A.M. Baldin, V. I. Gol’danskii, I. L. Rozenthal

An authoritative and comprehensive treatment, of both classical
and quantum kinematics of nuclear reactions, for the experimental
nuclear physicist.

KINEMATICS
OF
NUCLEAR
REACTIONS

PERGAMON PRESS

Oxford [London New York Paris




KINEMATICS OF NUCLEAR
REACTIONS gives a compre-
hensive treatment of both clas-
sical and quantum kinematics of
nuclear reactions. The examples
include many cases of great
interest to workers in the fields of
nuclear reactions and elementary
particles.

Special features include details of
graphical construction methods
for kinematics of reactions, an
account of methods used for the
analysis of reactions at ultra high
energies, whilst there are appen-
dices containing graphs and nomo-
grams of kinematic relations for
many important reactions; and
also tables of Clebsch-Gordon,
Racah, X, Z and Zy coefficients
for important reactions.

The book is written specifically
with the research worker in ex-
perimental nuclear physics in
mind.

42s. net



KINEMATICS OF
NUCLEAR REACTIONS



PERGAMON PRESS LTD.,
Headington Hill Hall, Oxford.
4 and 5 Fitzroy Square, London W.1.

PERGAMON PRESS INC,,
122 East 55th Street, New York 22, N‘.Y'
P.0. Box 47715, Los Angeles, California.

PERGAMON PRESS S.A.R.L.
24 Rue des Ecoles, Paris Ve.

PERGAMON PRESS G.m.b.H.
Kaiserstrasse 75, Frankfurt-am-Main.

Copyright

©

1961
Pergamon Press Ltd.

A translation of the original volume
¢ Kinematika yadernykh reaitsii
Moscow, Fizmatgiz, 1959

Library of Congress Card No, 60-53551

Printed in Great Britain by
PERGAMON PRINTING & ART SERVICES LTD.,
LONDON

‘Preface

Preface

CHAPTER

B
DRy

.

CHAPTER

CONTENTS

to the English Edition

PART ONE
CLASSICAL THEORY

I; GENERAL PRINCIPLES OF RELATIVISTIC
KINEMATICS

Constants of Motion. Conservation Laws

Basic Co-ordinate Systems

Some Formulae of Relativistic Mechanics

Relativistic Transformations of Angles and
Momenta

Calculation of the 7y -coefficient of
Relativistic Transformations from the CM-
system to the L-system

II, EFFECTIVE CROSS-SECTIONS AND THEIR
TRANSFORMATION INDUCED BY CHANGE
OF THE CO-CRDINATE SYSTEM

Integral and Differential Cross-sections

Relativistic Transformations of Angular and
Momentum Distributions (Elements of Phase
Space)

III, KINEMATICS OF INTERACTIONS INVOLVING
TWO SECONDARY PARTICLES

Interaction in the General Relativistic Case

Basic Formulae for the Non-relativistic Case

Graphical Representation of Kinematic
Relationships

Decay into Two Particles

Relationship Between Angular and Energy Dis-

tribution of Secondary Particles in the
CM-system and L-system

Page
ix
xi

[« RN MR

11

13

13

14

23
23

40
59

69



PERGAMON PRESS LTD.,
Headington Hill Hall, Oxford.
4 and 5 Fitzroy Square, London W.1.

PERGAMON PRESS INC,,
122 East 55th Street, New York 22, N.‘Y.
P.O. Box 47715, Los Angeles, California.

PERGAMON PRESS S.A.R.L.
24 Rue des Ecoles, Paris V©.

PERGAMON PRESS G.m.b.H.
Kaiserstrasse 75, Frankfurt-am-Main.

Copyright
©

1961
Pergamon Press Ltd.

A translation of the original volume
‘¢ Kinematika yadernykh reartsii”
Moscow, Fizmatgiz, 1959

Library of Congress Card No, 60-53551

Printed in Great Britain by
PERGAMON PRINTING & ART SERVICES LTD.,
LONDON

Preface
Preface

CHAPTER

.

wn o
.

CHAPTER

CONTENTS

to the English Edition

FART ONE
CLASSICAL THEORY

I, GENERAL PRINCIPLES OF RELATIVISTIC
KINEMATICS

Constants of Motion, Conservation Laws

Basic Co-ordinate Systems

Some Formulae of Relativistic Mechanics

Relativistic Transformations of Angles and
Momenta

Calculation of the ¢ -coefficient of
Relativistic Transformations from the CM-
system to the L-system

II, EFFECTIVE CROSS-SECTIONS AND THEIR
TRANSFORMATION INDUCED BY CHANGE
OF THE CO-CRDINATE SYSTEM

Integral and Differential Cross-sections

Relativistic Transformations of Angular and
Momentum Distributions (Elements of Phase
Space)

III. KINEMATICS OF INTERACTIONS INVOLVING
TWO SECONDARY PARTICLES

Interaction in the General Relativistic Case

Basic Formulae for the Non-relativistic Case

Graphical Representation of Kinematic
Relationships

Decay into Two Particles

Relationship Between Angular and Energy Dis-

tribution of Secondary Particles in the
CM-system and L-system

Page
ix
xi

e xS ]

11

13

13

14

23
23

40
59

69



CHAPTER

13,
14,

CHAPTER

CHAPTER

18.
19,
20,
21,
22,
23.

CHAPTER

CHAPTER

26,

27.
28,

29.

CONTENTS

Iv, INTERACTIONS INVOLVING THREE SECONDARY
PARTICLES

Limiting Relationships
Energy Spectra of Secondary Particles

V. MULTIPLE PROCESSES

Limiting Relationships

Angular and Energy Distributions for Multiple
Processes

Determination of the Energy of Fast Nucleons

PART TWO

QUANTUM THEORY

Vikis THE SCATTERING MATRIX AND ITS PROPERTIES

The S-matrix

Unitarity of the S-matrix

Constants of Motion

Time Reversal

Transformation Functions

Relationship between S-matrix and Effective
Cross-section

APPLICATIONS OF THE GENERAL THEORY OF
THE S-MATRIX

VII

Relationship between Effective Cross-section
of Elastic and Inelastic Processes

Relationship between Effective Cross-section
of Direct and Inverse Reactions

VIII. COLLISION OF PARTICLES POSSESSING SPIN

Statement of the Problem, Examples,
Determination of the Parameters of the
S-matrix

Vector Addition Coefficients

Some Examples

The Coefficients W, X, Zand Z,

vi

Page

T8

78
83

87
87

93
101

111
111
114
116
118
124

127

132

132
141

144

144
150
154
158

CONTENTS

CHAPTER VIII (contd.) Page
30, Angular Distributions in Nuclear Reactions
(Cases when the Particles have Non-vanishing

Rest Mass) 165
CHAPTER IX, POLARIZATION OF PARTICLES IN NUCLEAR
REACTIONS 172
31, General Formulae 172
32, Fundamental Laws Related to Polarization in
Nuclear Reactions 177
CHAPTER X, REACTIONS INVOLVING PHOTONS 180
33, General Formulae 180
34, Relationship Between Photoproduction Processes,
Scattering of =-mesons and the Compton
Effect by a Nucleon 188
Appendix I (To Part One) 195
Appendix II (To Part Two) 224
References 299

vii



PREFACE TO THE ENGLISH EDITION

We have pleasure in accepting the Publisher's invitation
to write a short preface to the English edition of our
book,

A number of years have passed since we finished the main
part of our work on the manuscript, Many new and interest-
ing papers on nuclear physics and the physics of elementary
particles have appeared in this period, Various kinematic
relations have been used in these papers, sometimes in new
forms, It is natural therefore that we should look at our
book with different eyes, 'from the outside' as it were.
There are many things with which we are not longer satis-
fied; we should like to discuss certain topics more fully
and treat others differently. Perhaps this is the usual
fate of all authors,

We should like to hope, however, that our book will
attract the attention of readers outside the Soviet Union
and be of some use to them, We shall be grateful to all
who send in their comments and criticism and shall try to
take them into consideration in future.

A M, Baldin
V.I. Gol'danskii
I.L. Rozenthal

Lebedev Institute of Physics

Leningrad Prospekt 53
Moscow V=312,
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PREFACE

The book which is here brought to the reader's attention
is entitled 'Kinematics of Nuclear Reactioas', By kinema-
tics an assemblage of relationships based on the Laws of
Conservation, which result from the properties of symmetry
of space-time in their classical and quantum form,is under-
stood,

The book consists of two parts, With the two introduc-
tory chapters at the commencement of the first part, the
reader is reminded briefly of some of the basic charac-
teristics of motion at relativistic velocities, and also
accounts are given of statements of the utmost importance
concerning relativistic transformations. Two extensively
used systems of co-ordinates - the laboratory system and a
system associated with centre of mass are defined here, and
formulae are given for transformation from one of these
systems into the other.,

Subsequent chapters of the first part are devoted to
the classical kinematics of interactions (collisions and
decays) involving two, three or more secondary particles.
If only two particles are present in the final state, a
perfectly definite relationship exists between their di-
rections of motion and also between the directio: of motion
of a particle and its energy. Functions characteristic of
such a relationship are presented in analytical as well as
graphical form. Particular cases of non-relativistic inter-
actions and transformations with photon participation are
considered separately. If in the final state three or more
particles are formed, the relationship between their direc-
tions of motion and their energies is not well-defined, and
in these cases one is confined to the evaluation of wvarious
limiting relationships., Analysis of the angular and energy
transformations of multiple processes is derived using
Fermi's Statistical Theory. To justify the inclusion of
this section in a book on kinematics, it is pointed out
that in Fermi's primary concept, the angular and energy
distributions of multiple processes are based on the Laws

xi



PREFACE

of Conservation of Energy and Momentum.

The second part of the book is devoted to quantum-mechani-
cal analysis of the kinematics of nuclear reactions.

In this part, the scattering matrix (S-matrix), a funda-
mental concept which is widely used in the interpretation of
nuclear interactions, is analysed and its properties are
discussed. The S-matrix and Dirac's theory of transfor-
mation are used to give an account of the properties of the
cross-sections of nuclear reactions which are associated
with the Laws of Conservation. The application of Dirac's
theory of transformation permits a simple introduction -
without the use of group theory - to the various vector
addition coefficients used in theories of nuclear reactions
(Clebsch-Gordon coefficients, Racah coefficients, Z-coef-
ficients, X-coefficients).

We have allotted a relatively large space to the consider-
ation of time reversal in quantum mechanics (Section 21).
This is because the majority of works on the general theory
of the S-matrix contains a number of inaccuracies, associ-
ated with an incomplete consideration of this problem.

These inaccuracies are so prevalent that it is now necessary
to give a thorough restatement of the problem, in order to
avoid misunderstandings arising from the use of formulae
available in the literature.

The specially important case of nuclear reactions which
involve photons is discussed separately.

The second section of the book is confined to the discus-
sion of strictly nuclear reactions. Problems of the decay
of particles (e.g. problems of correlation as a result of
decay) and reactions with polarized particles are not in-
cluded here (only questions concerning the initial polariz-
ation of particles are considered, and the fundamental re-
lationships involved)., To give an account of the problems
omitted, it would be necessary to enlarge considerably the
scope of the mathematical presentations, and this would sub-
stantially increase the size and complexity of this book,
which is intended primarily for experimentalists.

We did not, by any means, intend writing a handbook of
nuclear reactions, but we have none the less included a
number of tables, graphs, numerical data and examples.

xii
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Thus, in Appendix I, graphs are given for the relationships
between angles and energy for certain widely investigated
interactions involving light nuclei or elementary particles.
In Appendix II, tables of values of the Clebsch-Gordon and
Racah coefficients, and also numerical tables of Z, Z, and
X-coefficients are given.

The first part of the boock has been written by V. I.
Gol'danskii and I. L. Rozenthal, and the second part by
A M. Baldin,

Mention should be made of the valuable contribution of
V. A, Petrun'kin and A, I. Lebedev in the compilation of
Appendix II. They collated and worked out the tables of
W, z, X and Z, coefficients.

We realise perfectly well that in this book, which is a
first attempt to give a systematic treatment of the kine-
matics of nuclear reactions, there will be many omissions
and shortcomings. We would like to thank in advance read-
ers who take the trouble to become acquainted with this book,
and who send us any comments arising from reading the book.

In conclusion the authors would like to express their
gratitude to V.B, Berestetskii and G.I. Kopylov for having
made a number of valuable comments.

A M. Baldin
V.I. Gol'danskii
I.L. Rozenthal
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CLASSICAL THEORY



CEHAPTER I

GENERAL PRINCIPLES OF RELATIVISTIC KINEMATICS

Section 1. Constants of Motion. Conservation Laws

As is well-known from classical mechanics, a system of N
particles in the case when their spatial structure is neg-
lected (i.e. when the particles are considered as material
points), can be described by means of 3N differential
equations, corresponding to 6 N constants of motion,i.e.
to quantities which are conserved under the changes taking
place within the system. The total number of constants of
motion, of course, is fixed by the circumstance that for any
instant of time the system is defined by the 3N co-ordinates
and 3N momenta of the particles (see for example [1]). Not

all of the 6 N constants of motion are independent*. Let
us consider an isolated system, i.e. a system which is not
subjected to the action of external forces**. Such a sys-

tem has ten constants of motion, which correspond to physical
quantities, which are unchanged by any arbitrary interaction
between the particles of the system during the time of mo-
tion. These quantities can be measured, at least in prin-
ciple, by experiment within the framework of classical mech-
anics., The 10 constants of motion can be represented, in
the following manrer: 10 = 4 + 3.2, The figure 4 corres-
ponds to the Law of Conservation of energy-momentum, which,
in relativistic mechanics forms a single four-dimensional
vector. These four quantities (the energy and the three
components of momentum) are, in the given case, constants

of motion, The six remaining constants of motion arise
from paired combinations of four axes (three spatial and one

*A more exact number for the independent constants of motion
is equal to 6N =1,

*#Although such an approach is also somewhat abstract, it
nevertheless gives an excellent approximation in all cases
of interest to us.



