.
Then on shifting the field yy, , is observed a second time along with v g.

8.9.3 Temperature Noise

Temperature noise is caused by differential expansions of parts of the
microscope so as to cause shifts of the objective lens with respect to the
stage. Temperature effects may be reduced by taking a number of
precautions. The lamp and other sources of heat should be turned on
several hours before measurements are made so that an equilibrium
temperature distribution may be attained. In some laboratories, when
the room is not thermostated, each microscope is enclosed in a plastic
bag into which air at a constant temperature is slowly blown. The bag
is not completely air tight around the microscope oculars, etc. The
observer himself must avoid introducing body heat effects, and his
breath, especially, must be deflected from the microscope. If readings
are taken at regular intervals constant temperature drifts will be elimi-
nated on taking second differences. With these precautions temperature
effects can be reduced below other unavoidable noise effects.

The measurements of Biswas, Peters, and Rama (BPR 55) give for the
temperature noise, ez, of a Koristka MS-2 microscope

e 3.8%At!u

where T is the temperature difference between microscope stage and
arm in centigrade degrees, ¢ is the time, and A¢ is the mean variation
in time intervals between successive readings.

8.9.4 Spurious Scattering

The noise effects described above usually are uncorrelated with cell
size, and while they introduce an error §, in a typical measurement Yas
their effect can be eliminated. Means for doing this will be discussed
below. On the other hand, it may be much harder to eliminate effects
that increase with cell size and simulate scattering.
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The apparent scattering caused by macroscopic distortion of a simple
type was evaluated in Section 6.11. This sagitta, D,, was calculated to be:

2Kt?sin? @
Deis T2tan2§, ’

where ¢ is the projected cell length, 6 is the angle of the distortion vector
with respect to the x axis, K is the coefficient of the distortion, as defined
in Eq. (6.7.5).

A characteristic of this type of distortion is that adjacent second
differences tend to have the same sign. Third differences are zero. Even
with somewhat more complex types of distortion, an indication of the
distortion effects would be larger sagittas calculated from second
differences than from third differences. A first approximation correction
for simple curvature of the track can be made by subtracting

R
> 2 Dk

from all second differences.

Stage curvature or the presence of a strong magnetic field will have
the same effect as simple distortion curvature.

Ekspong (E 54) has pointed out the existence of an optical distortion
effect. If the magnification varies with the distance from the center of the
field (see Section 7.6) then a track somewhat inclined to the x axis will
have an apparent curvature even if it is perfectly straight. This has the
characteristics of spurious scattering. Such a variation of magnification
with position in the field has also been studied by Heckman et al.
(H-B 60).

Biswas, Peters, and Rama (BPR 55) first suggested that a previously
unknown effect caused other emulsion workers, in disagreement with
Biswas et al., to find cosmic-ray mass spectra with Li, Be, and B nuclei
approximately as abundant as C, N, and O. They studied a type of
spurious scattering (s.s.) which could interfere with the indentification of
such nuclei.

They attributed the discrepancy to an imperfection of the detecting
medium—microscopic dislocations within the emulsion which are
too small to interfere with measurements on slow particles. They found
it in many kinds of plates, but especially when the track dip angle was
more than 2°. They also found it, however, when the supposed distortion
was very small. Further work by many people has shown that this
effect is present in all emulsions to the magnitude of about half a
micron for a cell of 1 mm. It may vary considerably from track to track



310 8. PARTICLE SCATTERING IN EMULSION

in the same emulsion, often being lowest near the glass. It differs in
various stacks by a factor of about two. It is thought to originate in
processing the emulsion, and to be less in emulsions processed at
reduced temperatures. On increasing the cell lenth, the seriousness of the
effect is probably reduced. Fischer and Lord (FL 59) observed no further
increase in spurious scattering beyond a cell length of 3 mm, while with
shorter cells, Brisbout et al. (B-] 56) found a 73/2-dependence. Biswas,
Prasad, and Mitra (BPM 57), on the other hand, found a #*-8-dependence
from 1 to 3 mm and a #*5-dependence from 3 to 8§ mm. Lohrmann and
Teucher (LT 56) found proportionality to the cell length with a factor of
proportionality 0.042 between the spurious scattering in microns and the
cell length in units of 100 x. Apostolakis, Clarke, and Major (CCM 57)
also observed proportionality.

In recent work, D. H. Perkins (D 60) found a 0.8 power law for 18 Bev
pions and 24 Bev protons. Its magnitude was | p for 6-mm cells.
A. Bonetti (D 60), using similar tracks, found least s.s. when immersed
hot-stage development at 23°C was used. He found the s.s. to increase
with cell length only up to cells of about 2 mm. Between 3-mm and
6-mm cells, the measured effect was about 0.3 p on tracks with dip
angles of less than 0.3°.

Tursunov et al. (ICS 60) have proposed a method to eliminate s.s.
which is based on the assumption that the ratio of s.s. measured from
second and third differences is independent of cell length.

High-energy accelerators have recently given impetus to the study
of s.s. and its relation to the treatment the emulsion has received.
Beams from the CERN accelerator have been used, and careful control
of the dip angle is usual. In most experiments, the observed s.s. is
strongly correlated with the track dip (D 60.3). The opinion now is held
that it also is correlated with general disortion, and probably is accen-
tuated in pellicles that have undergone a mounting procedure.

On the other hand, very small s.s. was observed by Dahl-Jensen
(D 60.3) when he developed with an inorganic titanious salt. The
development was isothermal at 5°C, and the swelling was very small—
some 609, while in the developing solution. He noticed, however, that
extremely small s.s. was limited to those tracks that were not inclined in
the emulsion.

In recent studies of spurious scattering, definitions suggested by
E. Dahl-Jensen (G 61) have been used. Since they differ from the
notation of this book, these are now given.

D,.... = arithmetic mean of the absolute values of measured second
differences.
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D, = contribution to second differences due to Coulomb scattering.

D. = mean second differences due to reading, grain noise, and the
irreproducible part of the stage noise.

D, = mean second differences due to the reproducible part of stage
noise.

D, = mean second differences due to spurious scattering on a
single track.

Then it is assumed that: D2, — D? 4 D? 4+ D2+ D% ; and that
B = Ks372/573D,. Here K is the scattering factor, s is taken in units of
100 g, and pB is in Bev/c.

When third differences are taken:

Tpcas. = mean absolute value of the measured third difference.
T(~3/2D,) = contribution in third differences due to Coulomb
scattering.

Then also T2, = T2+ T¢ T, + T3, with T2 ~ (10/3)D2,
T2 ~ (10/3)D2.

From relative measurements on two parallel tracks with equal pps,
D?neas. e (1/2)Dg e D?r =1 D:.s.a. and Tfﬂeas. = (l/z)Tf & T;z» e Tsz.s.a'

Here D, = mean absolute value of relative second differences
measured between two parallel tracks.

T, = mean absolute value of relative third differences.

With these formulas, however, the values found by E. Dahl-Jensen

(G 61) for D, , are smaller than those for D,,. Likewise T, , is smaller
than T,

5.8.°

Perhaps agreement on what is being measured will reduce the con-
fusion in this research, which is beset by problems of semantics as well
as by uncontrolled variables. We conclude the topic of spurious scattering
by citing further reported causes and effects.

J. V. Major (D 60.3) reported that a heat treatment that consisted
of holding dry plates at 35°C for 24 hr, followed by slow cooling reduced
the general distortion by a factor of three. Pouring on warm glass to
prevent too rapid congealing of the gelatin has also been advocated so
that the melted emulsion can settle to a uniform thickness (provided the
glass is plane and level). An uneven thickness of a pellicle has often been
observed, and it is reasonable to assume that such variations can produce
strains in the horizontal plane when a pellicle is mounted. The measured
thickness variations are seldom less than 2% and are sometimes much
more—even 15%,. Such nonuniform pellicle thickness obviously also
makes satisfactory stack construction difficult.
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A. Bonetti (G 61), however, did not observe a significant difference
between emulsion poured on glass at 10°C and 20°C. Nonuniform swel-
ling during the presoak also has little effect. On the other hand, it was
established (G 61) that nonuniform drying increases the s.s. as does the
addition of a plasticizer.

Fear has been expressed that storing of emulsion at a very low tem-
perature may induce spurious scattering. It is thought that ice crystals
may form in the emulsion. It has also been reported that there is less s.s.
when the pellicle is mounted on the glass upside down. It was suggested
by M. Gailloud (D 60.3) that there may be less s.s. if the pellicle is
mounted on a support such as gelatin that has some compliance. This
would reduce the stress on the lower surface of the emulsion. To help
reduce the initial shock of the presoak, B. Peters(D 60.3) suggested immer-
sion in a gradually diluted alcohol solution. There seems also to be no
good reason for a stop bath when the emulsion goes into an acid fixing
solution. Dahl-Jensen (D 60.3) has suggested that a moderate controlled
silver ion concentration in the fix bath is desirable because, (see p. 165-
166), corrosion tends to occur if it is too low, and the triply charged
complex ion that forms when the concentration is high causes tanning of
the gelatin and possible lateral displacements. This apparently has been
confirmed by R. Delessert and P. Heinzer (G 61).

Another suspected contributor to s.s. is a fixer temperature that is
too low. Track “chopping” has been observed by Dahl-Jensen when the
temperature went to— 1.5°C. Chopping is also thought to be caused by
insufficient stirring of the fixer. Although no one doubts that the rough
handling of the mounting process is a contributor, it is clear that emulsion
distortion is not as yet under control in processing, and that it perhaps is
still approached with an element of witchcraft. The situation in fact led
Dahl-Jensen (D 60.3) to make the following abstract or summary of the
proceedings of the Copenhagen meeting on “Problems of Distortion in
Nuclear Emulsions and Scattering Measurements at High Energies.”

“Fillet of a fenny snake
In the cauldron boil and bake:
Eye of a newt, and toe of a frog,
Wool of bat, and tongue of dog,
Adder’s fork, and blind-worm’s sting,
Lizard’s leg, and owlet’s wing,
For a charm of powerful trouble,
Like a hell-broth boil and bubble.

All. Double, double toil and trouble;
Fire, burn; and, cauldron bubble.”

(Macbeth, Act. IV, Sc. 1).
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8.9.5 Noise Elimination

There are many methods of noise elimination, each of which may be
preferable under certain circumstances. The direct method (E 54) is the
evaluation of the combined noise in a measurement. Suppose the mean
square second difference is measured on the tracks of very high energy
particles using the same cell length as for low energy particles. Since
(@*> and (x*> are very small, the measured quantity can be identified
with 6(8%). Any other measurements made in the same emulsion with
the same microscope can then be corrected by the amount indicated in
the general Eq. (8.4.14). This procedure often is the one to yield the
highest accuracy because (8%), in principle, can be found with arbitrarily
small error by taking many measurements.

Sometimes no really high energy tracks are present, or the necessary
calibration measurements have not been made. Then the measurements
Yo Y1 *** ¥n» If combined in more than one way can be used both to
eliminate the noise and to evaluate the scattering. When summed over
many consecutive cells, some relatively simple combinations of the
Dy are unaffected by the noise. For example:

8 12 Ty
SO Sl e (8.9.1)

Many other combinations of the Dy, given generally by formula (8.4.13),
also can be utilized. When quadratic distortion is present, it disappears
in third-differencing (see Section 6.11). This fact enables one either to
evaluate the distortion or to eliminate it. If a significant difference
between the estimates of 4 from second and third differences is found,
the presence of disturbing effects can be suspected.

Besides Eq. (8.9.1), many other combinations of difference products
can be used for noise elimination. T hus, for example:

42 = S D + 320Dy, ) @
= 14_1 [5<D — 3/2¢Dy™>] (b)
= KDE*> — 6KDYDL. ] (© (89.2)
— 3 [SDE> + KDy D] (d)
— S0 + KD D] ©

etc.
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Another method, and perhaps the one most frequently used for noise
elimination, is that of cell-length variation. Suppose besides the second
differences Dy = yx + yp,., — 2yx ;1 from adjacent measurements, cells
of length m times the unit cell are used. Then a second difference,
Di i, for example, will be

D == Wk Ve o (8.9.3)
This can be expressed as a sum of unit-cell second differences:
B 2m—2

2
D=2, 0+ )Dg,, + 3 @u—1-1)DL,, (8.9.4)
4

=0 =m—1

Since Dy = .y + Yk + Xxr1 — xx + Sk — 20gi1 + Oy, this
expression, in turn, can be decomposed into a linear combination of
independent s, x’s, and §’s.

m—1
D;,m = 2 (21 + 1) (¢K+I + ¢K+mfiﬁ—1)
1=0

m—1
S 2 (Xrsem—1—1 — XK+1) (8.9.5)
=0

+ 8% — 2k + Oxiom
The mean value (D}’,,> is equal to
8/3m* Yy + 648, (8.9.6)
whereas the mean value (D}’ is
(8/34* + 6¢8% (8.9.7)

The noise (82),, of the m-fold cell is subscripted so that the possibility
will not be overlooked that the noise may depend on cell length. Then

22 — g3y — PEm> —<Di)> 685, — <32

md — 1 m> — 1

(8.9.8)

When it has been established that (8%,, = (8%, thi§ procedure
largely eliminates the noise, but the dependence of the scattering factor
on cell length complicates the problem of accurate noise elimination by
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variation of cell length. Because of this error, the difference-product
method using Eq. (8.9.2) with cells of a single size may be preferable. If
it is decided to employ the method of varying cell length, a correction for
the change in scattering factor has been published by Widgoft (W 61).
The approximate effect of her correction is to make the exponent of
min Eq. (8.9.8) equal to 3.13 rather than to 3.

8.10 Evaluation of Error in Multiple Scattering Measurements

8.10.1 Sources of Error

A reason for measuring the multiple scattering of a track in emul-
sion is to estimate the quantity pB/z. One calculates this from
pBlz = (K/573D)#3/2. Here D, and the cell length, ¢, are in microns.
Unless the track is inclined to the x axis, the error in ¢ is ordinarily
negligible. The error in K is systematic, and may be unknown, but also
usually is negligible compared to the statistical error. The scattering
factor K was discussed in Section 8.7; often it may carry a subscript
to indicate a cut off.

The remaining uncertainties are in D), Some are systematic, and
statistical errors are always present. Only the resultant of many measure-
ments has good reliability. As compared with range measurements,
for example, multiple scattering data yield only crude estimates of
particle momenta. Still, when the particle does not come to rest and the
grain density is near the minimum or unreliable, multiple scattering
provides invaluable information. Virtually as important as a careful
measurement, however, is the correct evaluation of a confidence interval
for it. Compared with the statistical error, the systematic errors are
generally small. We shall concern ourselves with evaluating the error
when various methods of noise elimination are employed.

The measurable quantities, D%, given by Eq. (8.4.13) are made
up of linear combinations of the scattering moments and §’s. Each s,
therefore, a random variable of expectation value zero. The uncertainty
in the root-mean-square magnitude of a single measurement is as
great as the estimate of the variable itself. To measure such a quantity
requires that one find the average value from observations at many
points with indices 0, 1, 2, --- K, *-- », along a track. The uncertainty is
then reduced by a factor a v'/2, but to know the magnitude of one of
these quantities (including the noise) to 109, requires the order of 100
independent measures of it.

Estimates of the error that were too low because the dependent
character of the observations was not realized, led some early experi-
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menters to be too optimistic in their quotations of multiple scattering
accuracy.

The statistics of multiple scattering measurements has been studied
intensively by Moyal (M 50), d’Espagnat (D 51.1, D 52.1), Moliére
(M 55), Solntseff (S 57.2, S 58.5), and others. The approach is generally
that of the “MME” (Moyal, Moliére, d’Espagnat) method, which
recognizes that one is here concerned with two types of statistical
variables, the ‘noise” and the “signal.” Furthermore, successive
measurements are not independent, and are correlated in different ways
for the two kinds of variables. The problem becomes very complicated
in the general case. In this book, by introducing the quantities ¢ and
x> however, which are independent of each other and of the &8’s, we reduce
the difficulty of the problem and the calculations become straightforward.
They remain somewhat tedious, nevertheless.

8.10.2 Statistical Error in the Difference-Product Method

The considerations which enable one to evaluate the error in any
special case will perhaps best be illustrated by the detailed calculation of
an example in which we employ the new variables. Suppose we consider

S =2, [D¢* + (3/2) DYDY, ] (8.10.1)
K

the average value of which is equal to (11/8)v47%, where v is the number of
cells included in the sum. The quantity .S has been constructed so that
in the average value, noise has been eliminated. A typical second
difference, when expressed in terms of independent variables, is the sum
of seven terms:

D}é - I!t’K+1 5 ‘:[’K . Xk — Xx + 8K i 2"9’K+1 i 3K+2 (8.10.2)

When it is squared, there remain Just seven terms that do not have
average values of zero, namely,

Tt ¥k T xkn + % 88 + 488, + 02, (8.10.3)

In addition, there are twenty-one terms that average out to zero but must
not be dropped at this stage. On collecting the contribution of a single
cell to the sum of the squares of the second differences obtained from
many consecutive measurements, seventeen terms remain. Similarly, the
contribution of one cell to the sum 3/2 ZxDygDy | over many consecutive
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cells consists of twenty-two terms. The net contribution, S;, of one cell
to S is:

Sy =7/27 + gx1 + b — W + 32
+ 5 reds — 2hrads — 208, + i
+ 32110 + xixenn — 3/2braxs — 3/ 2xixse
+ $¥8ia — 5/2x04281 + 5/2x80a — 3/2x00
+ 3/24.38; + 3/2x148; + 5/28811 + 3/28:8145
— 488, + 3/2¢8,.5 (8.10.4)
The mean value {.S;> of S;is
(S> =T + 126> = 3G = 11g8:  (8.10.5)
and
(St = 121/9y%2 (8.10.6)

Then the variance, (S}> — (Sp? = o, of S;is

o = — <¢4> e <x4> + S Wt + 2 et el <32>2 (8.10.7)
In the Gaussian approximation

Py = 9t = 3D = (27/64) 44 (8.10.8)
Then the estimate of the variance becomes:

ot =y 1 D g o + P o2 (8.10.9)

When there are v cells in S, its variance, 22, is vo? and the mean value of
Sis
v(Sp = (11/8) v4? (8.10.10)

The relative uncertainty in the mean absolute scattering angle & is
one-half that in S. We can state then, finally, that the standard deviation
o, of the angle measurement & is

6, = ()12 5(2.052 + 2.777A + 14.582)1 /2 (8.10.11)

In this expression A = (8%)/(#%(¢%)). It is the same as the A of
d’Espagnat.
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The optimum cell length when one uses the difference-product
method of noise elimination, as first shown by d’Espagnat (D 52.1), is
found from the condition that A = 0.134. Then

Oy 1.15

B T (8.10.12)
When plenty of track is available, and only time limits the accuracy
obtainable, then a cell long enough so that the mean absolute second
difference is at least four times the noise may be used. If this
is done usually the noise can be neglected in calculating the mean
value. The relative error in the mean second difference then is
3/4v1 (1 + 4A + 3222)1/2. This applies only after subtracting the noise,
when it is not completely negligible. The optimum length of a cell when
a limited amount of track is available, but from which the noise has been
subtracted out, is given by X = 0.0725. The relative error is 0.9y-1/2
when this cell length is used.

The writer’s method for calculating the error was worked out as an
alternative to the conventional method of d’Espagnat-Moliére. Their
methods, which use more difficult mathematics, may be preferred
by some, although the calculations are long in any case. They define

E_i> O n
ds=i

the bilinear form encountered in the elimination of noise. Then b;; and
Agy = (DgD;") are matrices. The mean value (R> is found from
(R) = Trace (bA) and (R — (R>® = 2 Trace (6A4b4), with
bii =1, b = 3/4, sz =07 =IC Tl

The A, are found from Eq. (8.4.14). The above calculations are all
based on the assumption of complete overlapping of cells.

8.10.3 Overlapping Cells

We obtain the maximum amount of information from a track segment
by overlapping the cells. Both the quantities y 1 — 2Vk4e + Yrug and
Yk — 2Yk11 + V4o are used in calculating mean second differences,
although they have ordinates yg,, and Yk+e In common. The error
calculation becomes very complex when higher differences are evaluated.
Third differencing yields four quantities having at least one ordinate
in common:

Yk — 3ra + ki — Vkas
Ve — ke + 3Vkis — Yr+a
Yri2 — 3Vkis + 3Vria — Yr4s
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and

Y43 — ka4 + Vkss — YK+6

When they are all used in averaging, as is most common, one speaks of
complete overlapping.

D’Espagnat has given error estimates for some cases.

As a quick practical method for estimating error in second difference
measurements with overlapping cells it is common to quote the error on
the assumption that two-thirds of the cells are independent.

8.10.4 Variation of Cell Length

For results obtained in a comprehensive study of the method of
variation of cell size, we refer to the work of diCorato, Hirschberg, and
Locatelli (DHL 56).

The noise-corrected mean absolute second difference (the scattering
sagitta) was found from second differences as follows:

s ((I D" | =< D” I1>2)”2

md — 1

(8.10.13)

The same quantity was also calculated from third and fourth differences.
The formulas are:

3o BE Y= DY
i (3/2) (m* —1) ]

a BALD S ntt e D DA R
2 [ 4(m® — 1) ]

(8.10.14)

In accord with the definition Eq. (8.9.3), the subscript 7 means that
the quantity was calculated using cells of m times the unit cell. Cut off at
four times the resultant mean was applied by diCorato ef al. As noted
above the method of noise elimination between cells of different lengths
is inapplicable when the noise depends on the cell length. The noise for
any particular cell length can be determined, however, by the difference-
product method and the measurements corrected accordingly. The
values of D derived with different cell lengths should then be compared
for consistency.

If (op/D) is the standard deviation of D divided by D, then for » cells
the error can be written op/D = ¢(v)~1/2, and ¢ can be discussed as a
function of signal to noise ratio D,/D,. The formulas are independent of
cell length and the signal D in the ratio, therefore, is left unsubscripted.
The noise D,, moreover, consists chiefly of the term [(12/) (8%>]L/2
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which does not vary with cell length. It has a typical value of 0.15 p.
The error coeflicient, ¢, falls at first as the signal-to-noise ratio increases;
for large values of D/D, it becomes constant. For second differences it is
(BDS 58) ¢”” = [2.03 + 0.138(D3/D?) -+ 0.0402(Dg/DY)]'/2, and for third
differences: ¢’ = [3.6 + 0.096(D3/D?) + 0.003(Dg/D% ]2, These refer
to measurements made with completely overlapping cells. If » exceeds 100
and D, is 0.15 p, then the optimum cell length for second differencing
using cells of double length for noise elimination is ¢ ~ 2.3(pB)23,
and for third differencing # ~ 1.8(pB)2/%. The cell length ¢ is measured in
microns and pg in Mev/c. If the number of cells lies between 40 and 100,
then D/D, should be kept larger than 1.4, and if the number of cells is
less than 20 the signal-to-noise ratio must be kept above 1.6.

The noise has a negligible effect when the cell length is increased
sufficiently. This is usually defined to be at the point where D/D, = 4
for second differences, and D/D, = 5 for third. For these conditions,
the optimum cell length for second differencing is 20.6 (D,pB)2/3, and
for third differencing it is 25(D,pB)%/. In these expressions, lengths are in
microns and pf in Mev/c. The error coefficients are (BDS 58):
¢ = [0.95 + 1.13(D§/D?) + 2.49(D§/DY]'/2 and ¢ — [1.53 + 6.45 x
(D¥/D?) + 10.33(DY DAy},

For comparison with formulas containing d’Espagnat’s A, we note
that in the Gaussian approximation (D 51.1).

i ial (§ 3)2 (8.10.15)

DiCoreto et al. carried out extensive measurements on tracks of 7
mesons and protons. These data were compared with the theory.