4 KINEMATICS OF NUCLEAR REACTIONS

of time). The three quentities obtained by combination of
only the spatial axes, correspond to the normal angular
momenta, which are constants of motion. The three other
quantities, obtained by combination of the time axis and each
of the spatial axes, express the rectilinearity and uniformity
of the motion of the centre of mass of the system. In New-
tonian mechanics the latter statement is a consequence of the
Law of Conservation of Momentum,

We shall now dwell upon the important case of the collision
of two particles. We shall choose as one of the co-ordinate
planes the horizontal plane passing through the trajectory of
both particles before collison. In this case, four constants
of motion vanish identically (two components of the angular
momentum, one component of the momentum, and the velocity of
motion of the centre of mass). Thus there remain six, which
are essentially of different rights. Actually, as we shall
see, the velocity of the system of co-ordinates associated
with the centre of mass,is wholly determined by the energies
and momenta of the colliding particles, and therefore the
remaining constants of motion are not independent.

We have limited our discussion to the realm of classical
mechanics., This limitation is reasonable for the cases when
one considers energy or momentum. However, for the analysis
of the quantities associated with angular momenta, quantum
mechanical treatment becomes essential., While energies and
momenta of elementary particles can be added up classically,
their angular momenta are added in accordance with the princi-
ples of quantum mechanics. -Since in the first five chapters
ws shall employ classical concepts, we shall be concerned
with energy and momentum. Certain conclusions drawn from
an analysis of the conservation of angular momentum will be
discussed in the second part of the book,

Section 2. Basic Co-ordinate Systems

Although from the point of view of relativistic mechanics
all co-ordinate systems are of equal right, for practical
purposes, however, two systems are of particular importance:
the laboratory system and the centre of mass system. The
laboratory system (L-system) is tied to the earth, as is
the observer, consequently all direct observation is in the
laboratory system, so it is convenient to use it for report-
ing experimental results. If we are interested in the pro-

GENERAL PRINCIPLES OF RELATIVISTIC KINEMATICS 5

cess of collision of two particles, then we shall assume
that one of them, which we shall denote by the index II, is
at rest in the laboratory system, i.e. it has a momen;um
py=0 (and in the particular case of disintegration of a
moving particle I, m, is also equal to 0), In passing, we
note that this condition is characteristic of processes’in
which there are one or two particles in the initial state,

The other important system of co-ordinates is tied to the
centre of mass of a system of interacting particles, which
in this system is at rest (CM-system)., This system is con-
venient in that in it disintegration and collision processes
for two particles have the maximum degree of symmetry. Thus
for example if there are no polarization effects, the dis-
integration of one particle into two others is characterized
by a spherically symmetrical distribution of the secondary
particles, The existence of polarization makes the symmetry
axial. In the collision of two identical particles in the
CM-system, in addition to the trivial axis of symmetry coin-
cident with the relative direction of motion of both parti-
cles, there is also a plane of symmetry perpendicular to
this direction and passing through the point at which the
collision occurred.

For.the collision of two unequal particles, there is only
an axis of symmetry, but it is possible in general to draw
certain conclusions concerning the distribution of the parti-
cles relative to a reference plane. We shall show that
?elativistic transformations of quantities from the CM-system
into the L-system and vice versa have a particularly simple
form compared with transformations into another system
(Section 5). We shall mention other special features of
t?e CM-system., Basically its property (in fact the defini-
tion of the CM-system) consists in that the total momentum
of all interacting particles in this system is equal to zero:

=

pi=0. (2.1)

1

Consequently, the directions of motion of two interacting
particles in the CM-system always make an angle of 180° :

U +4,=r, i.e, they move directly towards one another before
the collision and fly apart in opposite directions after the
collision. Because of this, the elements of the solid
angles ?or both interacting particles in the CM-system are
always identical (i.e. |dcos$[==|dcos§ﬂ ), and their angular
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distributions are not changed by interchange with the direc-
tion of motion of the other particle, which considerably
simplifies the interpretation of results. We shall note
further that the interaction of the particles is determined
by the magnitude of the energies of their relative motion,
regardless of the fact that the energy of motion of each of
the particles is relative to the observer. Consequently,
the energy which can be liberated in nuclear transformation,
is given by the total energies of the particles in the CM-
system but not in any other. The use of values for the
energies of the particles in the CM-system considerably
facilitates, in particular, the calculation of the energy
thresholds of endothermic nuclear transformations, in which
the sum of the masses of the secondary particles exceeds the
sum of the masses of the incident particles.

Section 3., Some Formulae of Relativistic Mechanics

We shall consider briefly certain consequences of the
theory of relativity (see, for example [2]). In non-relati-
vistic mechanics the fundamental quantities are three-dimen-
sional vectors (e.g., momentum, force etc), The theory of
relativity relates space and time in a single four-dimen-
sional continuum, in which the fundamental quantities no
longer form three-dimensional but four-dimensional vectors.
Thus the length of these vectors will be invariant against
rotations of the four-dimensional co-ordinate system. We
shall consider in this book only this transformation.

We shall designate the constant velocity of motion of one
of the systems of co-ordinates relative to the other by V
and we shall assume for simplicity that its direction coin-
cides with the axes x, and x, of both systems. Let a four-
dimensional vector p be given in both systems, with compon-
ents Pztr Pyt Pat and fut (system l) and Pa2r Pyar Pzzv P2 (syStem 2)'
In the case we are discussing, the spatial components of the
vector p along the axes y and z will not be changed as a
result of a transformation from one system to the other,i.e.

Py ==Py2 ol = (a2 (3.1)

Then, from the condition of invariance of the length of the
four-dimensional vector, it follows that

Pt 2 o 2= g P o % (3.2)

GENERAL PRINCIPLES OF' RELATIVISTIC KINEMATICS T
The most general linear transformation comnecting the co-
ordinates pg., P P 8nd py may be written in the form
Pr2==80p1 0Py, P = pr+dpp. (3.3)
where a, b, ¢, d are constants.

Substituting (3.3) in (3.2) and comparing coefficients
with respect to identical powers of g, and p, , we obtain

a=d, (3.4)
b=—c, (3.5)
b=ﬁ%ﬁ' (3.6)
d=ﬁ, (3.7)
where
a="2. (5.8)

In the derivation of (3.4) - (3.8) we have used equation
(3.3) for p,;=0. The quantity A has & simple physical
meaning which we shall now consider.

Let us consider two four-dimensional vectors, which we
will use frequently: the space-time vector (x,y,z if) and
the energy-momentum vectur (P py. p. iE) *.

Substituting the values of the components of these vectors
in (3.8) we obtain

A=g=—1V, (3.9)

Rlx
il

where V is the velocity of the first system relative to the
second system. Hence,

pre =7 (pza — iVpp), ] (3 .10 )
o =T (a1 — Vpz1)

or
Prz=1 (p.zl + Elv)n }

Ey=1(Ei+paV). (3-11)

*Here and henceforth we assume the velocity of light ¢ = 1.
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where the so-called coefficient of relativistic transforma-
tion is

T=yi=m (3.12)

Let one of the co-ordinate systems be associated with a free
particle. Then (3.8) can be rewritten for it in the follow-
ing formt

A=—i3=—iZ2, (3.13)

where 3 is the velocity of motion of the particle in the
co-ordinate system considered by us, p and E are here, in
the following , the momentum total energy of the particle.
Consequently

1=2. (3.14)

From the condition of invariance of the square of the modulus
of the four-dimensional vector of energy-momentum, we obtain
B — p=1Inv. (3.15)

Combining with (3.14) we find

Inv

E=res (3.16)
Let us consider the case where 3« | ; then
E—lnv. (1 ~f-§-) (3.17)

In order to determine the constant entering in (5.17), we
demand that this equation should go over into the correct

expression E::ﬂ;g.for the kinetic energy in Newtonian mech-
anics.
Since, in this case, the energy is accurately defined up
to an unessential constant, we have
Inv=m, (5-18)

GENERAL PRINCIPLES OF RELATIVISTIC KINEMATICS 9

If the particle is at rest, then it immediately follows that
E=nm. (3.20)

The circumstance that energy and momentum are components

of a single four-dimensional vector, changes the formulation
of the Conservation Law as compared with its classical non-
relativistic form*. While in classical mechanics the Con-
servation Laws of energy and momentum emerge as two independ-
ent laws, the theory of relativity combines them in the Con-
servation Law of & four-dimensional vector of energy-momen-
tum. This in turn leads to a most important conclusion con-
cerning the invariance of its absolute value [Equation

(3.15) 1.

Section 4. Relativistic Transformation of Angles and
Momenta

In this paragraph we shall consider two problems, the
solution of which will be used frequently in future.

1. Let system / move along the axis x with a velocity Vv
relative to system 2., In system | the particle moves with
a velocity B, at an angle 9, to the axis x., It is required
to determine the angle §, between the direction of motion of
the particle and the x axis in system 2.

Let the velocity 8, lie in the plane xy . Assuming that
dx,dy,dz, idt form vectors, and taking into account (5.10),
it is easy to obtain

— B.rl+v ___1_ Bl =t ss
=13y = Trhy Pe=Pa=0
Since tgfh:%“_‘ and tg&,x:;—z then
ol
gy =Ltk (4.1)

T cos 4+ ¥,
P

*Strictly speaking, the vector nature of energy-momentum
holds good for a system of non-interacting particles (or
in cases, considered by us later on, when the particles
are very remote from each other (see for example [3] ).
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Let us consider the important particular case when
Vv

, |4
ﬁ"‘-’l, ;1-.{-{:05'31}1——?. (4.2)
From (4.1) we obtain
g~ % tg —021 (4.3)
If 11 , then
1 8
.:"""-9":‘— tg—z— . (4 -4)

We observe also that by using (3.14), equation (4.1) can be

written in the form

1 Py 5in8y

tpdy=— — e,

8% =7 Picos b+ VE (4.5)
2. Let now, in place of the velocity of the particle, its

energy E in system | be fixed. It is required to determine

how the magnitude of E is changed by transformation from

system ] to system 2., The remaining conditions stay as

before,

If the particle moves perpendicularly to the direction of
Vs then in consequence of the invariance of the transverse
components of the momentum

pysindy = p,sind,

the energy, on conversion from one system to the other, is
not changed. If the particle is moving at an angle to the
direction of V, then we resolve its momentum into two com-
ponents: perpendicular to and parallel to V. The first
component is unchanged by the transformation, the second one
is transformed in accordance with (3.11).

Ey=1(E\+pVcosh). (4.6

Using (3.15) and (3.18), it is easy to obtain

m=1 '/-(El—}—p,Vcosll,)z-—T—:. (4.7)

GENERAL PRINCIPLES OF RELATIVISTIC KINEMATICS 11

Section 5. Calculation of the y-coefficient of
Relativistic Transformations from the CM-system

to the L-system

For the L- and CM-systems, the coefficient of relativistic
transformation, in the cases of interest to us, is particu-
larly simply expressed in terms of the most important charac-
teristic of the processes - the total energy of the system.

In the case of disintegration of a single particle I
P (5.1)
We shall consider the collision of two particles. As
already mentioned, it is generally assumed in this case that
one of the particles (mass my) in the L-system is at rest.
Then the velocity of this particle in the CM-system coincides

with V the velocity of motion of the CM-system relative to
the L-system. Hence one can write

En (5.2)

It is sometimes convenient to express the coefficient T in
terms of the energy of the moving particle in the L-system.
For this we shall use the equation for the momenta of two
interacting particles in the CM-system

~ ~

P1= pyu-
Hence we obtain
E‘fl=ﬁ—m?_+_mfl (5-3)
and
m 2 :
(BTt ) = ma— 1) (5.4)

Solving this equation for 7 we find,
E+myy
i i Fl 3"
V2 (& +my) moct m — miy
We shall establish a further relationship between the wvalues

of the energy of the colliding particles in both systems.
Combining (3.11), (5.2) and (5.3) we obtain

(5.5)
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B Eitmpngg
VaE g+ mf— (5.6)

Expressions (5.5) and (5.6) assume & particularly simple form
in certain special cases. If nip==my , then

E+m,
[2 ‘ET:;]—“-;. (5 .7)
.EI-_"]/'(EL;‘Q"’;I__ (5.8)

If in eddition, y>»1 (which is equivalent to the conditions
that £ > m), then

~1/ b (5.9)
2my’
B~ @ (5.10)

CHAPTER 1II

EFFECTIVE CROSS SECTIONS AND THEIR TRANSFORMATION INDUCED
BY CHANGE OF THE CO-ORDINATE SYSTEM

Section 6. Integral and Differential Cross-sections

In the study of nuclear interactions there are extremely
widespread problems, which may be formulated in the follow-
ing mannert a given flux ; of bombarding particles I pene-
trates a certain area in which a target particle or nucleus
IT is at rest; As a result of this, there is some proba-

bility %% that in unit time the transformation 14-11— 17142

occurs, there is also some probability that when this trans-
formation occurs particle 7 (or 2)acquires a momentum lying
within the interval p, p+tap , i.e. it emerges within the
interval between the angles 9, %-4-4d9% to the direction of
motion of the bombarding particle I. It is obvious that
the probability of transformation in unit time is propor-

tional to the flux 'j of the bombarding particles: %?::aj ”

The coefficient of proportionality ¢, having the dimension
of area Ecmz), is called the coefficient of effective cross-
section (or simply the cross-section) of the interaction
under consideration. It is customary to distinguish cross-
sections by integral and differential. Integral cross-
sections characterize the total probability of any transform-
ation without relation to the direction of the emerging
particle., We shall denote them by the symbol o+ *, Dif-
ferential cross-sections characterize the probability of the
same transformation, but for specific angles of scattering
of the secondary particles. Differential cross-sections
are customarily denoted by the symbol ds(d). It is obvious

*In nuclear physics, the unit of cross-section is the "barn",
equal to 107%%m? ,

13
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that

fd:(&):fa(&)dc058=_-=. (6.1)
o (1]

We note that the cross-section, defined in this manner,
is relativistically invariant, so long as it is expressed
through a three-dimensional flux and area, We shall con-
sider in this book only those interactions in which there
are two particles in the initial state, and shall derive onl;
transformations between the L-system, in which one of the
primary particles was at rest, and the CM-system. In this
case the cross-section is invariant. If in the initial
state there are more than two particles, or if conversion is
effected to a system of co-ordinates moving at an angle to
the direction of the rélative motion of the particles, the
invariant cross-section should be expressed through a four-
dimensional quantity (e.g. a four-dimensional flux).