Using second differencing on proton tracks they found ¢ = 1.46--0.18,
when theory predicted 1.46. On pion tracks they found 1.67 + 0.18
when theory predicted 1.46.

When they used third differences they found for protons that ¢ was
1.86 + 0.24 when the theoretical value was 1.56. For pions they
measured 2.00 - 0.22 when they expected 1.56.

Fourth differencing gave experimental values of ¢ for protons and
pions respectively of 2.20 4 0.28 and 2.70 -+ 0.35.

The calculated D from third differences on fast tracks was 1.06 + 0.02
times that obtained from second differences. Presumably this exceeds
unity because the differences are not normally distributed.

For elimination of regular distortions they suggest using the formula

et e o) DOGjpagae
s 1.06 [ (3/2) (m® — 1) ]

(8.10.16)
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It does not seem to the writer that the factor 1.06 can be universally
applicable; it is given here merely as an empirical correction factor.
The factor is symbolized by F.

8.10.5 Noise Level Known

According to Ekspong (E 54), to gain the optimum information
from a segment of track when the noise level is known, a cell length
giving a signal-to-noise ratio of 2.1 is best. The cell length may be
increased until a signal-to-noise ratio of 3.7 is reached without increasing
the error by more than 109,. At this point the systematic error remaining
if the noise is not eliminated is only 19, and the amount of work is
greatly reduced.

8.11 Scattering Behavior of Stopping Particles

When a particle is brought to rest in emulsion its scattering sagitta for
a given cell length increases as the velocity decreases. A functional
connection exists between the cell length and the residual range that
will maintain the scattering sagitta statistically constant. The approximate
constancy of the sagitta is not destroyed if the track of a particle with a
different mass is measured in the same way, but the magnitude of the
constant will vary with the mass.
We define a mean scattering sagitta D, by

_ K

< = 5738 (8.11.1)

In a velocity interval extending from about 8 = 0.05 to 0.40, and for
cells of 10-100 p (K,/pB) is reasonably well approximated by

KC/PB = qMm-1 ge—2m R-—m ¢t (81 12)

Here i is a number near 0.58, M and z are particle mass and charge
in units of the proton, R is the residual range in microns, ¢ is the cell
length, and, for this velocity interval, € is a small number approximately
equal to 0.087. A scattering sagitta in a small interval of velocity and cell
length, therefore, can be expressed functionally by

[).c — gMm—1 ge—2m+l P—m jet+3/2 (8-] ].3)

where @ is a constant. This means that if measurements are made at
residual ranges R using a cell ¢ which is adjusted so that R—7z<+3/2
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TABLE 8.11.1

TABLE oF RanGes For HALF 5 CELLS

No. R No. R No. R No. R
1 48 51 372 101 907 151 1616
2 52 52 381 102 920 152 1632
3 56 53 390 103 932 153 1648
4 50 54 399 104 945 154 1 664
5 64 55 408 105 958 155 1 680
6 69 56 417 106 971 156 1 696
7 73 57 426 107 984 157 1712
8 78 58 436 108 997 158 1728
9 82 59 445 109 1010 159 1744
10 87 60 455 110 1023 160 1760
11 92 61 464 111 1036 161 1776
12 97 62 474 112 1050 162 1793
13 102 63 483 113 1063 163 1 809
14 108 64 494 114 1077 164 1826
15 113 65 504 115 1 090 165 1842
16 119 66 514 116 1104 166 1859
17 124 67 524 117 1117 167 1875
18 130 68 534 118 1131 168 1892
19 136 69 544 119 1144 169 1909
20 142 70 554 120 1158 170 1926
21 148 71 564 121 1172 171 1943
22 154 72 575 122 1186 172 1 960
23 160 73 585 123 1200 173 1977
24 167 74 596 124 1214 174 1995
25 173 75 606 125 1288 175 2012
26 180 76 617 126 1242 176 2 030
27 186 77 627 127 1256 177 2047
28 193 78 638 128 1271 178 2065
29 200 79 649 129 1285 179 2082
30 207 80 660 130 1 300 180 2 100
31 214 81 671 131 1314 181 2117
32 221 82 682 132 1329 182 2135
33 228 83 692 133 1343 183 2153
34 236 84 704 134 1358 184 2171
35 243 85 715 135 1372 185 2189
36 251 86 727 136 1387 186 2207
37 258 87 738 137 1402 187 2225
38 266 88 750 138 1417 188 2243
39 273 89 761 139 1432 189 2261
40 281 90 773 140 1 447 190 2279
41 289 91 785 141 1462 191 2297
42 297 92 797 142 1477 192 2315
43 305 93 809 143 1492 193 2333
44 313 94 821 144 1 507 194 2352
45 321 95 833 145 1522 195 2370
46 330 96 845 146 1538 196 2 389
47 338 97 857 147 1553 197 2 407
48 347 98 870 148 1 569 198 2326
49 355 99 882 149 1584 199 2444
50 364 100 895 150 1 600 200 2463
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TABLE 8.11.1 (cont’d.)

No. R No. R No. R No. R

201 2 481 251 3485 301 4612 351 5852
202 2 500 252 3507 302 4 636 252 5878
203 2518 253 3528 303 4 659 353 5904
204 2537 254 3 550 304 4 683 354 5930
205 2 555 255 3571 305 4 707 355 5956
206 2574 256 3593 306 4 631 356 5982
207 2593 257 3614 307 4 755 357 6 008
208 2612 258 3636 308 4779 358 6 035
209 2631 259 3658 309 4 803 359 6 061
210 2 650 260 3 680 310 4 827 360 6 088
211 2 669 261 3702 311 4 851 361 6114
212 2 689 262 3724 312 4876 362 6141
213 2708 263 3 746 313 4 900 363 6167
214 2728 264 3768 314 4 925 364 6194
215 2747 265 3790 315 4 949 365 6 220
216 2767 266 3812 316 4974 366 6 247
217 2 786 267 3834 317 4 998 367 6274
218 2 806 268 3 856 318 5023 368 6 301
219 2 825 269 3 878 319 5 407 369 6328
220 2 845 270 3901 320 5072 370 6 355
221 2 865 271 3923 321 5 096 371 6 382
222 2 885 272 3946 322 5121 372 6 490
223 2905 273 3 968 323 5145 373 6 436
224 2925 274 3991 324 5170 374 6 463
225 2945 275 4013 325 5194 375 6 490
226 2965 276 4 036 326 5129 376 6518
227 2 985 277 4 058 327 5244 377 6 545
228 3 005 278 4 081 328 5269 378 6 573
229 3025 279 4103 329 5294 379 6 600
230 3 046 280 4126 330 5319 380 6 628
231 3 066 281 4148 331 5344 381 6 655
232 3 807 282 4171 332 5 369 382 6 6383
233 3107 283 4194 333 5394 383 6710
234 3128 284 4217 334 5419 384 6 738
235 3148 285 4 240 335 5444 385 6 765
236 3169 286 4263 336 5 969 386 6793
237 3 190 287 4 286 337 5 494 387 6 820
238 3211 288 4 309 338 5520 388 6 848
239 3232 289 4332 339 5545 389 6875
240 3253 290 4 355 340 5571 390 6 903
241 3274 291 4 378 341 5 596 391 6 930
242 3295 292 4 401 342 5622 392 6 958
243 3316 293 4424 343 5 647 393 6 985
244 3337 294 4 448 344 5673 394 7013
245 3358 295 4471 345 5 698 395 7 040
246 3379 296 4 495 346 5724 396 7 068
247 3 400 297 4518 347 5749 397 7 095
248 3421 298 4 542 348 5775 398 7123
249 3442 299 4 565 349 5 800 399 7150
250 3464 300 4 589 350 5 826 400 7178



324 8. PARTICLE SCATTERING IN EMULSION

remains constant, D, will be statistically constant. It also implies that
when R-"¢<#3/2 i3 kept constant, measurement of D, may enable one to
identify the particle that produced the track, for then Ml-nz2n—1-¢ ig
statistically constant. It may be found to correspond to the mass and
charge of a known particle. The charge often is obvious from the appear-
ance of the track; then the measurement provides a mass estimate.

A number of investigators (HIS 53, G 55.2, LPP 53, DGH 54, ADF 58)
have put forward scattering cell schedules designed to maintain a constant
sagitta for a mass measurement. They are of varying degrees of refinement.
One of the most carefully prepared tables of scattering cells is that of
Dilworth, Goldsack, and Hirschberg (DGH 54) which has been repro-
duced as Table 8.11.1.

What is tabulated are residual ranges at which ordinates y are to be
measured. The cell lengths chosen, though, are half as long as the
optimum cell for a 7 meson, about one-third of the optimum cell for K
particles, and about one-fourth the optimum for a proton. The shorter
cells are for use in noise elimination, and for overlap to obtain more
information from a limited length of track.

The basis for constructing this cell schedule is the assumed constancy
of a standard sagitta, D,, given by

D, = 1.99 x 24 X R-0-58 [|-0.42 7-0.16 ;32 (8.11.4)

The measured sagitta, D,, is, by the definition of K,, the quantity
in Eq. (8.11.1). (Dilworth et al. use the symbol D for D, and K, for our
K,) The measurement consists of finding the average D, over many
cells. Then, with A a number near unity, D /A = D,. Using this numerical
value of D, Eq. (8.11.4) can be solved for M.

The device of introducing A at this point is an advantage of this
method. The problem remains of evaluating A, which deviates from
unity because many approximations are involved in setting the expression
of Eq. (8.11.4), constant. Dilworth et al. give curves for A, which,
considering the crudeness of Eq. (8.11.4), can be sufficiently well
represented by:

+ (44 +27) x 104 (8.11.5)

Here n is the number of half = cells (the cells of Table 8.11.1) and
M is the particle mass in units of the proton. Since M is usually the
quantity to be found, one must determine it by successive approxi-
mations.

Although A was evaluated as well as practical in the study of Dilworth
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et al., better information on the scattering factor and on the range-
energy relation will enable one to make improvements on Eq. (8.11.5) in
the future.

DiCorato et al. (DHL 56) give curves of A from a range-energy
curve of Baroni et al. (B-M 54). Recent range measurements by the
writer and his collaborators indicate that 0.60 would be a better exponent
for R than 0.58 at low velocities. This fact and failure to include the
cell length and the exponent € in Eq. (8.11.4) are further reasons why
more calibration data are needed. The important advantage of the method
of Dilworth et al. is not that the cell scheme is necessarily the best,
but that it may be calibrated for application without revision of the
cell scheme. Before undertaking serious mass measurements by this
method it is advisable for anyone to scatter several particles of known
masses. By this means he gains training, he calibrates the method, and he
obtains a measure of the statistical error.

The cell scheme of Dilworth et al. has been tested or calibrated in
this way with the tracks of known particles by diCorato, Hirschberg,
and Locatelli (DHL 54). They measured proton tracks of average length
12,000 g, and pion tracks of average length 4900 u, using the cells of
Table 8.11.1. For pions they eliminated noise between the tabulated cells
and- double cells. Noise was eliminated between double and quadruple
cells on proton tracks. In each case the noise was about 0.14 . Cut off
at 4D, was made. The mean sagitta, reduced to pion cells was
0.224 + 0.005 o for protons, and 0.482 4 0.007 p for pions. The
estimated mass ratio, therefore, is 6.20 4+ 0.4, compared with the
accepted value of 6.7. The scattering factor came out about 129/, higher
than expected.

Third differences were also calculated, and those affected by the
second difference cut off were discarded. The sagittas obtained were:
Dy = 0.236 £ 0.006 y for protons, and Dy = 0.491 =+ 0.012 p for pions.
Since these are both larger than the correspondmg values from second
differencing, they tend to confirm the need for the factor 1.06 in Eq.
(8.10.16).

For comparison, Glasser (G 55) derived the relationship

D = (190 + 0.3) [R~(0-607:0.016) [}7~(0.393:0.016)] (%)3/2 ®.11.6)

by measurements on many pions and protons of residual range 2500 p.
He has developed cell schemes based on his empirical data.