Section 7. Relativistic Transformation of Angular and
Momentum Distributions (Elements of Phase Space)

In the theory of elementary particles and their collision,
the following problem is encountered. Let the angular and
momentum (or energy) distribution of the particles in one of
the systems of co-ordinates be given by the function

ny (py, cos¥y) dp,d cos B, dg, ¥)
whereupon

f f nydpyd cos hydg, =N,

where N is the total number of particles of a specific kind
in the system in the final state.

It is required to determine the corresponding function

y (g, cos Uy) dpod cos By dep,

*The introduction of m in such a form is convenient in
that the solid angle dependence is given immediately, the
element of solid angle being equal to sinddé .
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in the other system of co-ordinates. It is obvious that
the problem is completely equivalent to the solution of the
following problem: let the differential cross-section be
given in the form

ds =%’”‘ (py, cos ) dp,dcosd, dgy; (7.1)

It is necessary to find an expression for the transformed
differential cross-section, which in this case is determine.
(with an accuracy up to an approximately constant factor)
by the nature of the transformation of the function n, .
The transformation from n, to n, is the same as the trans-
formation from the system of the variables p, #, to py %,
which is effected, as already mentioned, by means of the
Jacobian

dpy dcos ¥y dpy Odcosh (7 2)

J:Tp',_accs %, Ocosdy Ops

Thus, as a result of conversion from one system of co-ordi-
nates to the other, the angular and momentum distributions
are transformed in the following manner:

ny (py, cosd,)dp,dcostde,= M [P;. (pa, cosdy);cos (P2, cos&,)g-
Jdpyd cos Yy dey. = ny(pp cosBy) dped cos Dy des. (7.3)
Using (4.5), (4.7) and the equation dg,=—=d¢, , it is pos-
sible to obtain
2 2(E,—p Veos &)
Jmg BB —pVcosty = —2OTPT R e
PiE, TE.;[(E-_;—-_O,V:DS&-:)‘--T—!]

(7+4)

A particularly simple Jacobian is expressed in the energy
representation when the quantities E and cos$ are used.
For evaluation of the Jacobian J in this case, we make use

dp,d
of the invariant quantity _p”_‘g_’& * and we express the

element of the phase volume in the form
dp,dp,dp, = p*dpd cos Bdy. (7.5)

Since the number of particles in the specified element of

*Proof of the invariance is obtained readily by simple cal-
culation (See for example [1, 2] ).
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the phase volume is invariant, then

ny (Ey cos 9,) pldp,d cos 9, _ M [51(52' cos B,)acos 8 (Eycos 82)] Pidp,d cos §,

E, E,
(7.6)

from whence it follows

2
E
=23

7E,* (7.7)

In the system of co-ordinates (p,, 8,) , the area which
encloses the values p,, § for any given process, is defined
by the curves

Pt g = @y (3y) (7.8)

P gt = P2 (%)), (7.9)

where @, ®, are certain functions defined by physical pro-
cesses and Conservation laws. Thus, for reactions in which
there are three or more particles in the final state, the
momenta of the secondaries can assume any value from 0 to
Pray 3 determined by the magnitude of the masses of the sec-
ondary particles. For reactions involving only two second-
ary particles, the momenta in the CM-sysE_eni assume definite
values, depending only on the values of E, my, m, (For more-
detail concerning this, see the following section).

Substituting in (7.8) and (7.9) the values of the quantit-
ies §, and p, , determined in accordance with (4,1) and
(4.7), we obtain the following equations for the curves
wnich define the limits of variation of the co-ordinates

P B, 2

1 s 8
1V Ea— Voot — % =, [actg L s —yE)] (7.10)

T 1 in &
T V(Ez—p2Vcos 32)2—%3 @s[arctg?(hcilé:‘__—’v—z—;)]. (7.11)

Equations (7.10) and (7.11) are considerably simplified
in practice. Thus for example, for disintegration @,=

P mex =const j in the case of disintegration into two particles
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&, =¢,; for disintegration into three particles ®,=0.

In these cases the curve corresponding to (7.10) is described
by an equation of the second order. Examination shows that
this curve is at all times an ellipse. Thus, if in the
co-ordinate system (p,, §,) the curve enclosing a certain area
is a circle, then transformation into a system of co-ordi-
nates (p,, §,) converts it into an ellipse*.

Solving equation (7.10) with respect to p, Tor the case
Dy =p) pax 3 W€ Obtain

__EVeos 8,V m* PV cos? 8, — m*? + E: (7.12)
2 (1 — V2cos2 i) :

The sign in front of the radical in formula (7.12) is chosen
in the following manner:

1) If the expression under the radical is always positive,
then the sign + should be chosen, Actually, in the case
considered, for a change of momentum from 0 to p, .., the
sign before the radical is unchanged, since the function
should be constant. Hence in every momentum interval the
sign should be either + or -. But since there are at all
times positive values of p, (e.g. for §,=0), then in the
case considered the sign + should be chosen for every inter-
val (0—p ) « Thusy the first criterion for choice of
the sign is the positive definiteness of the expression

D (%) = m>y2V2 cos? B, — m2y? 4 EZ. (7.13)

It is easy to show that D(¥,)>01f g >v , i.e. the ve-
locity of the particle in system / is greater than the ve-
locity V of the transformed system relative to system 2,
Consequently, if the velocity of the particle 8, >V , then
at all times the sign + is chosen.

2) If By <V , then for a certain value $,=1, .. D(},)=0,
and it is necessary to take into account both signs. For

*Examination of the ellipse for the case of elastic colli-
sion has been carried out in [2]; general cases are ana-
lysed by Bleton [4]. The general principles of construc-
tion of such ellipses and a number of examples will be dis-
cussed in Section 10,
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8,> %, * we have D(d,) < 0(the angle 29,

. includes the
ellipse given by equation {7.10)).

A

From the condition that D(%, . )=0 , we obtain

T—ve

_:_';_w' (7.14)

sin “}2 max ——

Figure 1 represents a diagram of the Lorentz transformation
of the circle p,=const for the case B, >V . Between the
radius-vectors of the circle and the ellipse there is a
simple relationship. The ellipse has been computed accord-
ing to formula (7.12) for the following values cf the para-
meters: m=1; E;=3;V=0.9.

It is convenient to use the method of transformation des-
cribed to obtain the angular and energy functions in the
L-system (see Section 13).

Fig. 1

Transformation pidi—=pads Bi>V; E=3 V=09,

*The limit on the angle 6, for the condition j <V reflects
the fact that in this case the particles in the L-system
only move in the forward direction.
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Another form of analysis has been investigated by Bradt,
Kaplon and Peters [5], using a compound system of co-ordi-
nates (p,, 8,)«

In order to calculate the Jacobian in this case, we use
formula (4.5) from which it follows that

—EVegy, +V i [pi— VIE| P 1§ Y,
pi[rtgrda 4 1] *

(7.15)

cosd, =

The sign in formula (7.15) is chosen by considerations simi-
lar to those presented earlier:

1. If the expression under the radical is always positive
then the positive sign (+) should be chosen for every inter-
val of the angle 9, (from 0 to = ).

The criterion for choice of the sign is the positive de-
finiteness of the expression

f () =Pt 412 tg2 ¥, [ pt — V2E2), (7.16)
which also occurs for the condition B, >V.

2. If B<V , the maximum permissible angle ¥,,,, is at
all times = . From continuity considerations it follows
that within the intervals 0<® <9 ,, and &, <Hh <= (81 =iy
is the angle corresponding to agm), it is necessary to
choose a constant sign before the radical. Since cosd# >0
for the value §=0 , then within every interval for 0<#,
> ¥ puthe sign + should be chosen; by analagy, within the
interval ¥, , <% <= the sign - is chosen.

From the condition that f[#,(},))=0 , one can write
2
008 By g o= — b (7.17)
In system 2 the angle §, , is determined by formula (7 Jd4).
Thus, if §, <V and § <%, » the sign + is chosen, and

for ®, >4, the sign - is chosen,

From (7.15) it is possible to calculate J,:‘;zgz ::

P = const
3 . . 2
i 2 VE £V P+ 1e* 8, (0} — V2E})] (7.18)
1= P T e 3
pyeos® 8, (v tg* 9, -+ 1) Vpi + 1 1g* 8, (P — VEE)
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the sign + is chosen if B>V, or if B, <V and 0 <, < By, 3
the sign is - if <V and 8, <d <rms

Figure 2a represents the transformation of the area bounded,
in system I, by the equations p, . =const; p,,,=0for the case
h>V.

Fig. 2a Fig. 2b
Transformation py, §;-»py, 8; ¢ Transformation p), §;—>py, 9 ¢
B>V Ej=3, V=0 B<V; =2V =09

Naturally, since the momentum is not transformed, then the
circle p,..=const « is not changed. For small momenta
however, in accordance with formula (7.14) prohibited areas
appear, The cross-hatched area corresponds to the permis-
sible values of the momenta and angles in system 2.
Figure 2b shows the transformation of the same area for the
condition f, <V . The scale and magnitude of the para-
meters in both diagrams are identical.

In this case, if the momentum in system | has a strictly
defined value Ee.g. as a result of disintegration into two
particles) then for B, <V the circle p,  =—const. is trans-
formed into an arc.

In isolated cases, in order to obtain the momentum dis-
tribution, it is convenient to use the system (p, 9,). Thus,
in order to obtain the Jacobian J, corresponding to trans-
formation from the system (p,. 9, , into system (p, 9,) , it is
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necessary to evaluate the explicit expression for p(p, ).

Using formula (7.12) we obtain

n="2| = Py ! oo Ry
P Ol T T VI | iy, Vi

(7.19)

The limits of the variable quantities p,(},) are easily
determined from the equations

T b
pZmIn:T]/(Elmln+plmfnvcos‘r}| 4 _%' (7‘20)

= eonat

1
szuﬁTV(E[M',+P1mnxVCOSﬂl}2 __”_':':_. (7'21)

The values of p,,, 8nd Py m take on a particularly simple
form in the case which is of interest to us, when py =0

P\ max = CONSL »

The transformation of the area bounded by the circle re-
sulting from the conversion(p, §)—»(p, ¥,) is presented dia-
grammatically in Figure 3.

Fig. 3
Transformation p1,8—=>py, 8 L =3 V=09

It is necessary to emphasise, that in the extreme relati-
vistic case, the basic presentations of the above formulae
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for evaluation of the Jacobians are substantially simplified.
If p,>m, 1>>1, then

J=

Pa
{(Es—paVcos 0) (7.22)

For the complementary conditions

l—c0502>>v%:,
- (7.23)

1(1— Vcos #) °

If 1>>1 and 3,1, then

J=

— Vyttg2 .41
s :g,‘i H (7.24)

cos by ~

and
2 (V]2

e T N Tt ey (7.25)

If D;g:%-, is complementary, then

cos 2 1 — 2292 (7.26)
and
At (1 — 9. (7.27)
If p,>m , then
1
A vy (7.28)

In conclusion of this chapter, it should be noted that
all the relationships deduced in it are applicable for trans-
formation of angles and momenta for any two systems of co-
ordinates. In the case when conversion from the CM-system
to the L-system is considered, however, the formulae are
considerably simplified, since in this case the transform-
ation coefficient | can be expressed in terms of the most
important characteristic of the process - the energy of the
primary particle (See Section 5),

CEHAPTER III

KINEMATICS OF INTERACTIONS INVOLVING TWO
SECONDARY PARTICLES

Section 8. Interaction in the General Relativistic Case

The most prevalent reactions in laboratory practice are
nuclear interactions involving two secondary particles.
Such interactions include elastic and inelastic scattering,
and the vast majority of nuclear reactions in the range of
energies up to several hundred MeV, A number of transform-
ations involving two elementary particles - mesons, hyperons,
nucleons and antinucleons have been studied in recent years
- (esge K"+ p—Et+n-, p+p—n+7 ete), brought about by
cosmic rays and ultra-high energy accelerators.