The quantities (¢*) and {y*), found in Section 8.5, were calculated by
Fermi only for particles so energetic that their momenta could be
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treated as constant. They can be calculated for particles coming to
rest in matter as follows: From Eq. (8.4.1) d¢6®/dt = 6, but
when 6, is not constant, its dependence on ¢ must be expressed
explicitly before this equation can be integrated. Now 60, — K, z/pB
with K, the appropriate scattering factor. An empirical expression
(Section 10.3) for the dependence of p8 on the residual distance R, —t
remaining to be traversed before coming to rest is

PB =~ 0.442%/5 M2/5 (R, — t)3/5 Mev/c
for nonrelativistic velocities. 'Then

8, = (K,/0.44) 21/5 M—2/5 (R, — 1)-3/5
and
d{6%[dt = K,[0.44) z—2/5 M—4/5 (R, — t)-8/5

The mean square scattering angle after traversing a path 7 therefore is
8% =24 = ax s M-B[(R, — 1y — R1S]  (8.1L.7)
with o« = 5(K,/0.44)2.

The pole at ¢t = R, signifies that as a particle comes to rest, its
direction of motion becomes undefined.

The calculation of (%) is somewhat less straightforward. On putting
4t for the cell length in Eq. (8.4.6), we obtain

Y = Vg +drdt + dx + xx + 0 — 8x

Then we can construct

Kyk — OB] — Kyk> — il

(de)?
2 — kb At A
& {¥rdx AJt’K 19K-1) 5 7f [K6%k01 — <6%]
In the limit as 4¢ — 0
d2 2
;f? = 2(gD> = (B (8.11.8)

Therefore, we can use Eq. (8.11.7) to write

a2y

- = oz 25 M-4/5 (R, — )15 — R;llﬁ:]
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On integrating from 0 to ¢ we find d{y*>/dt(= 2{yd>).

d<y* — y—2/5 N-4/5 5 4/5 5 4/5 —1/5
oL = a s M [ERp — 2 (R, — )" — R; t]

Then on integrating a second time

<y2> = (01/2) 2—2[5 M—-.‘n[:'z [% R;IS t + %; (Rﬂ Sy t)!),’ii Sre f_‘g Rg,’ﬁ == R;l,‘5 tZ]

When ¢ = R, the terminal value of (y*) is found

P term = («/18) z7%/> M~*/> R3/5 (8.11.9)

A precise determination of o« has not been carried out. A simple
means for estimating it is by observing {y?> of tracks terminating in
emulsion. The root-mean-square displacement of the termini of muons
originating in the decay of =+ mesons at rest is suitable. Hester Yee
made some measurements of this displacement and found it to be
closely Gaussian. This displacement was determined to be 89 + 5 u. The
corresponding value of R, is 572 p. Using the above data, we find
K, = 0.113, when the proton is chosen to be the unit of mass and of
charge, the unit of length 1s 1 &, and momenta are measured in Mev/c.

Finally we have

65 =13 ELEMy AR ey Te — RS (8.11.10)
and
% =~ (1/6) (212M)*2[(5/2) RY® t + (25/18) (R, — t)*/°

(8.11.11)
— (25/18) R%5 — R:1/31%]

In Chapter 10 we apply these results to correct particle-range measure-
ments for the effect of scattering.

8.12 Equipment for Scattering Measurements

In Section 8.8 we mentioned types of goniometers that in the past were
used in track-tangent multiple scattering measurements. We shall now
briefly review features of typical equipment, commercially and custom
built, that have been developed for scattering measurements using the
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coordinate method. A detailed and authoritative description of such
equipment has been given by Hodges (H 60).

8.12.1 Stage Motion

One of the primary considerations is that the stage noise be low. For
high energy physics, room enough for a large plate, at least 30 x 30 cm,
to be mounted in any orientation on the stage also has become an
important requirement. Some workers have demanded a long screw
providing large displacements. While convenient, this seems to the
writer to be an unnecessary luxury. Tracks rarely stay in a pellicle more
than 1 or 2 cm, and a noise-free stage motion of 2 or 3 inches is enough.
Even if rare good fortune kept a track in a single pellicle for a distance
greater than this, no data need be lost. When the plate is shifted to
continue the scattering, one merely overlaps slightly the segment of
track already measured. Even if a track were to stay in the pellicle for
several centimeters, it is most unlikely that it would not in that length

Fie. 8.12.1. A scattering microscope of Brower made for Dr. G. Goldhaber. It
provides a large range of displacement, automatic cell schedules, and automatic calculation
of second differences (IDLRL).
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scatter sufficiently to leave the field or at least to depart somewhat from
the center. If it does not cross near the diameter of the field, it must be
shifted back to the center if it is not to suffer from the nonuniform
magnification noise discussed by Ekspong (E 54).

There may be occasions, nevertheless, when a stage having a large
range of travel is desired. One has been described by Zorn (Z 58). A
number of stages made by William Brower also have long ways and
lead screws (see Fig. 8.12.1).

In the event that tracks are to be measured that are not quite parallel
to the stage motion, the cell lengths must be accurate also. Statistical
fluctuation of the cell length around an accurately known mean value
causes only small errors for tracks closely parallel to the x axis, but for a
track inclined with respect to the axis by an angle ¢, the ordinate error, 4,
introduced by an error € in the cell length is € tan¢. That this can be
serious is easily seen by an example. Should € be the order of 5 p and ¢
only as much as 5°, then the noise from this source would be ~0.35 p.
Even an error of only 1 p in the cell length introduces a serious com-
ponent of noise into measurements on somewhat inclined tracks.

Emulsion table

-5
=

g O - s

i ity

Fic. 8.12.2. Principle of the Cosyns’ parallel blade stage support (IDLRL).

One of the most satisfactory principles of stage construction for low
noise was first described by Cosyns (C 51). The stage, as shown in Fig.
8.12.2 was mechanically supported on leaf springs, the bending of which
permits it to move in the x direction, but the rigidity of which prevents
y motion. The construction with two vertical members of equal com-
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pliance at each end is designed to prevent motion along the = direction
when the stage is displaced along the x direction.

In the illustration, Fig. 8.12.2, the displacement of the lower member
is made just half as great as that of the stage proper. Forces in the
x direction are applied through ball bearing contacts so that transverse
forces are not transmitted to the stage. This principle is in current
use on some of the best scattering microscopes.

Selected ball bearings running in carefully lapped ways have been tried
for scattering stages, but have not proven completely satisfactory.
Probably the small area of contact of the ball contributes to this. Sliding
hand-lapped ways with large areas of contact are made by Brower, for
example, that are sufficiently good for the most exacting scattering
measurements.

Stodiek (S 55) has developed a device for making scattering measure-
ments on a stage of indifferent quality. The objective is provided with
an elastic mount. This permits a feeler-arm on the objective to glide in
contact with an optically flat block of glass which is rigidly mounted with
respect to the plate. Its plane surface is vertical and generally parallel to
the track. Thus, measurements of the track position are made relative
to the plane glass surface, and irregularities in the stage motion are
demagnified by a large factor, roughly the magnifying power of the
objective. Because the objective moves, it will accept the largest bundle
of rays if the condenser aperture matches the N. A. of the lens and the
source diaphragm is somewhat larger. A commercial version of this
device is marketed by Leitz. The Leitz model UAM Ortholux microscope
(see Fig. 8.12.3) is fitted with a stage for holding large plates. The
optical flat, which is 150 in length, contains a scale which is observed in
the same field as the track. It enables one to read out the x position and
lay out cell lengths very conveniently. A special condenser and objective
for rotating the plate, as well as a Klausen type eyepiece micrometer, are
also supplied as auxillary equipment.

A means for advancing the stage through any programmed schedule
of cell lengths, or simply for advancing it by an accurately constant
cell length is a feature of all good scattering microscopes. This may be
accomplished, as in the Koristka MS-2, by a set of detents located so that
the advance of the stage along the x axis encounters a sudden sharp
resistance at each measurement station. Such stage displacements are
typically 100 p.

Motor-driven stages are convenient. They may be stopped at the
desired points by means of a punched tape, figured cam, or the like
that operates the control switch.

The plate may be clamped on the stage mechanically, by vacuum, or if
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mounted on an iron support, magnetically. The magnetizing current is
usually a single pulse from a charged capacitor. The retentivity of the
steel then holds the plate-mount firmly in position. To release the plate
a demagnetizing current is adjusted so as to match the coercive force
of the steel. A continuous current is not normally used to hold the plate.
Direct current is most conveniently obtained from a rectifier, but the
residual current ripple causes vibration.

Fic. 8.12.3. Leitz microscope incorporating Stodiek principle for multiple scattering
measurements. (Courtesy of E. Leitz.)

8.12.2 Plate Rotation

A means for rotating the plate about the optic axis of the microscope
so as to align the track with the x axis is a necessary feature of a good
scattering microscope. In the process one must not lose the track. This
is accomplished by clamping the plate to a part that can rotate around the
axis. Rotation of the whole stage around the optic axis is not satisfactory,
because such a motion does not align the track with the line of the screw
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displacement. The Koristka MS-2 microscope is designed so that the
plate is held by vacuum to a structure, coaxial with the condenser, that
raises under it and rotates while the track remains in view. An example
of a magnetically clamped device is that of Dyson et al. (D-W 56). A
steel rotor with a flat top on which the plate can rest surrounds the
condenser and moves up and down with it. It rotates in ball bearing ways
on a stator which is part of the condenser mounting. When it is desired
to rotate the plate, two alnico magnets are placed on the plate above the
rotor. These magnets are cushioned on the bottom so as to avoid
damaging the emulsion. Then the condenser-rotator assembly is raised
until the rotor is in contact with the plate. A strong attraction then
exists between the magnets and the rotor. The clamp that holds the
plate to the stage, which also may be magnetic, is then released. The
condenser assembly and the objective are raised together keeping the
track in view until the plate is clear of the stage. The plate is then rotated,
the condenser lowered, the plate clamped on the stage, and unclamped
from the rotor. The magnetic clamping on the rotor is strong enough to
hold a 6 x 12 inch plate within [ inch of any edge.

Koristka manufactures an overhead turntable, extending down from
which are four legs adjustable in position, and at the extremities of
which are vacuum cups or magnetic clamps. These hold the plate
firmly and the whole rotates about the optic axis. Similar devices are
under development for conventional microscopes at the Lawrence
Radiation Laboratory. Any device which lifts the plate free of the stage
without losing the track has an important use when the travel distance
of the stage is limited. One may reiterate the stage motion, that is return
it from one extremity of its motion to the other while the plate is lifted.

8.12.3 Z Motion

It was noted in Chapter 6 that it is important for the focusing motion
of the objective lens to be accurately parallel to the axis of shrinkage of the
emulsion. For scattering measurements it is necessary in addition that
there be no coupling between this motion and rotations, especially about
the x axis, nor with translations along the y axis. These contribute to the
noise when the track is dipping in the emulsion and it is necessary to
adjust the control knob to keep the track focused. The mere operation of
mechanical focusing introduces objectionable vibration and displace-
ments, so that some of the best microscopes have hydraulic focusing
control with the control knob remote from the moving parts of the
microscope. This also may offer exceedingly fine focusing control.
When well made, such a system need not leak, or require “bleeding”
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duplicated so faithfully the motion of the driving motor that they
did not require this feature.

8.12.5 Vertical Scattering Deflections

Mabboux (M 53) measured the multiple scattering of tracks in the
vertical plane. The measurement was made partially automatic in
that vertical motion of the stage relative to the objective was measured
by the change of electrical capacity between capacitor plates; the separa-
tion of the capacitor plates varied as the vertical distance was altered.
This varied the frequency of an oscillator. The frequency was beat
against a standard frequency, and by means of a frequency meter the
variations of the capacitance were ultimately converted into galvanometer
readings. The galvanometer deflection was calibrated by means of an
interferometer to measure the z coordinate of the objective.

The vertical coordinate of a track, nevertheless, cannot be measured
with the same accuracy as a lateral coordinate. The finite depth of focus,
the emulsion shrinkage, and extra distortions are responsible. Typically
.a pellicle of nonuniform thickness is taken from a stack where neither
surface is confined to a plane. When mounted on a (plane?) surface
of glass, very serious vertical displacements can occur. This effect is
much reduced when glass-backed emulsions are exposed and processed.

8.12.6 Automatic' Recording and Calculation

To obtain a good measure of the multiple scattering, one may wish
to calculate third or higher differences in addition to the second. He also
may decide to eliminate noise by any one or more of a half-dozen of the
schemes outlined in Section 8.9. For these reasons a flexible automatic
calculation procedure has been adopted by the writer’s group in the
Lawrence Radiation Laboratory. Primary data in the form of the coor-
dinates yg, y1, ***, ¥, are read out on IBM cards and the scattering is
calculated by an IBM 650 data processing machine according to any
program supplied. The program normally used cuts off large second
differences in the standard way. It has been objected that one does not
obtain with this system an immediate answer, since the microscope is not
connected directly to a calculator. The results are in some ways more
objective, however, and this system leads to orderly procedures for data
processing and very great flexibility. Of course, if a strange result is
found, the scattering measurement usually can be repeated, and some-
times repetition of all measurements by another observer is routine.

The equipment used consists of a Koristka MS-2 microscope altered
as follows: To allow the use of large plates, the yoke has been length-
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ened. Any track on a plate 30 cm square can be rotated and scattered.
The filar micrometer eyepiece is directly coupled toa Datex Corporation
encoder made up of two units C713 and C714. The least read is 0.0013 e
The hairline screw and the encoder turn as a unit. The rotation is brought
about by stretched wires wrapped around a pulley that turns the screw.
The rotation of a knob located low on the right side of instrument is
transmitted to the pulley via the wires.

Many other devices have been developed for reducing the labor of
multiple scattering measurements and calculations. For example,
V. Brisson-Fouche (B 59.3) has built an analog calculating device for
computing directly the second differences. To the filar micrometer screw
she attached a voltage-dividing potentiometer in such a way that its
voltage output is proportional to the displacement of the cross hair. By
rotating the potentiometer body relative to the filar micrometer screw,
the voltage output can be returned to zero after each displacement.
Then the first differences are generated directly. These voltages are
stored in capacitors by an ingenious switching arrangement, and second
differences are converted into voltage differences between capacitors
that were charged successively. These differences are amplified and each
is converted into a number of pulses proportional to the absolute second
difference by electronic circuitry. The total number of pulses and the
number of cells are counted by standard pulse counters, and from them
is obtained the mean second difference. By further circuitry the mean
second difference for cells of double length is found. Cut off is applied
by inspecting the track for sharp scattering deflections prior to measure-
ment. These points are excluded from the measured segments of track.
With this device 100 cells can be measured and calculated in 8 min,.

Stiller and Louckes (SL 56) employed a small variable transformer in
place of a potentiometer to obtain a signal varying with the rotation of
the filar micrometer screw. A servo motor then, by means of a cam,
adjusts a balancing transformer of similar construction until there is no
net output. The amount of adjustment required is converted into units of
displacement by a digital converter and the result is printed on a tape.

Other methods for making automatic calculations have been described
in numerous publications. Sanna (S 59.1), Belovitsky et al. (BKSC 58),
Riifenacht et al. (RWGL 58), Barkas (B 58.2), and Castagnoli et al.
(CFM 58) describe typical equipment,

8.12.7 Lead Screws

Translation of the stage is normally brought about by lead screws, the
quality of which largely determines the accuracy of many measurements,
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Ten threads per centimeter is a standard pitch. This should normally
be accurate to better than a part in 1000. Setting the stage position to a
micron or better is a requirement for such a screw. The diameter of the
screw is important. The largest diameter should be used that is com-
patible with over-all weight, size, and cost limitations of the stage.
The rigidity of the screw increases rapidly with its diameter. Periodic
errors that arise from bent screws are therefore reduced, and the area of
contact on each thread increases with the screw diameter. Very good
screws are 20-25 mm in diameter, and screws of less than 10 mm are
unsatisfactory because of flexing and warping during fabrication.
Standard scanning stages at the Lawrence Radiation Laboratory now
have 12-mm screws. A 60° metric thread form is standard, although a
square thread may have some advantages. Typical lead-screw specifi-
cations for a scanning microscope are given by Hodges (H 60).

Cutting of the threads may be done either on a lathe or by special
thread-grinding equipment. When done on a lathe the material cannot
be so hard as when ground. It is usually limited to a Brinnel hardness of
30. The screws are more prone to wear and bending than the hardened
and ground screws. Metric thread cutting is difficult with most American
lathes. On the other hand, lathe cutting produces less distortions of the
metal from release of local stresses in the metal blank or by introduction
of new ones. It is also easier to match internal and external threads to
each other when they are fabricated on the same lathe setup. Com-
mercial thread grinders in America are reluctant to guarantee metric
threads, as often their equipment suffers from the same conversion
problems as do lathes. Ground threads may suffer from the defect that
the thread and bearing surfaces of the screw are not concentric, and this
concentricity must be rigidly specified. By mounting a close fitting drive
nut on the lead screw and turning the screw in its bearings, the wabble
of the nut can be measured, and the specification checked.

In order to obtain drive nuts that fit ground screws, they should be
made with taps that are ground on the same machines as those used for
grinding the lead screws. The surface of a good lead screw should be
finished to 4 x 10-%inches or better, and be of 60-64 Rockwell hardness.
The final processing of a lead screw is the lapping. Lapping can be used
to correct roundness of lathe-cut threads, variations of lead and in pitch,
and thread “drunkenness.” Variation of pitch diameter is harder to
eliminate and little success can be expected with screws of small diameter-
to-length ratio owing to their flexibility.

Some excellent results in lead-screw manufacture have been obtained
by lathe-cutting threads leaving only a minimum of material for cleanup.
The screws were then hardened to 60 Rockwell thickness and finish
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ground. Extensive lapping will develop a new axis for the threaded
portion of the screw. This means that the bearing lands must be lapped
to be concentric with this axis.

Hodges (H 60) suggests the following lapping procedure: a long nut of
a soft material and at least one-third the length of the thread is split
lengthwise and provided with spring tightening. The screw is turned
around a vertical axis so that the nut moves vertically, up and down,
as the screw is turned one way and the other. It is prevented from
rotation, but its weight is counterbalanced, and it is otherwise free.
Lapping compounds of graded fineness are used. They must be of types
that break down with wear to permit flushing them out of the finished
threads. A few hours of lapping a day is extended over several weeks
while the nut ends are reversed and perhaps several nuts worn out.
Procedures developed for the manufacture of ruling engine screws
(551.2, BB51, 834, 534.1, S37, $37.1) are recommended for microscope
stage screws.

Depending on the stage design the lead screw either may advance as
it turns, as in a micrometer, or merely advance a nut that is constrained
not to turn. The micrometer-type drive is not useful for large stage
displacements, but is satisfactory for an inch or two of motion.

The drive-nut type should be mounted in good bearings and end
play eliminated. Precise alignment, which is facilitated by adjustable
bearing blocks, is essential.

8.13 Special Measurement Methods

It happens in almost every study that some tracks are too steep for
conventional scattering measurements; especially if the emulsion is
distorted. Estimates of pB/z often still can be made by application of the
theory to the track measurements that are possible under the prevailing
circumstances.

When a grid has been printed on each pellicle of a stack it often is a
very reliable frame of reference. Then using the track segments in the
pellicles for cells, the angles of the track with respect to the grid lines at
the points where the tracks enter the pellicle may be usable data, as are
the coordinates relative to the grid (B-M 57).

Aside from the shrinkage, the distortion of the surface layer of
emulsion is normally severe only near the edge of the pellicle. The dip
angle, when measured near the surface, is especially free from distortion
effects, which are primarily laminar shears. One can measure angles of
dip as a track enters the surface of successive pellicles, and with the
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average path in the pellicles as a cell length, obtain a good estimate of the
particle pf/z. Double length cells can be used for noise elimination in
cases when the particle has traversed many pellicles.

If the track is dipping with an angle 8, then the cell length is ¢ sec §
when the projected cell is z. The observed sagitta will be increased by
sec®/? §, while the rate of energy loss will be greater by the factor sec §.

In general, the information derived from scattering measurements on
a track can be increased by measuring the z coordinates of the particle
trajectory in addition to the y coordinates. This also has the advantage
that shear-type distortions which affect the y coordinates are largely
eliminated. It requires, however, that the depth of focus be very small.
Little is known regarding the noise that must be present because of
inhomogeneity in shrinkage, and for the reasons mentioned above.

8.14 Statistical Geometry of Tracks

Insofar as a track can be considered a one-dimensional continuous and
differentiable locus, the various definitions introduced in the differential
geometry of space curves apply to it. In addition, it is possible to intro-
duce some new integral concepts. Mere counting of some distinctive
track features is possible, suggesting simple measurement procedures.
Examples follow of feasible special measurements:

8.14.1 Grain Coordinate Distribution

The whole scattering information-content of a track is to be found in
the coordinates of the centers of the track grains. No one has as yet made
full use of this information, but Olsen, Wergeland, and Overas (OWO 55)
have given a theorem applicable here. Given a track chord of length ¢
extending along the x axis between ¥ = 0 and x = ¢, they have proved
the following:

The probability that at abscissa #, the track ordinate y will lie between
yandy + dy is

3 1/2 3y2
Wy = ( 20 {F%> 231 — x/t)2) 2R [_ 205 241 — x/:)z] & B4l
for 0 < x < t, where (%) (= No(w?)?) is the mean square projected
scattering angle between tangents at points separated by distance z.
The derivation of Eq. (8.14.1) by the methods of this chapter is a
suitable exercise for the reader.

For the actual projected distribution of grain centers, the variance
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the measured (%, ¥) coordinates of all the grain centers in a segment of
track can be used for a maximum likelihood calculation of {2,

8.14.2 The Transverse Range

Rr=|y1|+ |y, =1 PRy Sy 19 —Yua | 9. (8.14.2)

Ht?re Y1 1s the first maximum or minimum, y, the last, and (Y ¥441) is an
adjacent maximum-minimum pair. Maxima and minima, of course,
alternate in accord with Rolle’s theorem. A few measurements have

8.14.3 The Integral Scattering

Between each maximum-minimum pair there is a point of inflection.
Here the track has a slope dy/dx = tan #;- Suppose one measures the
successive angles ¢, at these points. We define

Pl dil gyl o + | Puy — B, | (8.14.3)

This is the integral scattering. It is a function of the residual range that
depends on the particle producing the track.
The particle whose tracks are seen in emulsion have wavelengths

fiecessary, or at least convenient. One may be assured that @ and R, as
defined above are always convergent because the number of scattering
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centers along the track is finite, but in practice one avoids ambiguity by
introducing a minimum separation, |y; — ¥;_; |mm, between a
maximum-minimum pair. This must be exceeded for it to be counted in
Ry and for the intervening inflection angle to be measured. This
minimum might be about a micron or it can be adjusted in proportion
to the grain size.

8.14.4 Inflection Density

The density of inflection points, as defined above, and the number of
such points in a residual range R are measurable track features that
may help to identify a track or to measure its scattering rigidity. The
distance between successive points of inflection defines a length, the
mean value of which is associated with a given particle and its velocity.
The integral scattering is likewise a quantity which is determined by the
particle mass, charge, and velocity. The ratio of the integral scattering
to the path length contains most of the scattering information in that
track segment.

8.14.5 Lateral Displacement

A particle in motion defines instantaneously a direction that can
be extended indefinitely as a straight line. When the particle ultimately
comes to rest in matter, owing to scattering it will be found displaced
from a line drawn tangent to the track at any particular residual range by
a distance that is a random variable. This average absolute distance
increases as the initial velocity at which the line was defined increases,
and it also varies with the particle mass and charge. The displacement
is an easily measured quantity. For muons produced by the decay of
pions at rest, which have a range of 602 ., the mean absolute projected
lateral displacement is about 70 u. The standard deviation of the
projected lateral deflection, moreover, is about 89 u. These quantities are
as characteristic of pion decay in emulsion as the muon range itself.