Nuclear interactions involving three secondary particles
include, at low energies, the creation of the pair e-, e+
and @ -decay (the third particle participating in each pro-
cess is a recoil nucleus). At high energies, interactions
with formation of a large number of particles become more
probable. As is well-known, at ultra-high energies nuclear
processes are observed in which tens of elementary particles
are sometimes formed.

The problem of the kinematic analysis of nuclear inter-
actions from the laws of conservation of energy and momentum
in the first place, concerns the determination (for given
masses and energies of the interacting particles) of the
relationship between the directions of motion of the various
reaction products and between the direction of motion and
energy of each one of them. A comparison of the data, cal-
culated and found by experiment, concerning the relationship
between the directions of motion and the energies of the
products of nuclear interactions, assists their accurate
identification, thereby assisting in making a correct choice

23
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between the various possible mechanisms of interaction.

Frequently, another problem connected with the kinematics
of nuclear reacticns emerges - the problem of conversion of
the directions of motion, energies of the particles and the
effective cross-sections of the processes from the L-system
into the CM-system, for which the theoretical formulae for
the distributions are usually derived. Sometimes the re-
verse problem is set - conversion from the CM-system into
the L-system. Both these problems can be solved completely
only in the case where two secondary particles are involved
in the process under consideration., With the participation
of three or a larger number of particles, it is only pos-
sible, as indicated below, to obtain certain limiting rela-
tionships associated with various supplementary assumptions.
These limiting cases are, in point of fact, different vari-
ants of the substitution of a one-act formation of many
particles by several acts, in each one of which up to two
particles is formed.

Thus, nuclear interactions involving two secondary parti-
cles, to which this chapter is devoted, are not only the
most common and widespread but are applied also in calcula-
tions on processes of other types.

m;
NG
m Y/ i Y My
(] ¥ = L4
7
My
L-system CM-system

Fig. 4
The reaction 1-4ll—/-}2 in the L- and CM-systems

We shall now consider a nuclear interaction of the type:
[411— 742 (See Figure 4)*.
*Here, and henceforth the indices / and 2 relate to the end

products of the reactions, and not to the systems of co-
ordinates, as previously.
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As usual we shall assume that in the L-system only one of
the interacting particles is moving (I), and the target
particle (II) is at rest. Then the relativistic expressions
for the Laws of conservation of energy and momentum will take
the form:

Ey+my=E,+E,=Ey, (8.1)
pr==i* cos &, 4 p,cos b, (8.2)
0=p;sind, — p,sin,, (8.3)

where Fp is the total energy of the particles, Hence we
obtain the following relationship between the directions of
motion and the momenta of particles | and 2;

ol AEqtpjeos 8, VA —an? (E%— pj cos*8,)

8.
2( E3— pj cos* d,) : &4)

E,

& _Az.{.-‘.r:tp]COSGZVA§—4RQ(EL_F§€05232) (8.4")
e 2( Efr— P} cos®8,) K

where
A = Ex— pi+mi—my= My + 2mWy +-mi —m},  (8.5)
Ay=Ex— pi+mi — mi = My4-2mqW, 4-mi —n?,  (8.5')
W, is the kinetic energy of particle I.
The total rest mass of the system in the initial state is
My= my +my. (8.6)
The requirement for positiveness of the term under the root
sign in expressions (8.4) and (8.4") lead, as already ob-

served in Section 7, to the conditions limiting the direc-
tions of motion of particles [ and 2 :

2 am? (M2
it < A 4911(;1451- 2my W) ’ (8.7)
4m; py
sl , < A2 4ms (Mt 2y V) (8.8)
= 4my p '

It is obvious that assuming 8, and 8, in (8.7) and (8.8) are
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equal to zero, we should obtain the value of Wip ..,

corresponding to the threshold of the reaction being studied,

which is reached when the energy available in the CM-system
is equal to some value, Q , given by

Q= My—(m+my) = My— My (849)
(M, is the rest mass of the system in the final state).

Proceeding from the relationship

A= 4} (My+2mu Winy pean,) (8.10)
or
A3 = 4m; (My+2mu Wiy o pn.) (8.101)
we obtain
Mk 2 Vi e, = M (8.12)
whence
2mu W1 Turean, = Mz — My==| Q| (| Q| +2My) (8.12)
or
¥ 1
Wlnra.a._—"Q'iw . (8.13)

Thus, we have established two fundamental kinematic functions
E,=f(®)and E,=f(®,)s It is obvious that a third fundamental

function #,—f(#,) can be obtained from them by applying the
Law of Conservation of energy. In order to obtain this
function in an analytical form it is easier, however, to use
the formula for transformation from the L- to the CM-system.
The velocity of motion V of the CM-system relative to the
L-system is given by

P+ Pu
Ve (8.14)

and in the case when particle II is at rest

— . (8.14")

IRTERACTIONS INVOLVING TWO SECONDARY PARTICLES 27

Hence it is obvious that the velocities of particles I and
II 4n the CM-system are equal to

v YE=—m _ VWi Fm) (8.15)
Ej+my Wi+ My '
o~ BI_V m;[VEf_—Tﬂ‘?
= =
=5 mi + my Ey

(8.151")

The momenta of the approaching particles I and II in the
CM-system will be

s & T B—m
pl_pu_pn‘—m”]/wnu} " (8;16)

and their energies

i + myE + myg (Ey+myp)

E Eyp=
! Vi 4-my (2E; + my)

1= =
Vmitm, (2E;+ my)

- (8.17)

Hence we obtain an expression for the total energy of the
two approaching particles in the CM-system:

Er= Ei+En=V mi+ my Q&+ my) =V My+2mywy, (8.18)
i.e.

B=B—ri=n 12 _Ba—v) (8.19)

Equation (8.19) is a particular case of (3.15). Actually,
from the definition of the CM-system - that the total momen-
tum p,=0', it follows from (3.15) that

Er—pi=Inv=E2 (8.20)

From equation (8.18), characteriZing the total energy in the
CM-system, we can obtain an expression for the threshold of
the reaction:

Er’ﬂresh. T VWF___ My, (8 ¢21)
from which follows the relationship (8.13) above.

From the conditions
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s s where
E\+E=E; (8.422) N
By Vv _ PiE, VEZ'“I"-I'!] (8 28)
= === A
and T PuEt £+ my; ]/,43 g
p=VEBE—ml=p=VBE_m (8.23)
we can easily obtain an expression for the momenta and ener- :
gies of the two secondary particles in the CM-system: |
|
Pi=P=P= V‘ﬁm_— 4‘EI!'"__§(21 o {
e (8.24) - !
- V[E-}-— (my+ ma)?| [E:.— (my— my)] ’ I ;3; ng_ri;;l-yé I
% = Vi-v?
~ Ay Bt mig—miy (8.25)
B Sy L@ O} 25 :
1@ 2'ET 22,1- Flg. 5
Diagram of the relationship between the L- and CM-systems
We shall now proceed to establish the relationship between (Relativistic case) ~ addition of velocities
the directions of motion in the L- and CM-systems. We shall
take as the direction of motion § in the CM-system, the Using the equation

angle §, between the direction of the vectors @ and p, .

Hence, it is obvious that the angle between the directions %=T=§= £ty (8.29)
of the vectors p; and p, will be equal to Ty= m—7, yi—ys Er  V mi4 my 2E + my) 5
In view of this simple relationship between the angles {}1 -
and 7, s we shall derive all the basic formulae for a single from (8.27) we obtain the inverse function § from 8, in the
angle §, =7 , i.e. for only one of the reaction products - form
for particle 1. If it is required to obtain the corres-
ponding formulae for particle 2, it is only necessary to ~ —1Ecigh ]/12(1_‘,\;-)4_“3:31 (8 30)
substitute everywhere the index / by the index 2 , and cosd cos 9 = T oigry, *
by - cos) . In those circumstances when the formulae are
identical for particles / and 2 , we shall write a general- or
ized index n . ‘-—Pg_—vz——
— pysin?d; = (1 — V) cos § l/-l— - sin® g '
From the relationshipss _— P1 1 ”'1. 4 T—v ’ (8.30")
1— Vicos?dy
Px cos T + VE, | d al
ppeos =0 and also
: Vizve (8.26)
prsind, = psin ¥, i f [p] g = Y (1 —p)) + cig2d, ] (8.31)
- 1+ ogd
illustrated for the case under consideration in Figure 5, -
it follows that or
09 — o5 V4p 8.27 NE— pi—ver
ctg = = T ( ) e VT—V7 sind | preosd = 1— F—rsinth (8.311)
Sinu = .

1— V2cos?d,
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The formulae relating the angle § with the angle 9, are
obtained in a precisely similar manner. The condition for
the limiting angles 9, and §, is determined by equation (7.14).
For p,>1 , to the given angle §, in the L-system, there
corresponds two values of the zmgle 3 in the CM-system, and
only for %,=4% is the solution for ¥ single-valued, viz.

n max

cos Wa—:—L_ (8.32)
Pn
For pn>1 , the term under the root sign in equations (8. 30)
and (8 .31) are positive for any §,and it follows that the
sign before the root will always be positive (+). Hence,
to every value of 8, there corresponds only one value of ¥ .

Using (8.26) and (8.30'), we obtain the following expres-
sion for the dependence of the momentum of the secondary
particle on its direction of motion:

1—V?
P () “‘f'{—v’vzm;za {p"cosi},,t I/l -— VS " sl #, (8.33)

Eliminating from (8.27) the direction of motion of particle
/ in the CM-system, ¥, we find the following expression for
the relationship between the angles §, and §, in the L-system:

— (14 pape) ctg 8 2 (py + po) VW (8.34)
1—pt .

Ctg l‘}z =

Also, for p,@ > 1, we shall encounter an ambiguous dependence
of §,(y , on the angle of the other particled,;, Ford =iH=19,
(8.34) becomes

12 (e p)2[ 1 — i )

te2f = - = W 1
= =)+ +ea)f — Gt e (8.341)
Formula (8.34') is best given in the formt
_ 1 (prtrpa)
cig? = g (8.34")

From (8.27) it is also possible to obtain the relationship
between the differential angular cross-section of the emit-
ted particles / and 2 in the CM-system (s(¥)), and in the
L-system (¢(}) and (D)) « Proceeding from the conditions*

*Here, we shall also assume that the azimuthal distribution
is isotropic, i.e. we shall not take into account the
effects associated with polarization of the particles.

INTERACTIONS INVOLVING TWO SECONDARY ARTICLES 31

a(Mdcos¥=0o(9,) dcosd,,
we have

sin® &

a(MH=0(d)7(1 +pcos D) — (8.35)

where in the right hand portion of (8 .35) we can either
express the angle § in terms of 9§, 4 or alternatively, § by

¥ . In the first case we again encounter expressions con-
taining two signs (i) for p,>1 in front of the radical
(for p,<1 it is only necessary to take the + sign,since for

cos § , also equal to d cos’¥ , there are ambiguous functions

d cos ¥
of the angles 9, (see (7.18) ). It is obvious that for
dcos ¥
By may (1+€o cOs, =min)the value of d:::a":oo; and for

‘bwo-branches of the function 8(8 ) the derivative —:CO-L: has
different signs, but just the + sign if the particle with
the angle §, has the greatest (and the sign - in the case of
the least) of the two possible values of momentum. Using
for the expression §(,) formulae (8.26), (8,30) and (8.33)
we obtain for o(8,) the relationship

1

8= '5 f'_ﬂ‘ »
a(¥y)=0a( )(P-) ]/ E— vz (8436)

1— T—vs sin2 8,

which, in the special case of elastic scattering for particle
2 , originally at rest (p,=— 1) becomes

0{82)_—0(3} 4(1 —WV:z:.o;?: (8.361)

Using the substitution ¥ (%) , we obtain from (8.35)1

[sin? ¥4 12 (py + cos )2 Be
5(81)_9(&) t1+p,cos'§) ]_ ( 57)
where §, is always a single-valued function of ¥. The
direct relationship between differential cross-section of
the two emitted reaction products - particles / and 2 - has
the form:

n(ﬁ,):a(ﬁz)—j;:—::’= o)
(p1tpa)cigdy sin®8, (%) __
_l (1+P:P2)—V A=) togh; ] CrE A p——
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sin® §,
c{ﬂz)gﬁ:-(l —p:)

T — (1 4-pyps) == (p1+ pa) cIg By : (8.38)
V(=) + g,

It is frequently necessary to associate the energy spectrum
of the secondary particles of the reaction with their angular
distribution in the CM-and L-systems. We shall make here

a few preliminary observations, postponing a more detailed
discussion until Section 12,

The relationship between the energy spectrum and the
angular distribution is particularly simple in the CM-system.
Actually. it is easy to obtain from relationship (8.26):

£ — Bt Vo (8.26")
View
whence the Jacobian
dEy __ | dE | _ Ve
dcos3 | dcos¥ yi—wvz' (8439)

i.e. for a given energy of the primary particle it has a
constant value, independent of E, or E,. Therefore the
differential energy cross-sections (i.e. spectra) of parti-
cles / and 2 have the form:

deosd | __
dE, |—

c(E1)=o(EZ=ET—El)=2m(§)] ( )
8.40

=2 Qm:{g) L_:,E- .
Vpx
It is obvious that the rectangular energy distribution of
particles | and 2 from a minimum energy

Enlnia=7(En—Vpo). (8.41)
up to the maximum energy
(Endmax =17 (E, ~+V'pe). (8.41")

corresponds to the isotropy of the angular distribution in
the CM-system,
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It is necessary to emphasise that all these formulse for
angular and energy distribution of the secondary particles
/ and 2 apply only if the .energy of the bombarding particles
I is some constant value. If, however, the bombarding
particles have an energy spectrum then the general form of
the angular and energy distributlon of the reaction products
is also a function of the total and differential cross-sec-
tions and the energies of the primary particles. In such
circumstances, interpretation of the spectra and angular
distributions experimentally observed is considerably com-
plicated and frequently proves to be ambiguous.