8.14.6 Track Crookedness

In addition to the natural quantities suggested above, one can also
measure the scattering in other ways. For example, suppose the eyepiece
focal plane contains two parallel lines of a standard length separated by a
standard distance. Some segments of a particle track can be completely
contained between these lines and some cannot. As one moves this
instrument along the track through a distance R from its terminus, it will
traverse portions of the track where the track axis cannot be contained
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entirely between the lines. The fraction of a given track which cannot be
contained between such lines we may call the track crookedness.

8.14.7 Residual Cells

Another similar function can be defined by limiting angles. Suppose
on the eyepiece reticle there are three diametral lines, a central one and
others making angles + 4¢ with it. Then a measurement procedure is as
follows: the central line is placed tangent to the track. Then one moves
along the track without rotating the eyepiece until one of the other two
lines is for the first time tangent to the track. The distance traversed is a
cell. At this point the eyepiece is rotated until the central line is again
tangent to the track and another cell is traversed. A cell, of course,
terminates where a sharp deflection occurs and the new initial direction is
determined by the direction of the track just beyond the scatter point.
The cell, here defined, is the interval of track length in which the particle
changes its projected direction of motion by the preassigned angle.

When the particle is about to come to rest, there is a number of
residual cells in the residual range that increases with increasing scattering
of the particle. The number of such cells, of course, increases monotoni-
cally with the residual range.

The density of cells in a track segment is a measure of the mass, charge,
and velocity of the particle. It should be noticed, however, that we have
eliminated measurement in favor of counting both in this definition and in
the definition of the natural cell. One measures only the total track length.
He then counts the celis to obtain the cell density or mean cell length.

All the above definitions and discussion can be applied to the indepen-
dent scattering deflections in the vertical plane.

8.15 Track to Track Scattering Measurements

To aid in the elimination of distortion, stage noise, and emulsion
dislocation effects, it is sometimes possible to make multiple scattering
measurements between two nearly parallel tracks. If these are tracks of
particles having the same pB/z, as they may be if they are from an
accelerator beam, or are disintegration products of a heavy cosmic
ray nucleus, then the mean square second-difference signal will be double
that of a single track measured conventionally. The method must be
applied with great caution when the tracks are displaced vertically from
each other, for then serious distortion and dislocation effects may intrude.
It is stated that good relative scattering measurements require that
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separation in depth remain less than about 50 p (BPM 57). In track to
track scattering measurements, cells of several centimeters length have
been used. See (LFS 50, GM 51, Y 54, KK 55), and (S 55.1) for some
measurements by this method.

When an electron pair produced by a high-energy photon is measured
in this way, only a lower limit for the energy of the pair can be derived.
Then the observed second difference of the spacing between the tracks
S3, is the sum of the mean square scattering sagittas of the electrons:
Ste = D} + D3 In Chapter 5 (see Volume II), the distribution of
energy between the members of the pair is given.

When more than two tracks in the same general direction remain
present in successive fields of view, it is possible to measure the scattering
sagitta of each track for then

S, =D+ D} and Di=(S5+SL—SL2  (8151)

When 7 tracks are present, n(n — 1)/2 independent equations can be
written.

8.16 Uncertainty in Direction of Particle Motion

Measurements made on its track can provide information on the initial
direction of a particle’s motion only within certain limits of error. The
angles always are affected by distortion and uncertainty of the shrinkage
factor, which are topics treated in Chapter 6. The instrumental and grain
noise, together with the particle scattering, impose further limitations
on the accuracy of measurement.

In the horizontal plane suppose the angle ¢ of the tangent at a fiducial
point P, of the track has the value ¢,, and this is the quantity to be
measured. Then, because of scattering, at a point P, on the track,
removed a distance 2, the angle will be ¢;,. According to Eq. (8.4.3)
{1 — $0)*> = No{w?t. The mean square angle between the tangent
at Py and the chord connecting P, and P, is one-third of this. There is an
additional variance term amounting to (2¢82)/¢?) (or less) that arises from
errors in the estimation of the position of the particle trajectory at the
two ends of the chord. The total variance o then is:

2{8%
12

ot — %Ncr(w2> # o (8.16.1)

"This is minimum when

il

- (8.16.2)
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Now the noise level, Dy, in measing D, is (12/m¢8%)1/2, so that
12{8%> = #DZ On introducing D%/ — (4No(w?))/37, the condition
for minimum error is that the cell £ be chosen so that the scattering
sagitta D, is related to D, by:

B \/;-‘ D, (8.16.3)

We set K, ~ 25 (for distances in microns and p in Mev/c). Then the
optimum track segment is

D,y

t @9(
opt =

(8.16.4)
This formula agrees with that of Inman (I57) but differs from one
derived using a result of Dilworth ez af. (DGGL 50), who state that the
noise effect is proportional to #-3/2,

Actually the rule, Eq. (8.16.4), for the length of track segment to use
In a measurement is only a general guide. If a length top puts the point
P, beyond where the track direction detectably changes, it would not be
sensible to measure beyond the point of deflection. On the other hand,
if no change in direction is detectable in the track segment one, may quite
properly use a segment exceeding the length, #,,;. The meaning of fop¢ is
that it is the segment length at which one would typically first be able
to detect a deviation from the initial track direction.

Using the length, #op, one can calculate o from Eq. (8.16.1).

2\43 A
$2 = 0.02D2/2 (PT?) (radian)? (8.16.5)

Thus, for example, with PB/z = 100 Mev/c and a noise level of
0.15 g, it should generally be possible to determine ¢, with an error of not
much more than a fifth of a degree when distortion is not present. The
accuracy with which the initial dip angle can be measured is not this
good. The same analysis applies as that given for ¢, but the additional
noise of the finite depth of focus of the microscope must be added. In
addition, vertical dimensions are reduced by the shrinkage factor, in
which a systematic error also generally exists.

An empirical estimate of the error in the measurement of either a
dip or azimuth angle can be made if the particle velocity does not change
appreciably in the portion of the track used for the following measure-
ments: suppose the track is divided into # segments each of length ¢,
The average direction of the ith segment is observed to be «; and
(o1 — )®> is the observed mean square charge in direction in going
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Furth (F 55), and Kim (K 58.2). Their results are somewhat divergent in
the details. The following discussion will not examine all the subtle
points, but merely seeks to obtain a good measurement of the particle
momentum as simply as possible.

Let n angles ¢, be measured in projection between successive tangents
toa track at points spaced by a distance ¢. If the track has a dip angle, 3,
these points are actually separated by a distance ¢ sec 8. In the presence
of a magnetic field H along the line of sight, the average value of the ¢, is
given by

3 x 10* 2(Hsecd)t

Adé > = > (8.17.1)

The scattering produces a variance, S? in the distribution of the ¢, and
the magnetic bending may not exceed S unless the field is high. The
scattering, however, is itself an additional source of information. The
quantity S? is equal to

- (?«(f’?) — X4 - w + 82 (8.17.2)

where S is a noise term that is independent of #, H, or 8. The noise can
be evaluated by varying the cell size in the usual manner. The expressions
(8.17.1) and (8.17.2) are independent. With knowledge of the particle
mass, the weighted average of these momentum estimates is more reliable
than either alone. On the other hand, the particle mass is determined by
the measurements if one chooses to use the equations in that way.

In a field of 300,000 gausses, Furth (F 55) shows that one centimeter of
track yields as much information as is obtainable by scattering alone from
a segment 9.2 cm in length. If the scattering information were neglected,
the effective track length would be 8.2 cm. On the other hand, when
the field is 100,000 gausses, use of the scattering information in addition
to the magnetic bending gives a gain factor in effective track length of 2.3.

Scattering information is optimized if the cell length £ is about that
yielding the maximum information in the absence of the magnetic field.

Currently there is much interest in using emulsion in strong magnetic
fields. For example, development of excellent magnets at CERN has been
carried out for this purpose (G 61).

Birdsall and Furth (BF 59) have developed a successful magnet for
subjecting emulsion to fields of 200,000 gausses or more. Its general
appearance is shown in Fig. 8.17.1. The magnet windings, following a
design due to Bitter (B 39.1), are circular disks of Berylco 10. In the
center of each, a 2-inch hole has been made. The disks are 0.045 inches
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in thickness and are insulated from each other by resin-bonded Fiberglas
sheets. Each disk is slit radially, and the ends soldered to the two
neighboring disks so as to form a helix. Heavier end disks carry current
in and out. The whole assembly is tightly clamped together because
eddy currents, particularly in the end pieces, produce large transient
repulsive forces.

Birdsall and Furth magnet (IDLRL).

Fic. 8.17.1.
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The power supply consists of a 750 microfarad capacitor bank charged
to 13.5 kv. The rise time is 250 microseconds, and a field that remains
constant to 1%, can be maintained for 50 microseconds. The current is
55,000 amperes. A pulse rate of 11 per minute has been used. The pulse is
initiated by two 5555 ignitrons in parallel. Four other ignitrons are used
for short-circuiting the magnet through stainless-steel resistors. The
magnet is cooled by a thin tubular stream of silicone oil between the
emulsion, which is on the axis of the solenoid, and the copper disks. The
oil is chilled to dry-ice temperature and cools the coil at its inside
surface. Care must be taken that water condensation on the cold surfaces
does no damage, and the silicone oil itself must be free of water.

A stack of 120, 600 . emulsion pellicles each in the form of a 2-inch
circular disk can be inserted in the magnetic field. The field is perpen-
dicular to the emulsion surfaces. The beam then also is most conveniently
made parallel to the coil axis, At dry-ice temperature emulsion shrinks,
and the stack should be constructed so that the pellicles will not become
loose relative to their neighbors.

Since the length of time that the current can be held steady at the
peak value is not large, the beam from an accelerator must be pulsed so
that it reaches the emulsion only during the constant peak-field interval.
With the Lawrence Radiation Laboratory Bevatron it has been possible
to obtain 30 microsecond pulses of negative K mesons synchronized with
the pulsed magnet. An improvement to this magnet has recently been
made by vacuum impregnation of the assembly with epoxy resin. This
reduces vibration and danger of plate-to-plate insulation failure. The
magnet is now water-cooled. The potting procedure makes the bore
watertight. Cooling is accomplished by passing a thin high-velocity
water stream between the bore and a concentric lucite tube. This assem-
bly has been operated at 300,000 gausses without damage, and in a
life test 30,000 pulses at 200,000 gausses produced no evidence of
deterioration.

The first important applications of this magnet have been made by
R.'S. White and his collaborators. It has been used for the determination
of sign of charge and energy spectrum of pions produced in the capture
of negative K mesons in emulsion. When the pion energy is above 60 Mev
the magnetic field of 2 x 10° gausses determines the energy better than
when it is measured by grain counting, and it also determines the sign of
the pion without the labor of tracing the track to its terminus. The
method used is simply to measure the change in direction, ¢, for a cell
of 1 cm. Sharp deflections of more than 3° in this segment of path are
subtracted out, and the remainder are used to calculate {|¢|>. About
one particle in three experiences a sharp deflection. Even the use of this
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magnet, however, has not solved the important problem of negative
hyperon identification, because in general the hyperon velocities and
ranges are still too small for magnetic deflection measurements.

A magnet that produces a pulsed field of 120,000 gausses with an
inside diameter of 2.5 cm has been used by Likhachev et al. (LKB 56) to
measure electron-pair energies. The spectrum obtained agrees well with
that measured by the multiple scattering.

An interfering effect that can be most serious for emulsion measure-
ments of curvature is distortion. The behavior and the magnitude of the
distortion vector must be established for reliable measurements to be
made. No one seems as yet to have studied the effect of the correlation
between successive scattering events that can occur when the particles
are polarized. This could simulate the effect of magnetic bending.

The reduction of scattering obtainable in dilute emulsions suggests
their use in magnetic deflection work. A reduction of 169, is anticipated
by Dilworth and Goldsack (DG 53).



CHAPTER 9

lonization and Track Structure

9.1 Delta Rays in Emulsion

When a particle of charge ze and mass (o penetrates matter, its electric
field disturbs the atomic electrons. These interactions constitute collisions
of varying energy transfer in which the kinetic energy of the particle is
dissipated.

If an electron in sensitive emulsion receives kinetic energy exceeding
perhaps 2000 ev in such an encounter, its range may be sufficient for its
track in emulsion to be seen projecting from the trajectory of the primary
particle. Such electron tracks are known as delta rays.

The differential cross section for transfer of energy in the interval
dw to a stationary unbound electron is calculable for the electric field of a
point charge, ze (R 52). It is:

(fii;)dw :éz;rfmcg (= i )di.”cm2 (9.1.1)

Small terms which depend on the particle structure and the sign of the
charge are neglected, and no allowance for the physical state of the matter
traversed is made in this approximation.

The symbols in Eq. (9.1.1), which describes the differential delta-ray
spectrum, are defined as follows: the particle velocity is Bc, m is the
electron mass, ¢ is the velocity of light, y = (I — 2)-1/2, and
7o = €%/(mc®). The energy, w, of such knock-on electrons extends up to a
maximum value:

2032,,2
Wmax = 236 i, o (9.1.2)
Lnd gl 5

The lower limit of @ that defines a recognizable delta ray in emulsion
depends on many things. These include the range-energy relation for
low-velocity electrons, the grain size of the emulsion, the scattering
of these slow electrons, the sensitivity of the emulsion, and the density

349
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of background electron tracks. One must adopt certain conventions for
counting delta rays. Some proposed by Tidman, George, and Herz
(TGH 53) are judged to be practical. They have counted the number,
v, of delta rays produced per centimeter of track of a singly charged
particle, as a function of its velocity for various conventions,

According to Eq. (9.1.1) the density of delta rays increases with the
square of the particle charge, but in counting one must allow for the
fact that the core of the track itself broadens as the particle charge
increases, and the conventions may require adjustment for tracks of
very heavy nuclei. For light nuclei we take the delta-ray density, n;, to
be 2% when the velocity is high enough for the nucleus to be stripped of
electrons. If a differential segment of the track has a length dR, then the
total number of delta rays on a track between the point where the particle
velocity is Bc and the point where it comes to rest is

R
Ny — f nydR (9.1.3a)
0

When an element of proton path, d), encompasses the same velocity
interval as the track element dR, d\ = (2*"/M)dR, (see Section 9.4)
where 2*" is the mean square effective charge for energy loss, and M is the
particle mass in units of the proton. Also, in general, n; = 2**'», where
x*** is the mean square effective charge for production of delta rays.
In general 2* and 2** will not be exactly equal.

Then we have:

2
A gk

R
g f nydR — Mj el (9.1.3b)
0

2
o 3*

The ratio 2**/z** is usually sufficiently near unity so that one can
approximate, and write N; = M fzvdh = MA(X).

Table 9.1.1 for 4(}) has been prepared using a recommended con-
vention of Tidman, George, and Herz. The convention chosen for G.5
emulsion was as follows.

Grain configurations, to be counted as delta rays, must attain a
minimum displacement of 1.58 x from the axis of the track as seen
projected on the plane of the emulsion. In the vicinity of 1.58 u the num-
ber of delta rays counted appears to vary inversely with the magnitude
of the minimum displacement.

Other delta-ray conventions have been studied, and the definition
of a delta ray by a certain minimum number of grains, say 4, has fre-
quently been applied (DFK 52). In each case a correction is to be
made for background. This can be evaluated well enough by recording
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the number of apparent delta rays on proton tracks of residual range
less than 100  where no true delta rays are expected.

Each set of conventions requires investigations as to its completeness
and objectiveness, and each leads to a different table of delta-ray densities.

TABLE 9.1.1

THE DEeLTA-RAY DENSITY AND ITS INTEGRAL

AMcm) ¥(cm™?) 4= [vdA A(cm) ¥(cm™1) A= [vdA
100 x 10-* 0 0.00 7 29 334
200 2 0.01 8 27 362
300 6 0.06 9 26 389
400 13 0.15 10 25 415
500 20 0.31 11 25 440
600 34 0.61 12 24 464
700 47 1.0 13 24 488
800 59 1.6 14 23 511
900 66 22 15 23 534

1000 72 29 20 21 644

1500 89 7 25 20 744

2000 97 12 30 19 841

2500 98 17 40 18 1026

3000 96 22 50 17 1201

3500 91 26 100 12 1926

4000 88 31 200 11 3076

4500 85 35 300 10 4126

5000 82 44 400 10 5126

6000 78 52 500 10 6126

7000 74 60 1000 9 10,876

8000 70 67 =>1000 9 10,876 4+ 9 (A — 1000)

9000 67 74

1 x10° 65 81
2 59 139
3 47 189
4 41 233
5 35 271
6 31 304

No final evaluation of the relative usefulness of different measures of the
delta-ray density has been made. In Fig. 9.1.1 tracks at the minimum of
ionization are shown that illustrate the effect of the particle charge on the
structure of the track, and also illustrate the difficulty of obtaining
objective delta-ray measurements. It is not surprising that observers
differ in the counts they obtain. The problem of counting delta rays
is complicated, also, by the emulsion sensitivity and grain size. The
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number of delta rays observed will depend on' the resolution of the
emulsion and on the sensitivity. Fast delta rays tend to be missed in
low-sensitivity emulsions. It is recommended that each observer be
calibrated by counting a standard track, and that he frequently check
his calibration. Each separate emulsion batch also probably requires
calibration.
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Fic. 9.1.1. Tracks of particles with Z = 1, 2, 7, and 20 at the minimum of ionization
in G.5 emulsion. (Courtesy of M. M. Shapiro.)

Demers (D 58) has given results of extensive delta-ray counting
in his special fine-grain emulsions, and he has evaluated the efficiency
of counting under certain conditions. The “efficiency” was found
sometimes to exceed 100 %,. It is known that Eq. (9.1.1) fails for small
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energy transfers. The selection criteria for delta rays also probably
were not such that the minimum energy could be known accurately.

At relativistic velocities, when B — 1, wmax becomes large compared
to any practical minimum delta-ray energy, so from Eq. (9.1.1), the
number of delta rays exceeding a particular minimum energy @mia beco-
mes simply:

mc?

ng ~ (2nrd) 2? = constant x 22 (9.1.4)

Wmin
If the constant for the particular counting convention is determined
empirically for particles of known charge, such as relativistic alpha
particles, then the charge of other relativistic particles can be determined

N /100

T T T T T T

10, 20 30 40, b0, €6 70 280 90  ib
Charge squared

Fic. 9.1.2 Dependence of delta-ray number on the particle charge. (Courtesy of
O. Mathiesson.)

with good accuracy. Mathiesson (M 60.1) counted as delta rays the grain
configurations on relativistic tracks extending from the axis of the track
by 1.3 & or more, and plotted the density of such tracks as a function
of 22. The charge was determined by the photometer of von Friesen and
Kristiansson (VK 52). In Fig. 9.1.2 the straight line resulting from his
measurement is shown. Note that there is a finite intercept at = = 0.
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Presumably this is the background that should be subtracted from all
his readings. If a track is not relativistic, but a sufficiently long segment
of it is available for measurement, the energy loss from the stopping
theory (Section 9.4) may be combined with the approximate inverse
square-dependence on the velocity of any measure of the delta-ray
density to yield an estimate of the charge, ze.

By using the range-energy relations for heavy ions (Chapter 10) and
Table 9.1.1, or its equivalent for other counting conventions, heavy ions
coming to rest in emulsion also may be identified. The uncertainty of
such an identification usually is such that one can equate M to 2z.

In an early paper Hoang (H 51) applied the formula (9.1.1) to particles
of low velocity with the then existing range-energy relations. He found
with a particular counting convention that the delta-ray density varied as
Z154R-0-46 R being the residual range. These exponents should not be
sensitive to the counting convention.

For delta-ray counting fine-grain emulsions have a great statistical
advantage. In his special number 8 emulsion, Demers (D 58), for
example, found that the density of countable delta rays reaches a
maximum of about 1000 per centimeter on proton tracks having a
residual range of 450 u. In Table 9.1.1, G.5 emulsion is seen to attain
a maximum of only about 100 near a residual range of 2500 p.

Plates exposed near a target bombarded by heavy ions may receive
surface blackening similar to that from exposure to light. This effect is
caused by knock-on electrons. Even a weak magnetic field across their
paths will prevent such delta rays from reaching the plates.

There is an apparent narrowing of the track of a multiply charged ion
as it slows down in a sensitive emulsion (but not in an insensitive one).
This effect, which was misinterpreted at first, is now known to be
primarily a delta-ray phenomenon. The maximum range of the delta
rays increases with the particle velocity. A wide track will be observed
when the velocity is high enough so that the delta rays extend beyond the
primary particle trajectory, and when they are also dense enough to give
an appearance of continuity. Obviously, the emulsion grain size and
sensitivity, as well as the amount of physical development, affects the
appearance of the track.

In Fig. 9.1.3 one sees the tracks of 400 Mev argon ions in emulsions
of several different sensitivities. The tapering of the track as it slows down
is observable in the most sensitive emulsions, but in the least sensitive
emulsion the ionization produced by the delta rays is not registered. In
Fig. 9.1.4 photomicrographs of the tracks of several ions, all of the same
initial velocity, are shown as they appear in G.5 emulsion. They all exhibit
the tapering phenomenon, but it is less marked for the lighter ions.
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There will always exist a residual range at which the solidly developed
core of the track has a maximum width. This range is known as the
thin-down length. For a particular sample of uniformly developed
emulsion it is a function of the nuclear charge, but no universal meaning
can be attached to it. For a very knowing investigator it may be a useful
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Fic. 9.1.3. Appearance of 400 Mev argon tracks in emulsions of varying sensitivity.
(Photomicrographs by C. Cole.)

quantity, but generally only the following rule applies: at a given
nuclear velocity and in a particular sample of uniformly developed
electron-sensitive emulsion the track width rises monotonically with the
atomic number of the nucleus, and approaches an asymptotic value
determined by the maximum range of the delta rays. This maximum
range does not depend on the nuclear charge but increases with the
particle velocity.

Hoang (H 51) also observed that a certain measure of the track
width varied in proportion to the square root of the residual range,



356 9. IONIZATION AND TRACK STRUCTURE

and the thin-down length was proportional to 2, but in the writer’s
opinion such rules must be checked in each emulsion sample, and for
each measure of the track width.

Electrons and positrons have delta-ray distributions that are slightly
different from those of heavy particles. The differences are important
only for rare collisions of large energy transfer, however, and Barkas,
Deutsch, Gilbert, and Violet (BDGV 52) succeeded only in verifying
that the positron-electron scattering behavior was closely described by
the first term of Eq. (9.1.1). All elementary particles have theoretical
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F1e. 9.1.4. Appearance of tracks in G.5 emulsion made by ions of varying atomic
number, each of energy 10 Mev/nucleon. The tracks in each case taper as the ion velocity
falls and less energetic delta rays can be produced. (Photomicrographs by C. Cole.)

delta-ray distributions (W 33) that depend on the particle spin and
structure when the energy transfer is near wgay, but these differences
have not been observable in emulsion studies.

Were it not for atomic binding effects, the energy, w, and angle of
emission, 0, of delta rays from heavy particles would be directly con-
nected by the relation: w ~ wpax cos28; § < /2. The electron binding
and the scattering experienced by low-energy delta rays tends to make
this a relationship of limited usefulness. However, there remains a
forward-to-backward asymmetry in the emission of delta rays from a
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track that can be invoked to determine the direction of motion of the
particle (see Fig. 9.1.5).