Ultimately, we shall consider particular cases, but for
the present we shall consider one problem, essential for
calculations by the method of detailed balance.

We shall show here, without establishing the basis of this
method (which is discussed in Chapter VIII) and the deriva-
tion of the formulae cited below, that between the differen-
tial (in the CM-system) and total cross-sections of the
nuclear reaction I4I1l— /42 and its inverse process/—42-
[4+11 , there is a relationship:

S _ @AtDChtn B
12 (yl_i_])( II+1) --Po? ’ (8-42)

where J represents the spins of the interacting particles.
The momenta of particles I and II in the direct reaction,
and particles 1 and 2 in the inverse reaction should cor-
respond of course, in the CM-system, to one and the same
total energy of the interacting particles. From the con-
dition of equality of the total energy in the CM-system,
there immediately follows a relationship between the kinetic
energy in the IL-system of the bombarding particles in the
direct and inverse reactions, Thus, if in the direct reac-
tion in the L-system the particles I are moving and II are
stationary, and in the inverse reaction in the L-system
particles / are moving and 2 are stationary, then from (8.18)
and (8.9) the relationship between the corresponding kinetic
energies is:

My+ M
W=ty SE e g TTEMR - (5u3)
where M=%—(MN—§—M,)= MN_% (8.44)

It is clear that in all cases, except elastic scattering,
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either the direct reaction or the inverse reaction is endo-
thermic, with a certain Q value, Therefore, relationship
(8.43) can always be written in the form

W1=%(W1_W1Thruh.) (8.45)

(if an endothermic direct reaction) or
Wi= % (Vi —Wimhresn.) (8.45')

(for an endothermic inverse reaction). Further, by taking
into account (8.5), (8.16) and (8.24) we obtain,

o (W) @h+1) (2% 1) AT —dmi (M, 4-2my W)
ap(Wy) (41D + 1) 4miW, (2m + W)

(8.46)

We shall now give a few examples of the application of the
formulae introduced above:

1) Photoproduction of w-mesons at nucleons (ewga1+p—
m+4n). The energy of the photon (e) the mass of the
m-meson (x) , its kinetic energy w, , and the total
energy of the system :'T are expressed as units of the mass
of the nucleon,

v 5 l-|--:T

=T’-;l ‘(:]/1_,_—_‘{:2.2_1, aT:]/l—i—Qa.‘.,
RONEL R o
= T E sy — e
242, + =2 ‘

Pr0 =& oo, F AP —ant (1 2) 14 ¢

The relationship between the kinetic energies for the direct
and the inverse reaction of radiative capture of =-mesons
by nucleons is

T

LU:=ET—T§(1 'Jf_?)

2) Photodisintegration of the deuteron: 7-4d->p-+n (we
shall neglect here the discrepancy between the masses of two
protons, two neutrons and the deuteron, since in the rela-
tivistic case the energies involved are much greater than
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these discrepancies)

€ 242 ~
V:,——T =7T N —— 5
e VT vire T 2Vt

Veald+o
P1 :Paz—{;':_'—'--

The energy relationship between the direct and inverse
reaction is:

-

—2. (2 i) , = @
Wy (n) 231 ( +g I‘” where ¢ mp{u]-

3) The production of a m+-meson as a result of the colli-
sion of two protons:

p4-p—>rtd.

Here my=my=m, m=msmm, m2=2m_ ;= L4

_n_:'
V:I/ .
24w

»
wg 20y =2
2+op V@op—wp—T6m

P1
_]/ . ... . ~_ At
Pe= 2+0p V{BF 20p—7)2— 322 Fup) ¥ ap(2+ ap)

(because n? < wy).

- e |
* = l+2’

The energy relationship between the direct and inverse
reaction is

2w,=wp—1r(2 +;—)

Comparison of the cross-sections of the direct and inverse
reactions p4 p—=n+-d has established, as is well-known,
that the spin of the =-meson is equal to zero. In this

i . Opplup) 3 (2wp—n2)2— 1672 .
=5 i lid, in
case, the relationship 5 1g®@) 2 dupOFap s valid,

which the factor -g should become % or 15 if the spin of

the =« -meson was equal to 1 or 2 respectively.

4) Elastic scattering of protons: my=my=m,=my=m
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- - “p _]/- “p
Pi—Pi—l. V——V-"m: 1= 1+2-
In this case, in place of (8.34) we obtain

ctgﬁlctg82=12=l—§—%”.

Section 9, Basic Formulae for the Non-relativistic Case

Since nuclear reactions, in which the bombarding particles
as well as the reaction products are moving with velocities
much less than the velocity of light, are extremely wide-
spread in laboratory practice, we shall repeat the deriva-
tions of the basic formulae of the preceding paragrarh for
the non-relativistic case.

Pointing out that the @ -values of reactions are usually

very small compared with the masses of the interacting parti-

cles, we shall now assume my— my = m; +—m,=M and we shall
consider not the total, but the kinetic energies of the
particles. Then the laws of conservation of energy and
momentum (for the stationary particle II) can be written in
the form

Wi =W,+W,—Q. (9.1)
V e2mW, =V 2m, Wy cos b, -V 2m,W, cos 3, (9.2)
0 =V 2m,W, sind, — V 2m,W,sin ,, (9.3)

whence

yw=Y

mym W, cos §,-=1/ mym, Wy cos® §,-+M [m,Q4-(m,—m) Wl (9.4)
7 .

A similar expression - with the substitution of index I by 2
- is obtained for YW, (henceforth, in a number of cases we

shall confine ourselves only to formulae for particle i¥e

Frequently it proves more convenient to apply expression
(9.4) in another form, viz:
M m,

—m 2V m W, W
Q:EWI_TIW,_L%CWM (9.5)
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I.i'rom (9.4) it is easy to obtain the condition for the limit-
ing angle of emission of the particles:

o< {0 - R R (3 0

which, in the case of elastic scattering (Q=0.m =m and
my=nm, gives
my

Hik e (9.7)

my

Agsuming in (9.6) % Thresh,=0 4 We f¥nd an expression for

the threshold of the endothermic nuclear reactiont

i'wl'ﬂ:relh.zmi:llQL (908) -

In order to obtain the function &,=f(#,) it is also easier
in this case to establish first the relationship between the
angles of emission of the particles in the CM- and L-systems.
This relationship is found from the simple law of addition
of velocities (Figure 6)1

Fig. 6

Diagram of the relationship of the IL- and CM-systems
(non-relativistic case) - addition of velocities

v cosh =V 47, cos ¥,

(9.9)

v, sin®, = v, sin ¥,

\:rhere V- the relative velocity of the two co-ordinate systems
is:
P
V=.-!—
my 2 (9'10)

mymyy

where Py = m

igs the reduced mass of the system in the
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initial state, It is Ob‘Vlo‘us that the momenta of the

~

ineident particles pi= Moy == my (vi—V) and Pu = myoy = muV
satisfy the equation

—~ - i~ m
Py=Py=Py=31 P (9.11)
and their kinetic energies satisfy

m,r.' 1l

Wi (9.12)

2
~ m ~
Wl=%“’ﬁ and Wy =

Hence the total kinetic energy of the primary particles in
the CM-system is equal to

~

WN=%WI=%W[. (9015)

From (9.13) the expression for the threshold (9.8) follows.

Proceeding from equations Wy— W, —Qandp, = p.= px We
obtain

};KZ‘/ 2 %(”‘|1W1+MQ) (9.14)
and

W, = ”’—11':7 =Mg(m11W1+MQ) (9.15)
where p,=-—2"2  _ the reduced mass of the system in the

L
final state.

Returning now to the relationships (9.9), we transform
them in the following manners

ctg b, — P‘:i;s" and clgh,= ";35"5 (9.16)
orTr
sin(F — 8,) =p, sind, (9.17)
and
sin (34 1,) = pa sin &y, (9.17')
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where

pr= I/ ot R —' (9.18)
. m(r: g Wy + MQ)

Myt Wy
L ]/"11(-'"111 W, +MQ) * (9.18l)

The inverse function 9 from 9, and §, has, in this case. the
form

sinﬁ:p. sin §, cos &, == sin B1V1——PESF1’_€M. (9.19)
cosa":'_Pﬁi"?aliCOs iy Vl —p?sin"’ﬂ,‘ (9-19')

The relationship between the angles §, and #, can be found by
using relationship (8.34) for y=1 .

We note in particular the special cases p,=1 (elastic

scattering: mi=m;, my=m,) ) and pp=p:=1 (elastic scat-
tering of equal masses: my=m =my=r=1 ) Forp, = 1
My Mia 1ty — lita
clg & = 12:;9 gl _—‘Ez:uz “etgs (9.20)
and for py=p=1, cigd==tgh i.e. H40,=7Z . From

(9.16) and the relationships (8.36) and (8. 37) (for =1 ),
the relationship between the differential angular cross-sec-
tions in the L- and CM-systems is obtained.

The relationship between the energy spectrum of the second-
ary particles in the L-system and their angular distribution
in the CM-system has, in the non-relativistic case, the form*:

o (W) = o (W) = 2=a (¥ !“"”3!_2 5 a8 .
1 wa (#) 7o ( )2lewlm1m2(muwl+MQ)
(9.21)
Transposing (9.5) we obtain
_ MW, —mQ— (my—m) W,
T e, (5:22)

*This question is discussed in more detail in Section 12.



40 KINEMATICS OF NUCLEAR REACTIONS
and
dcosd, MW+ myQ -+ (mg—my) Wy
W, = —— (9.23)
1 4W1V"‘I”‘1,WI LA
and a similar expréssion - with substitution of the index I
by 2 - for the Jacobian d::;s’ . As a result, the rela-
2

tionship between the energy spectra and angular distribution
in the L-system can be written in the form:
4 cos by,

cWn)= 2r o o) (9.24)

with the consequent substitution of cos 8, in accordance with
(9.22) or W, in accordance with (9.4).

Section 10. Graphical Representation of Kinematic
Relationships

The formulae deduced in the preceding paragraphs allow
accurate calculations of the kinematic relationships neces-
sary for the analysis of experiments to be made. Frequently,
howevér, there is no need for great accuracy, and consequently
a graphical representation proves to be usefulj this allows
rapid calculations dependent only on two initial parameters,
all the basic kinematic relationships being obtained from the
graph by means of a ruler and a protractor. The velocity
of motion of the centre of mass in the L-system V and Ehe -
momenta of the reaction products in the CM-system }l:=p2==p‘
(naturally for known masses my,my, m; and mj, serve as the
two initial parameters.

A detailed description of the graphical representation of
kinematic relationships is given in a paper by Bleton (4],
This paragraph is devoted to an account of it.

a) Momentum Ellipse

As initial relationships we can re-write (8.26) in the
form '

Po=10a+VE) pPy=pp, - (10.1)

assuming that the vector of the total momentum of the system
pr=p,+p, is directed along the x -axis.
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From (10.1) it follows that
~ - ~ 4
PE=P?y+(’%—V51) (10.2)
or

1
Py + 77 (Pia—VE?

= =1 (10.3)

It is easy to show that (10.3) represents the equation for
an ellipse

2
Py |, (Prz—%)
By G2 (10.4)
with the minor semi-axis
b—Pe (10.5)

and with a focus of

f=V@—B=VPEGE—1) =1V, (10.6)
The centre of the ellipse is displaced by a distance
o=1VE=1F (10.7)
from the origin of the vector p, of the total momentum.

Examination of the relationships for particle 2, analagous
to (10,1) leads to the conclusion that the extremity of the
vector p, is found on the opposite side of the centre of the
ellipse at a distance

o=1VE,=1E, (10.8)

From enumeration of all the characteristics of the ellipse,
it is clear that for its construction it is necessary to
know only the quantities 5; and V, defining the energy of
the bombarding particles, and the equation for the nuclear
reaction, The construction of one of the values of a, for
a known p, and V is illustrated in Figure 7. Along the
principal axis of the ellipse, to the left of its centre
the value p,=0b is marked off, and at the point B, a perpen-
diculer is erected B,K, ; Wwith a length m, . Then the
centre of the ellipse is joined to the point K, and the
straight line 0K, produced beyond its intersection with
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Fig. 7
Constructional diagram of the momentum ellipse

B,Kn. . On the principal axis the quantity f=14Vb, is also
marked off and at the pointF, a perpendicular is erected
which intersects at the point C, with the straight line OK,

produced., It is obvious that OF, — OB, 7 T —

and consequently

0C, =LV mi=VE,=a,.

Next, the segment OC, of the circle is transferred onto the
principal axis (0A4,) . The ellipse itself is drawn using
the given values of the semi-axes b and ¢=1b by any one of
the standard methods of construction.

We note that all the parameters, necessary for construc-
tion of a momentum ellipse, are determined in the usual way,
independent of whether the total momentum vector of the
system jp,. is formed as a result of the motion of both of the
initial particles (pp=pi+pu or only of one of themi(p,= p).

OC"—% y i-ev%=Vbz+mi— ]
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However, in all examples illustrating graphical consiruction,
we shall consider the case when one of the primary particles
(particle II, whereupon my < my) was stationary. For each of
the particles it remains to discriminate between two cases:
a,>a y i.e. the point A, lies outside the ellipse, and
o, <a 3 Le€a the point 4, lies inside the ellipse. Since
%"E%:pw, then the case p,>1 or Pa<1 corresponds to

n
V the velocity of the CM-system relative to the L-system
being greater than the velocity of the specified particles
in the CM-system, or alternatively, to the velocity of the
particle in the CM-system being greater than ¥V . We note
that at all times p, >V , and that only for the reaction
products with zero mass is p,=V . For p,<<1 , particles
corresponding to the index n, can be emitted through any
angles, and these angles are single-valued and associated
with the energies. If, p,>1 , emission of the particles
is possible only within the angular interval 0L, <d, 4
and for each angle, except ;4. , two values are possible
for the energies of the particles.

From (8.32), (10.6) and (10.8) we obtain
b
Va—p (10.9)

sin

 max

Figure 8 shows an example of the graphical construction
of kinematic characteristics (for the reaction p4-d—="4T ,
having a Q= -135.5 MeV, for W, = 660 Mev) by means of the
momentum ellipse. It is obvious that the possible values
and directions of the vectors p, and p, are determined by
the position of the intercept drawn from the points A, and
A, direct to the ellipse.

b) Relationships Between the I—- and CM-systems

By means of the momentum ellipse, the inter-relationship
between angles and momenta of particles / and 2 in the L-
and CM-systems can be constructed graphically very simply.
In point of fact, relationship (8.26) can obviously be
written in the form

plcosﬂl=acos§’—i—a, and plsin{h:bsinff. (10.10)

Having described on the graph two cricles with radii ¢ and
b and the momentum ellipse with these semi-axes, as indicated
in Figure 9, the relationships between p and p, 8, and &
can also be easily constructed. It is obvious, in parti-
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I A,lf, | f2 H P IAZ
: r gy T = ) e
‘ 2a -
Fig. 8
Momentum ellipse for the reaction
ptd->mt 4T

(1—nt, 2—T) for Wgy=0660 MeV.
Here V' =0373, y= 1078, bt=§65 MeV, a =3935 MeV,
ay (r¥) =157 MeV (2y<a), a;(‘l‘)=1138 MeV (2> a).

F=1468 Mev. sindypue= T = 092 (1 aux = 18°50).
oy

cular, that(as already mentioned above) in the case po>1 |,
to the two possible values of p, - for a given &, - there
correspond also two possible angles 5',, in the CM-system.

The energy of particles / and 2 in the L-system can also be
obtained extremely simply from the momentum ellipse. Accord-
ing to (8.26')s

E,.-—_%}-}—f cos?, (10.11)

l.€a
Eimn=3—f (10.12)

and
E.m,,=%+;_ (10.13)
Epmax— Ep min=2f. (10.14)

From (10.5), (10.7), (10.10) and (10.11), E, can be repre-
sented in the form
b%
Ep="F=+Vpypcos?,. (10.15)

The first term in (10.15) is constant and, consequently, the
total energy of the particle emitted within the angle 9, is
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determined by the product of the eccentricity of the ellipse
e=fla and the component of the momentum p» along the axis

Pr-

Fig. 9

Diagram of the relationship between angles and momenta of
particles in the L- and OM-systems (relativistic casa),
by means of the momentum ellipse

Finally, it is necessary to note the particularly simple
expression for the relationship between the energy spectrum
of the secondary particles in the L-system and their angular
distribution in the CM-system via the parameters of the
momentum ellipse, In fact, (8.40) can be written in the
following form

s(E =" (), (10.16)

where E,® is defined by formula (10.11). As a result
of the isotropy of scattering in the CM-system

3(Ey) = Jeeo! (10.17)

c) Elastic Scattering

Proceeding to a consideration of the momentum ellipse for
various special cases, we now note that particle II is
initially stationary. Hence we can, by applying (8.24) and
evaluating (8.9) and (8 .44)3 write the following general
expression for the minor semi-axis of the momentum ellipses:

_— (MQ+ my Wy) (MQ + my; W, - 2m,my) (10.,18)
== M-2N+ 2’?!"]-71 .
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For subsequent use we shall also write, from (8.15), the
equationsi

VMit2mw, (10.19)
ToWEMy T
D) (10.20)
Mt 2my Wy Lt
(WI+M1;;1VW1{W1+2”'|) - (10.21)
MN+ 2m,, Wy

It is obvious that the major semi-axis of the ellipse is

(W MQY (MQ + my; Wy) (MQ + my Wy + 2mymy) (10.22)
¢= M+ 2my W, '

We shall consider elastic scattering, when mi=m, mu=m, and
mi+my = My==m,+-my=Me =M, and in addition B, =B,=V.,

i.ee pp=1. o« In this case

Mz 2m, W, '

W+ M W W+ 2
a=ﬂ‘lz12V= i e )VAT:_‘_IQ(,::W:+ s (10 .24)

b=myV = l/""wlf"'ﬂwi+2”'l"’2) (10.23)
=myV =

and according to (8.25), (8.18) and (10.7)

m
Wit G M (10.25)
@ =0 A
ay=a, (10.26)

It is obvious that for m,>m. , for elastic scattering
p,>1, , and for m<m p<l , i.e. a liniting angle of
scattering is observed only for the scattering of a heavy
particle by a light one.

Three possible cases of elastic scattering are illustrated
respectively in Figs. 10, 11, 121 1) my=my ( Pp -scat-
tering for W, = 660 MeVS, 2) my>m, (  dp-scattering
for Wy=1 BeV) and 3) my<m( pd-scattering for W,= 660
MeV). By analysing the graphs represented by these dia-
grams and the corresponding formulae, a number of conclusions
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can be drawn:

1) The momentum of the initially stationary particle after
scattering, in accordance with (8.33) and (10.23) is equal to

_ 2myVcosd,
Pe=T—picoss; " (10.27)

i.e. its maximum momentum is equal to the principal axis of
the ellipse

Pamax = 20. (10.28)

2) The kinetic energy of the initially stationary particle
after scattering is, in accordance with (10.15)

W, = a:}’ ~+Vpycosh, — my = Vp,cos b, (10.29)
since for elastic scattering
? —_— (10.30)

Thus, the kinetic energy is determined by the product of the
horizontal component of the momentum p, and the eccentricity
of the ellipse., It is obvious that

W'Zmn =Vp, (82=0)=2m2‘{2w= 2f. (10 .31)

3) From (10.27) and (10.29) it follows that

_ 1 Wa
cosd, = 4 Vit o (10.32)
i.e
- - W
Ctgzazz 2 T
2o V2 — —
2 =

and for a given value of the kinetic energy w,, transferred
to the stationary particle, at all times &,(W}) <0, 5 thus
7
2ma °

ctg b, = (10.33)
Consequently, the maximum angle at which the target particle
2 can be emitted with a given kinetic energy, is independent
of the mass of the energy of the bombarding particle /7 .
Therefore, in particular, the directions of the secondary
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/, \\
s \\

s 9; i
= i it N,
t H >

f— 2f =W, — L
— 20 ={Py/ >
Fig. 10

Momentum ellipse for elastic PP -scattering forW,= 660 MeV

Fig. 11

Momentum ellipse for elastic dp-scattering for Wq = 1 BeV.
Here, Iis a deuteron, 2is a proton (my>ma)-

particles in elastic collisions at relativistic energies
(Wo>>m,) , always make extremely small angles with the
directions of the incident particles. For a given angle
of emission of the secondary particle, %, the inequality
T < 2ctg?9,. (10.34)

always holds.

INTERACTIONS INVOLVING TWO SECONDARY PARTICLES 49

Fig. 12

Momentum ellipse for elastic pd -scattering for W,= 660 MeV.
Here, Iis a proton, 2is a deuteron (mi<my)

4) Knowing the direction of motion, the mass and the
momentum of the secondary particle 2 , the mass, m; , of the
incident particle can easily be established in terms of the
known initial momentum p; .

Actually, the total energy in the L-system

Py Pippcos 8s

Bpp e
so that
o (P1P2C0s Dy )’ . (10.35)
W :

5) As already mentioned above (Section 8), for elastic
scattering of relativistic particles having equal rest
masses, the kinetic energy of the incident particle can be
determined from the angles §, and #, , because

cfgﬂ,ctg{}z:l.{_%;l, (10.36)

The angle ¢ between the directions of motion of the particles

after scattering, form, > m,can take any value from O to %
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(whereupon sin §;quy — r_'::.'l ), and for m; <m, any value from -;
1

to = + In the case of m =m,, this angle is confined to

the limits from $mw to %5 , Where Ymm=2} and §,=9,=9 so
that

cos ‘I’mm=?§;;'- (10.37)

If one of the secondary particles of the reaction has a
rest mass equal to zero, then E,=p,=0 and therefore, in
accordance with (10.7), a,=f . Thus for zero rest mass
the point A, , from which the momentum of the corresponding
particle is obtained, is located at one of the foci of the
ellipse, and the absolute value of the momentum for differ-
ent angles is given by the equation of the ellipse in polar
co-ordinates.

For elastic scattering, the case m;=0 corresponds to the
Compton effect, i.e. to the scattering of photons with an
initial momentum (a.nd energ:sr} Py by particles with a mass
My For this it is obvious that

A P |
V=f= tr (10.38)
and
v
P1=1—_.%';- (10.39)

From these equations we obtain the well-known formula

Py

Ry (10.40)

e
1+?i(l——cosag)

As is apparent from (10.28) and (10.31), for Compton scat-
tering

pl=a+f=_;'(p2mlz+w2mu)' (10'41)

d) Nuclear Reactions (Non-relativistic Case)

The graphical construction for non-relativistic nuclear
interactions is considerably more simple than in the general
case, because the momentum ellipse is reduced to a circle
with radius r=g=5 , determined by formula (9.14).
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The values of Pn for this case are also determined above by
expressions (9.18) and (9.18‘), and the maximum angle of
emission of the n -particles for p,>1 is given in accord-

ance with (7.14) by the equation sind, I,,“=-‘Jl— . For con-

n
venience we shall assume that my<m,. It is obvious that

my Wy
l/ my W+ MQ e

for exothermic reactions and greater than 1 for endothermic
reactions, so that in the first case this expression in-
creases, and in the second case decreases with increase of
W , converging within the limits to unity. Since in
almost all reactions my<my, then in exothermic reactions
in practice p, is always less than 1(p,<! ), i.e. for the
direction of motion of the light particle there are in
general no limitations., The direction of motion of a
heavy particle can be limited only if mi>>m;, and if
Wi>—"t_Q. (10.42)

my—m,

For endothermic reactions the position is somewhat more
complex, For these reactions, threshold (W;=WiThresh.) »

the momentum circle is reduced to a point(@a=0andp =p,=00),
and both particles move forward with momentas

2mQ
Pl(zﬂhruh. _mu:.V-m ==

_— 10..
=N 2 ymy T Bl
—r ]/ e Q.

T myymy
If

- s LU T e
Wi— W Thresh. = ‘—"‘(‘;n—“—": = m:;

then m<1, so that the angles of emission of the light

particle (I) are limited only for a small interval of the

energy W, 1@

M M 1_7’:'1]"
m—uQ<W:<m—HQ———_ﬂ- (10.44)
L

As is apparent from (10.44) and (9.14), for p=1 , the
maximum possible momentum of the light particle is equal
to
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2 M—m
Prmax =20 = W 2-‘“1”"2{ 1+ i:T, '_—:} MQ (10 -45)

which approximates t0 2P 1yrea «

The condition p, 1 is possible only if my>my (for exam-
ple in ( nd ), ( na ) etc. reactions) and if the following
inequality holds,

MM Wi Threah,

Wi — Wl ‘nnub.} M(ml—m[} .

Thus, the angles of emission of the heavy particle (2) are
limited for a somewhat larger interval of the energy W, ,

viz:

i |

s -

M M M
_”TI;Q_<WI<‘“_11Q T (10.46)

my

In Figures 13 and 14, the graphical representation is shown
of the kinematics of the exothermic reaction T®(dn) Het* and
its inverse endothermic reaction He*(nd)T® . Side by side
with the method of construction of the momentum ellipse
(here, a circle), already described above, a further one is
shown, based upon the simple law of addition of velocities.
In this method of construction, two circles are drawn with
radii

Y A —
"2 y= V_aﬁgi VWi —Wima, (10.47)
proportional to the velocity of the reaction products in the

CM-system (x,,: l/”‘_;. :5,,) . If the vectors én= '/-E,;‘_ V.

be increased to *, , proportional to V and equal in absolute

value to , — M , then vectors are obtained equal
n M

in absolute value to the square root of the kinetic energy
of the reaction products in the L-system.

e) Photonuclear Interaction Processes

In this particular case, m;=0 and p=W,=E,=hv. There-
for my=My , and the threshold equation for the reaction
(8.13) takes the form:
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:"ﬂ.?'"