Ekspong (E 57.1) found that between 8 = 0.3 and 8 = 0.98, and for
2z = 1 the fraction of delta rays projected into the forward hemisphere is
0.61 + 0.01. The direction of the delta ray is taken to be the direction
defined by the first two grains of the delta-ray track that are clearly not
part of the primary track. This is not a function of the sign of the particle.
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No dependence on primary particle velocity was detected. It seems also
not to depend on the number of grains in the delta-ray track for delta
rays of three grains or more. (The number of delta rays with many
grains is very small.) This result enables one to determine the direction
of a track with 99 %, certainty if as much as 3 cm of track is available for
study.

Hebert (H 58.4) measured both the angle and the energy of the fast
delta rays from heavy cosmic-ray primaries. In the range 3-50 Bev per
nucleon, he found this to be a rapid and relatively accurate method for
determining the heavy-ion velocity. While the binding of the electrons
in atoms is of little importance for large energy transfers, it is a serious
complication for the distribution of small and moderate transfers. The
low-energy portions of delta-ray spectra are therefore poorly known. This
is reflected in an inadequate knowledge of average energy-loss rates of
slow, charged particles in matter and of the ionization probabilities for
electrons with intermediate binding energies.

The complete problem of the energy losses sustained by a fast,
charged particle in inelastic collisions with atoms is inseparable from the
problem of the distribution of deflections experienced by it in such
collisions. The cross section for momentum transfer in the interval dg

has been put in the following form, using the Born approximation
(B 30, LL 56):

8 2 d :
o = ,8_: (%) q—gz lexp(iq - r; ) I3, (9.1.5)
In this expression q = (p — p’)/% so that
2 —2E
¢ = (o — (" + 0t — 2wEpecosy) 222 2E)

The quantities p and E are the momentum and total energy of the
incident particle, and y is its angle of deflection, p’ being its momentum
vector after deflection. The index j is summed over the electrons of the
atom from 1 to Z. The index 7 is summed over all final states of the atom.
The quantity |exp (iq - r;,) |o.. is a matrix element for the transition
from the initial (ground) state of the atom to the state labeled 7.

For small deflections of the incident particle in the field of an atom,

72t = (wfo)® + pix? (9.1.6)

The lower bound on g is therefore w/(fiv), when energy w is transferred
to an electron. An exact treatment of the distribution of energy losses
is not possible without detailed atomic and molecular structure infor-
mation, and we may not pursue this problem further here,
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9.2 Energy Loss by Collision with Electrons
bty e
Charged particles lose some energy by elastic collisions with atomic
nuclei or may be lost from a beam entirely in catastrophic interactions.
Charged particles also radiate in the fields of atomic nuclei. As energy-
loss processes, these are important compared to electron collisions
only for high-energy electrons and for very slow or very fast heavy
particles.
"+ The energy loss to electrons in unit path suffered by a point charge
penetrating matter is calculated from the differential energy-transfer
cross section, (do/dw)dw [Eqs. (9.1.1) and (9.1.5)].

The energy loss, .#, per centimeter is:

B nf::nuw—j:;—dw + nJ-wo wﬁdw (9.2.1)
where 7 is the number of electrons per cubic centimeter in the stopping
material.

The quantity w, is an energy selected sufficiently large so that for
collisions of energy transfer exceeding wy, the electrons in the stopping
material can be considered free. These are called close collisions. The
first integral, .#,, is readily evaluated when the collision cross section
(Eq. 9.1.1) is used.

Then:

= Ymax  do = 2mnzlrime® Wmax 2
Fi=n f it dw — [1n = ] 9.2.2)

p? Wy

Wy < Wmax
The calculation of the second integral

Wo
.}‘fz=nJ. wﬁdw

Ymin dw

is much more involved because all possible electronic transitions must
be considered, and the detailed structure of the stopping material is
important. The formula of Bethe (B 32) is now the most widely adopted
estimate of the rate of energy loss of a fast particle in distant collisions.
He gives:

i 27mz;12'3m62 [In ( 2mc2f:y2wo ) = ﬁz] (9.2.3)
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The quantity I introduced in this calculation of the energy loss is
known as the mean ionization potential, (also known as the mean excitation
potential). For a range of high velocities, / is independent of the particle
velocity. It depends on the atomic number, Z, of the stopping material.
It is defined in terms of the oscillator strengths f, as follows:
InI = Xf,In W,. The transition probability from the initial state in
which an electron exists to an excited state of relative energy W, is
governed by the oscillator strength f, — (2mW,/B2) | x, |2
The matrix element | x, | is calculated for the electron coordinate x
between the two states in question. The set of final states extends into
the continuum. These calculations are difficult and have not been done
exactly. A compendium of oscillator strengths calculated on the
hydrogenlike approximation has been prepared by Lewis (L 53.2). For
heavy atoms F. Bloch (B 33 B 33.1) found that the ratio 1/Z is about 1
Rydberg. At present / cannot be obtained with sufficient accurary from
theoretical considerations alone, and one must resort to a semi-empirical
evaluation of it. For a composite material such as emulsion, I is defined
by:
nlnl =% NZnl, (9.2.4)

where N, is the density of atoms of atomic number Z; and mean ioniza-
tion potential I, in the composite material. Except at low velocities the
stopping effects of the various atoms are nearly additive.

The sum # =7, 4 7, is the total energy-loss rate to electrons.
Adding Egs. (9.2.2) and (9.2.3) one obtains:

2mnztry

f—T[In

2me?By wmax

I

- S 252] me?[em (9.2.5)

This expression well describes the energy loss in the interval where the
particle velocity is large compared to the velocity of the fastest electrons
of the stopping material, but not extremely relativistic. When the energy
is very high, the rise of ionization beyond the minimum implied by
Eq. (9.2.5) is restricted in condensed materials by the polarizability of the
stopping medium. At the lower limit of validity of Eq. (9.2.5) the
tightly bound electrons are perturbed only adiabatically by the slow
moving particle, and do not contribute to the stopping. The logarithm
then does not express this behavior correctly.

At both low and high velocities, therefore, a correction must be
added to Eq. (9.2.3), and we take as an exact expression:

2mnzrome? 2mc*B2 % W max
g e - [ln( ﬁj}; “ )—2;82*20] (9.2.6)




9.2 ENERGY LOSS BY COLLISION WITH ELECTRONS 361

Then we write for the rate of energy loss of a singly charged heavy
particle:

S 2mnrome? [1 (2mc2,82y2wma_xi

,82 12

A fairly reliable estimate of the correction term for standard emulsion
can be made for protons above about 40 Mev (B 58.3). This has been
done using the theories of Walske (W 56) and Sternheimer (S 56.1),
applied respectively to the low-velocity and high-velocity regions. The
value of C found in this way is given in Table 9.2.1. The corrections are
not carried below 40 Mev because Walske’s calculations are limited to the
K- and L-shells, and at low velocities it is certain that corrections must
also be made for higher shells (B 61.1). The mean ionization potential, 7,

) — g 2(:] (9.2.7)

TABLE 9.2.1¢

THE CoRRECTION TERM C FOR STANDARD EmMULSION

T C
40.0 0.055
50.0 0.048
70.0 0.038
100.0 0.030
140.0 0.023
200.0 0.016
260.0 0.011
300 0.009
400 0.006
500 0.005
700 0.004
1000 0.002
1200 0.004
1400 0.009
1600 0.020
1300 0.033
2000 0.046
3000 0.115
4000 0.184
5000 0.250
10,000 0.524
20,000 0.902
30,000 1.167

“ The value of C is given as a function of , the kinetic energy of a proton of velocity fc.
For a particle of mass M in units of the proton and kinetic energy T(Mev), + = T/M.
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TABLE 9.2.2

Tue ENErcY-Loss RATE FOR PROTONS IN STANDARD EMULSION®®

T L 1 T L 1
0.1 1500 394 8.0 124 325
0.2 1130 297 8.2 122 32.0
0.3 950 250 8.4 120 31.4
0.4 820 216 8.6 118 30.9
0.5 721 190 8.8 116 30.4
0.6 650 171 9.0 114 29.8
0.7 597 157 9.2 112 293
0.8 559 147 9.4 110 28.8
0.9 519 136 9.6 108 28.3
1.0 490 129 9.8 107 27.9
1.2 438 116 10.0 105 27.5
1.4 398 105 11 91.7 25.7
1.6 368 96.6 12 91.5 24.0
1.8 342 89.6 13 86.1 22.6
2.0 320 83.9 14 81.5 21.4
2.2 299 78.5 15 71.3 20.3
2.4 280 73.5 16 73.6 19.32
2.6 263 69.1 17 70.2 18.43
2.8 251 65.9 18 67.2 17.65
3.0 242 63.5 19 64.4 16.90
3.2 233 61.1 20 61.9 16.27
34 224 58.8 22 57.5 15.10
3.6 215 56.4 24 53.5 14.05
3.8 207 54.3 26 504 13.23
4.0 200 52.5 28 47.6 12.50
4.2 194 50.9 30 45.2 11.88
4.4 188 49.3 32 43.0 11.30
4.6 182 47.8 34 41.1 10.80
4.8 177 46.5 36 39.3 10.32
5.0 172 45.1 38 37.7 9.89
3.2 167 43.8 40 36.3 9.53
3.4 163 42.7 42 35.0 9.19
5.6 159 41.6 44 33.8 8.87
58 155 40.7 46 32.6 8.56
6.0 152 39.8 48 31.6 8.30
6.2 149 39.0 50 30.7 8.06
6.4 146 38.1 52 29.8 7.83
6.6 142 37.2 54 28.9 7.59
6.8 139 36.4 56 28.1 7.38
7.0 136 35.6 58 274 7.20
7.2 133 34.8 60 26.7 7.01
74 131 34.1 62 26.1 6.85
7.6 128 33.5 64 25.5 6.69
7.8 126 33.0 66 24.9 6.54
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T L 1 T L T
68 24.3 6.38 l 440 7.58 1.987
70 23.8 6.24 460 7.44 1.955
72 23.3 6.11 480 7.31 1.920
74 22.9 6.01 500 7.19 1.889
76 22.4 5.88 600 6.72 1.768
78 22.0 5497 700 6.40 1.682
80 21.6 5.66 800 6.17 1.622
82 21.2 5.56 900 6.00 1.578
84 20.9 5.49 1000 5.89 1.545
86 20.5 5.38 1200 5.71 1.500
88 20.2 5.30 1400 5.61 1.475
90 19.8 5.20 1600 5e35 1.460
92 19.5 5.11 1800 5.51 1.450
94 19.2 5.04 2000 5.49 1.442
96 18.9 4.96 2200 549 1.441
98 18.7 4.91 2400 5.49 1.442
100 18.4 4.83 2600 5.50 1.446
120 16.2 4.25 2800 5.51 1.450
140 14.5 3.80 3000 5.53 1.453
160 13.3 3.49 3200 5.54 1.459
180 12.3 3.23 3400 5.56 1.461
200 11.5 3.02 3600 5.58 1.467
220 109 2.86 3800 5.60 1.471
240 10.3 2.70 4000 5.62 1.478
260 9.88 2.60 5000 572 1.502
280 9.48 2.49 6000 5.82 1.530
300 9.13 2.40 7000 5.91 1.552
320 8.83 2.32 8000 5.99 1.573
340 8.56 2.25 9000 6.06 1.592
360 8.32 2.18 10,000 6.13 1.610
380 8.11 2.13 20,000 6.59 1.730
400 7.91 2.08 30,000 6.86 1.803
420 7174 2.03

2 In this book particle energy-loss rates are measured in energy units per unit distance,
or energy units per unit areal density.
b7 is in Mev, ¢ in Mev/cm, and 7 in Mev gm~! cm?®.

was ‘found from measured particle ranges (B-T 58) by using the cal-
culated correction, and weighting most strongly the measurements for
which the correction was not important. In this way a mean ionization
potential, 7 = 331 4+ 6 ev, was found. For protons of energy above
40 Mev the computed rate of energy loss is consistent with these
experimental data. At somewhat lower velocities, where the detailed