Fig. 13

Two methods of graphical construction of the kinematic
characteristics of the reaction T*(dn)Het for Wy=3 MeV.,
Here | is a neutron, 21is an « -particle. Q = 17.6 MeV

WannlErQJ{I-F?I_Ag:l}' (10.48)

The minor axis of the ellipse

nym
(Wy— WTﬁrash)(WT—W11'hrelh-+2 W ,)

l+2—‘§ " (10.49)

b= =
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&

G

-‘—-—-—c‘

Fig. 14

Two methods of graphical construction of the kinematics
of the reaction Het(nd)T3 for W;— WiThresh = 0.5 MeV. Here
I is a neutron, 1 is a deuteron, 2 is a triton

where M=Mr— lQI

For W, < 41(10.49) the non relativistic relationshi (9 14)
is generally used, where a=~5b. We shall write E9
as a result of this in the form

4 0 Wity et Threaby | 1), (10.51)

Py = sz me

where the dimensionless parameter

—W.
i W‘:W !Thruh_. (10.52)
TThreah,
It is easy to see that for *x=0 , i.e. at threshold,
pp=0coj subsequently Ps decreases rapidly with increase
of x and approaches 1 for

™1 (2) WTTI: resh,

X1y~ 52
1@ 2my iy M

The minimum values of P1 and p: are attained for x=1,

i.e. for W,=2W
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iThresh 3 WHED

e ] 4 2m, (2'_|W1Th resh Teig
Pl(:}mln“‘"‘ W<<I‘ ( 53)

r
Fig. 15

Kinematics of the photodisintegration of the deuteron

1+d>ptn

P,
1) Wy=|Pn|=Wryresna="b=0, pp=p, =50, +3,=0

2Wrresh , _ . _ 1Pt _ Wniest
2) W‘{= IWThre-h(l"i‘ m )lr R =fp = ) %—2--,
A/ +&n=90°;
P1| o
) w _2WThrcshaP'_“r&-‘-l—§—IwWﬁrelhap_]_&n"‘vlsua;

4) WT = 500 MeV.
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because my~m, and W, . <€M , Examples of the graphi-
cal construction of photonuclear reactions for various ener-
gies of ft-quanta are shown in Figure 15 (photodisintegra-
tion of a deuteron) and in Figure 16 (photoproduction of

=+ —mesons).

Momentum ellipse for photoproduction of x+-mesons at protons
1t+p-+rt+n(l—=n* 2—n)for Wy= 500 MeV

f) Decay of One Particle into Two

The kinematics of such disintegrations will be the subject
of a special detailed discussion in a subsequent section.
Here we shall dwell only upon the general methods of con-
struction for the kinematic characteristics of this process.

In this special case my=|py|=0, and the total energy
in the CM-system is E,=M;=My=M . It is obvious that
the kinematics of the decay process are determined by the
relationship between the kinetic energy of the primary parti-
cle in the L-system and its energy relationship in the CM-
gsystem, defined by the masses and energies of the secondary
particles.

The minor semi-axis of the momentum ellipse in this case
is equal to

b="px=g5 VM — (- m] (M —(m,—m],  (10.54)
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and the major semi-axis

a——-b%. (10-54')

In addition, for the energies of the secondary particles in
the CM-system we have

o M2+ mt g — il
E”g}=—+£2(%'ﬂ (10‘55)

and consequently

Pr o~

I 2 z
Gy = 'FVb +me=5rEin=
_Mn x‘lflz—|-m§m—m§m (10.56)
- M M )

From the latter equation we obtain

g _ue M - ) — m} ) B (10.57)
e T Y E— Gt m)D (M — (m— m)

The angle of emission of the n -particles is limited only
if particle I has a sufficiently large kinetic energy.

P1 > PiThresh
u (10.58)

1
= om, V (M2 — (my - myP] [ M2 — (my — my)*} =b7"'

consequently

st jiay == m—?ml“p[ V | M2 — (my 4 my)2} (M2 — (my — my)?} . (10 -59)

(10.58) is better given in the form:

12 B \iuie 727:;—.(2) [ 4 i oy = mi ]
and (10,59) in the form:

sin it 1 [M*+mb gy —mi ]

H{2max = _-_g_.;,_l i‘!}£|

In Figures 17 and 18 two examples are given of the decay
of one particle into two, in the first case (="—2y) the
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rest mass of both products, and in the second case(s" —pt+4v)
of one of them, is equal to zero. It is obvious that in
the first of these examples

E
b:%l a=~2-1-| (10.60)
and
a1=a2=%V};‘?:7VIT=%pI=L (10.61)

In point of faect, it is obyvious from (10.8) that for particles
with zero rest mass, whenE, =6 a,=/f at all times. Thus,
for the decay of =®-mesons the equation

P|=Pa=ﬁ[=%<l-

holds good at all times, i.e. there is no limiting angle of
emission of the photons in the L-system., In the second
example

M2 —pe
b=t (10.62)

where ¢ is the mass of the p -meson,

E
a =?1(; _:_I’,) (10.63)
P, 1
I=5(1 =) (20.64)
In this case
n=f fpiae, (10.65)

and the kinetic energy of the p -meson
¥ (M—p)?
7

B M2 2 R ~ A
for Fi2—g,—, i.e. W;>52 MeV, the angle of emission
of the [-meson is limited. Tinally, we observe that in
accordance with (8.33) for a particle with zero rest mass

b b2
P (V) = T(0—Vcoshy) a—fcosty, (10-66)

=404 Mev:

Hence, using (8.36) we obtain for the angular distribution
of n-particles in the L-system
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P,

g
ﬁzf_

Fig. 17
Momentum ellipse for the decay =02y for Wo=m,,.

% A;

Fig. 18
Momentum ellipse for the decay

wt>pt4v(l—v,2—pt)

3
for Wt+ =gty
1 1 1 b2

o ()= In (1 — V cosUy)?t 4 (@ —fcosdy,)? " (10.67)
Thus, the probability of emission of an n -particle in the

front hemisphere is obviously,

d 1
p(%)=7[l+§). (10.68)

Section 11. Decay into Two Particles

It has already been pointed out that the kinematic charac-
teristics of decays into two particles are determined only
by the values of the masses of the primary and of the second-
ary particles, and by two parameters, independent of the
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type of reaction (e.g. by the momentum of the primary parti-
cle and by the angle of emission of the secondary particle
in the CM-system).

For an experimental investigation of decays into two
particles, the following problems usually arise:

a) establishment of a criterion, to determine whether or
not events observed in say photographic-emulsions or a
Wilson cloud chamber are examples of the particular decay
processj

b) determination of the mass of the primary; particle, if
the masses and momenta of both secondary particles are known;

¢) determination of the mass of the secondary particle if
the masses and momenta of the primary and the other secondary
particles are knownj;

d) establishment of the relationship between the angular
and energy distribution in the CM- and L-systems;

e) investigation of a criterion of accuracy of interpreta-
tion of the different events.

There are no practical methods for the analysis of decay
processes, which give a simple indication that a specific
individual case should be interpreted as a decay. For
consideration of individual cases, the aim is usually to
prove that it is impossible to identify them with other
known processes (elastic or inelastic interaction of various
types*).

In consequence of the circumstances noted, investigation
of the existence of decay processes is generally based upon
a statistical approach. In the first place, a small num-
ber of events which are interpreted as decay processes, are
used to determine approximately its basic dynamic character-
istics (type of decay, mass of the primary and secondary
particles). Subsequently, for the analysis of a larger
sample of events using a conjectural scheme, the approxi-

*Later on (as is customary in works on high-energy physics)
interaction in which a portion of the energy is expended
on the formation of new particles will be called on in-
elastic interaction.
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mate values of the characteristics, obtained earlier, are
used., The conformity of the observed characteristics for
an experimental sample of events with the conclusions result-
ing from the conjectural scheme of the decay process, verif-
ies its accuracy. Naturally, for such a statistical
approach, it is impossible to exclude the fact that a small
number of cases, not fitting into the general picture, may
have been included by mistake in the sample investiated.

It stands to reason that the methods described are used
not only to establish the occurence of a particular decay
process, but also for control or the accuracy of the conject-
ural decay scheme.

In this section we shall employ the statistical approach
for the analysis of decays into two particles. For this,
naturally, it is assumed that the masses of the primary and
secondary particles, and the type of decay process are fixed*,
Furthermore, it is convenient to classify all modes of decay
into two types:  the first type, which we shall call the
N-decay, represents conversion of a neutral particle into
two ‘charged particles; +the second type (Zudecay) charact-
erizes the decay of a charged particle into a charged and
a neutral particle** (Figure 19).

Passing on to the investigation of the special features
of these or other decay processes, we shall consider first
of all the simplest case - decay of stationary particles.
From formula (10.55}, it follows that in this case the
secondary particles possess constant energy, and consequently
a range. Thus, the existence of a break with a constant
track length from the point of break to the termination of
the track (Z-decay), or the presence of characteristic bifur-
cations with constant values of both branches (N-decay) are
clear indications that the decay of a stationary particle
has taken place. It is precisely this circumstance that

*Certain methods of determination of the masses of the
particles taking part in a decay process are presented below.
#%*We shall not dwell here on the decay of a neutral particle
into two neutral particles. We note that in practice
this boils down to the two determined previously, since no
other methods of observation were available to us for ob-
servation of a neutral particle, except by study of their
interaction or decay products.
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led to the confirmation of the existence of the =p decay.

7
180°-¢

N\

¢ %

Ay
N-decay Z-decay N

Fig. 19

Diagram of the decay of a neutral particle into two charged
particles (N-decay), and for a charged particle into one
neutral and one charged particle (Z-decay)

The study of decays of moving particles into two second-
aries is more complex. The basis of one of the methods of
establishing that such a decay has occured is the invariancy
of the transverse components of the momenta p, relative to
a Lorentz transformation.

Actually, since the particles are moving in the CM-system
isotropically, with one and the same momentum p, , then the
probability of emission of the particle within the interval
cosT, cosﬁ-{-—dcusﬂ is

N (p, cosfydpacosh =5 (p—7,) sinTdl dp (11.1)

( ¢ is a delta function)

Since sin = i_’ s
Py
then

P dp, (11.2)
PV r—p
wnere p, is determined by relationship (10.54).

N () dp, ~

Thus, if the events studied are examples of a decay into
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two particles, then the distribution of the transverse com-
ponents of the momenta complies with relationship (11.2).
From this relationship it follows that the probability of
the values of the momenta BT approaching p, is particule
great.,

A somewhat different idea of analysis is based on the
introduction of the dimension a*, the mean value of which
depends only upon the invariant quantities. We shall deter-
mine the value of a* in the following manner:

.« Py—Py
= Py+ry’ (11.3)

where Py, and P are the longitudinal components of the mom-
enta of both particles in the L-system. Since Py—+pry=p ,
then
et
7 (11.4)

Using (4.7), it follows that
mz—mz ~ ~
ot =—2 4 f (P, py)cosT*). (11.5)

Summing over all directions in the CM-system, we finally
obtain

g &
a*==1ﬁjﬁfi_ (11.6)

Measuring a* by experiment, we can obtain in conjunction
with (11 .3), a relationship between the masses of the parti-
cles taking part in the reaction. This method was used
especially for analysis of V- particle decays [6].

Another method of analysis of decays into two particles
is based upon the existence of limiting wvalues for the
angles of emission of the secondary particles in the L-system.
Generally speaking, the limiting values of the angles 1
are determined by two parameters (for example, the magnitude
of the momentum of the primary particle in the L-system and
the momentum of the secondary particle in the CM-system).
However, since for decays into two particles the momentum

*In the given case M=m(m;=0) .



64 KINEMATICS OF NUCLEAR REACTIONS

;7,; is entirely determined by the wvalue of the masses (see
(10.54)), in the given case the limiting relationshipf,, ()
can be computed and, consequently, the limits can be deter-
mined for the angles of emission of secondary particles
having a momentum p;.

In one aspect of the analysis, which we shall apply to
both types of decay (Z- and N—decay), we shall employ formula

(7.14). Substituting (in 7.14) the values F = __—-—~—~‘D"
Py Vioitmt
and V =—F=—=—= , we obtain
Vii+Mm
P M
) max = arclg ——-__A_i_&w._, (11.7)
FT T

if

pimi > Ff M2,
and

nl max T } '
s 1 8

22— 2 M2
pyms < pLe.

Consequently, for the decay of a particle with a mass M
and momentum p; into two secondary particles with mass m, ,
it is not possible for the secondaries to deviate from the
direction of the vector #; by an angle greater than ¥, ,
as determined by formula (11.7).

We shall use the method involving the limiting values of
the angles only in N-decay, it consists of the calculation
of the limiting relationship Yor (1) (Figure 20)., The
data in this figure was obtained for the decay of a particle
with a mass of 1000 7, into two particles with masses of

280 M, «

In point of fact, for fixed numerical values of the para-
meters, the angle between the directions of motion of the
secondary particles is confined to specific intervals.
Therefore, if in a large number of cases this angle lies
within the calculated limits, thén this is an important
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supplementary proof that the events under investigation are
examples of a particular type of decay.

Fig. 20

Function 8. (p;) for the decay of a particle with mass
1000 m, into two particles with masses of 280 m.

In conjunction with (4.1) it is possible to write down

1 Py sin 9y 1 P sin 3,
= +d=arcig— X = = tg — = (11.8)
¥ 1% g‘f xplcos§i+l’£1+arcg1pgcw3,+vﬁ;

Bearing in mind that8,==—9, and confining oneself, for
simplicity, to analysis of the case when my=my=m , it
is possible to write (11.8) into the following form:

parilg bt L Lok, I T L e . (11.9)
T P cos ¥, — ViEx 1 VE,—p, cus B,
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where i=]/-'l1'—'-;—45= . The function §(cos#,) has limiting

values for cosﬁl== (maximum), and also (minimum) for
~ 1 7V — 8pim* - MY — dm* M (11.10)
cos By = — .
r M2—dm?

Dependent upon the sign of the expression M2—8m® , equa-

tion (11 10), determining the minimum value of ¢, , has a
solution within the range (0 <cos?t < 1) for dlfferent values
of p, if

a) M2—8m? > 0.

Equation (11,10) has a solution for

— 4m®
p] " M2 (l--“lml2 me)
if b) M2 — 8m? < 0.

Equation (11.10) has a solution for

MP’M —am ]/-M —
= Elh <M 8m® — M?2”

In Figure 21 are shown curves of Yoxr(p) for the case of
N-decay of particles with & mass 1000 . into two charged
= -mesons ( m, has been taken equal to 280 m, ). The
cross-hatched area corresponds to permitted values of the
angles ¢ .

The method described was used by Batler [7] for analysis
of the decay scheme of A% and 6%~ particles.

One should also consider another criterion of analysis,
the method of complanarity. However this method, has the
disadvantage that it applies not only to a decay process
but also to elastic scattering, and since the values of the
masses are not used, it camnmot be recommended as proof of %

the decay nature of a process. Conversely, if it is already

established that a given event is a decay process, then the
condition for complanarity can serve as a criterion for
establishing the number of secondary particles.
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Fig. 21

Limiting relationship %w(F) for the decay of particles
with mass 1000 ms into two particles with masses of 280m,

The criterion of complanarity is based upon the simple
relationship

py=p,+ P, (11.11)

Multiplying this vector equation scalarly by n ( n is
a vector, normal to the plane formed by two of the three
vectors, e.g. ppand p, ), we obtain (mp)=0, i.e. that
the three vectors also lie in the same plane.

One should note that in certain practical cases, e.g.
when the mass of one of the secondary particles approaches
the mass of the primery particle, the methods indicated
above can lead to a mistaken identification of events as
decays into two particles, because a larger number of parti-
cles may have participated in the processes. These special
cases are discussed in more detail in [8].

Let us derive further formulae which determine the masses
of interacting particles.
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a) Determination of the mass M of the primary particle by
the kinematic characteristics. From the equations of con-
servation

Pi=p,+Py (11.12)

Ey=E,+E, (11.13)
we obtain

M= +m -2 { [ (24 m3) (P m3) [ — pypy cos ). (11.14)

If the decay of a stationary particle is considered,
(p,=p,=p,and ¢$=n ), then formula (11.14) is considerably
simplified:

e =mitm 2 @i (11.15)

Equation (11.14) is also simplified if py<€m , or P, m,,
whence the term plpzcom]a@[(pf-}rmf)(p;—{-mg)]'h , and it can
be neglected.

Sometimes the mass of the primary particle is required,
the energy of one of the secondary particles and its angle
of emission being known [9]. In conjunction with (4 .T)
one can write

2 F]
M=rq [{E. — pVcos )+ ]/(;:-l — pVcos e —" 1_ ’"*}_ (11.16)

Actually, if m,=0, then
M=E,+|p,|. (11.17)
In this case, if cosd;=-—+1 , then
M=1[E,=pV+|nFEV|). (11.18)
If coshy=1 , then dependent upon the sign of the expression

p+EV , formulae (11,17) and (11.18) can be written in the
following mannert

M:l/}—;—g [Ei+pi] (for %T> v), (11.19)
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T+V Pi
M=y EL e —p1 (for Z<V). (11.20)
If cosf,=—1 , then at all times

m=y EJEA+n (11.21)

b) Determination of the mass of a secondary particle (7=
decay). From equation (11.12), (11.13) it follows that

= M — 2 [ (M —57) (3 + ) | — pyp, s ). (11.22)

Similarly, as earlier, if p,<€ M or p;<€m, , then the term
pp cosh can be neglected. Actually, if stationary parti-
cles are decaying, then

m2 = M2 +-m: —2MY/ mZ - pi. (11.23)

Section 12, Relationship between Angular and Energy
Distribution of Secondary Particles in the CM-system

and the L-system*,

In this paragraph we shall consider a number of problems
concerning decay into two-particles, when the momenta p;
and p, are equal so that '51=3==;‘ and can be determined
from equation (10.54). Consequently, a general expression
can be obtained for the angular and energy distribution by
applying the formulae obtained in the preceding chapter.

We shall begin with a consideration of the angular distri-
bution of secondary particles for the simplest case, when
the primary particles have a definite energy and are moving
in the same direction.

In the CM-system, we shall assume the angular distribution
of the secondary particles to be isotropic and that the
particles possess a constant momentum. Consequently, the
probability of emission of the particle at_an angle, which
mist fall within the interval between cosfl and cos&—l—dcosﬁu,

*We shall consider the transformation of an isotropic decay
for a constant momentum, since this simple case plays an
important role for analysis of collisions (See Chapter V).
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is determined by equation (11.1). The angular distribution
N (#)dcosh therefore has the following form:

'plﬂlx
N{ﬁ)dcosﬂ:%dcos& f 3[;(_;1}-—;‘114,0. (T851)
pm]n

where J is determined by formula (7.2). By using the
formula,

~ = 5(p—pm)
8 —pl= » & —Fm

[p(P)—p, - ’i’[ (12.2.)
dp lp=p,,

( P is the radical of the equation ;(;:}:F: within the
interval for which the integration is carried out) and taking
into account equations (4.?%1,- (7.4) and (7.12), (12.1) can
be written in the following form:

P, dcosd

N (®)dcosh = (12.3.)

QTP: [Pm— EmV cos 8] '

ir f>v,

where E,, is the energy corresponding to the momentum p, and

dcos § pf,,l an,
N@)dcosd = ?‘i‘.;: [pml—-tfm‘b’cosﬁ + EpVeosi—p, |’ (12.4)

~

if ;‘: <V and P, > Pm, »

Using the right-hand portion of relationship (7.12) as a
solution to the equation p(p)—p =0, we obtain

I E,Vcos b+ Vm v cos® § + E2 — ;1-2?]2 d cos §

N (9)d cosd ="—c i) (12.5)
“ i’ (1 — V2 cos® )/ 2V cos?h + B2 miy?
if 9>V .  varies within the interval 0 to = . By

E., here and henceforth, is understood the energy of one
or other secondary particle in the CM-system (in the final
state). Since F; _is related to the mass of the particle
and its momentum p, (identical for both secondary particles)

by the relationship E;_—_Vp:—}—mz » bearing in mind that

=1
=
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E. and m relate to the same particle, we shall drop the
indices 1, 2 or a here and henceforth,

Actually, for elastic collisions, when my=my , Ey=+m ,
w2 obtain
2cos &

N =—a—vrceror (12.6)
If J<v, then
Elvie 2202 c0s? § 4 Er— m?*] dcosd
N(a)afcosn_[ e (12.7)

Pet? (1 — V2 cos? §)° V m¥2v2 cos? § + Ei —mt?

In the latter case ? varies within the intervel 0 to i
[ #pex is determined by relationship (7.14) 1.

Formula (12.5) is simplified if Ex >my ; whence
(NS ] -
N (%) dcos ) = 2"“‘_;“% B (12.8)

For this case it is easy to determine the mezan angle #

1 ddcosd e
Iy (11— Vcos8): ~ 2

}_ [T‘_-I-L;VJ' (12.8')

If Y>1, then i=7 -

We shall use the formulae presented in this section for
analysis of decays into two particles. In addition to this,
for determination of the parameter of scattering p, it will
be necessary to use formula (10.54). The angular distribu-
tion of particles with mass m; can be written down in the
form

N(¥)dcosh =
_ [(M2+mf~m§)vcu;aiAV«s,ﬂszv-'T"'-ms?a (M mi-md)t ety 2)?
- 22 (1-V3cos? 8, V m¥sm}emi-2 (M2m = 2% = mim?)
% dcos 8, )
Virtm 2y Feos?s + (M s mi-m)i-1. wlmif

if B>V, and similarly for <V ., Formula (12.9) takes
a particulerly simple form in the case of decay into two
relativistic particles. For example, for decay of a parti-
cle into two photons (such an example is the decay of =z

X(12.9)
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nﬂ—meson), formula (12.6) can be used for the angular dis-
tribution.

For example, Figure 22 shows the angular distribution of
the secondary particles formed as a result of the decay of
a A_particle into two secondaries, according to the
scheme Asp4n-

We shall consider the evaluation of the energy distribu-
tion for the simplest case of a mono-energetic stream of
primary particles.

The momentum distribution N(p)dpis determined by the
integral

aIﬂl!

N(p)dp:d—g;f 3(p (9)—p,] Jsin b ad,
L]
where J is the Jacobian, calculated according to formula
(7.2). TUsing formulae (4.7), (7.4) and (12.6) it is easy
to obtain g

N (p)dp :ggf';fv ) (12.10)

P varies within the limits

1|5 —EV|<p <10, +EY). (12.11)
The latter formulae acquire greater significance if charged
from momentum distribution to energy distribution. Using
the relationship pdp=EdF , we obtain
dE

~
[

N (E) dE =- .
gV

(12.12)

Thus, as already mentioned (see Section 10), in discussing
the case of decay into particles, the energy distribution
is uniform within the interval

15— PV < E<1(E+2Y) (12.13)

Outside of this interval WN(E)=0. This relationship has
an intrinsic significance in finding a relationship between
the characteristics of the energy spectra of primary and
secondary particles. It is extremely important because
the value F,occurs in (12.13) and it is necessary to estab-
lish certain general inherent tendencies of the spectra as
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Fig. 22

Function N(® for decay of a A -particle according
to the scheme

a function of the values of the masses of the primary and
secondary particles.

We shall begin with an examination of the simplest case
of decay into two particles with zero rest mass [10] (e.g.
wx?— 2y ). These particles can have any energy within the

—V i £
interval from %]/-:_'_—v to —‘;!ul/-]l—-i—"‘; . All the remaining
values of the energy are found to be forbidden.

From the expressions determining the limits of the energy,
it follows that whatever may have been the energy possessed
by the primary particle, the secondary particle can always

possess an energy equal to %’— . Let us consider the spec-

trum of the primary particles extending from 0 to oo .
For any specified energy of the primary particle, the second-
ary particles are distributed uniformly within certain

M
energy limits and can possess an energy -5 . Therefore,
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for this value, independent of the form of the infinite
spectrum of the primary particles, a maximum in the energy
spectrum for the secondary particles will be observed.
Let us consider two values of energy E; and E, , having the
property that N(E)=N(E,) . Since the spectrum of the
secondary particles has a maximum for any distribution of
the primary particles, then at all times it has an infinite
number of such pairs of energy values, disposed on either
side of the maximum, It is clear that E; and E, should
coincide with the limits of the allowed energy interval
corresponding to some specific energy of the primary parti-
M
yi—v: °

Therefore, it is possible to write

cle

M 1—V
=F,,
2V i+v— (12.14)
M JTFV_
TV =v=F
and consequently ‘
M=2VE[E, (12.15)

Let us consider the general case of decay into two parti-
cles of arbitrary mass. Here, it can be proved at once
that in the case of an arbitrary spectrum for the primary
particles, an inherent tendency similar to that described
above, does not exist. Furthermore, if V-0 , then the
limiting value of the energy is E,—E,—Fx . Consequently
a possible condition for a maximum in the spectrum of the
secondary particles should be found in the vicinity of the
value F=F, « If V+1 then at all times a value of V,
is found (and consequently also of 7 ), at which the left
hand limit of the interval T(E —p,V is greater than the
value of E. *, Therefore, for certain V >V, , the value
of E. will lie outside the permissible interval, and there-
fore will not occur. As an illustration we shall consider
the extireme case when p, is negligibly small compared with
the magnitude of E, (such a case is found, for example, in
the analysis of the spectrum of the protons arising from
the decay of A°-particles). Then at all timesE = E,~s 15,

*We recall that the case Z, [ is considered.
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and therefore the spectrum of the secondary particles is a
repetition of the spectrum of the primary particles.

Another situation arises, however, in the case where the
energy spectrum of the primary particles has an upper limit.
This case, of considerable interest in work on accelerators,
has been discussed by G.I. Kopylov [11]. Let us examine
this case in detail.

From the foregoing, it is clear that for an analysis of
the properties of a limited energy spectrum, it is necessary
to find a value for the velocity Vv, of the primary particle,
such that for any V <V, the value cf E: should be greater
than the left hand limit of the energy interval (12,13).
In order to solve this problem, we shall investigate the
behaviour of the function p(V)_..T(t —p V) for various wvalues
af. Vg

If V-0, then g%—< 0 and consequently p(V) is a decreas-
ing function., Therefore, for sufficiently small V ,
p(V)<E, . As we have already observed, for sufficiently
large V, .p(V)>F.. Therefore. the general trend of the
function p(V) is such that it decreases initially, passes
through a certain minimum and then increases constantly,
attaining for a certain V the value £;,. It is clear that
within the limits 0<V <V*, the value of Ex will always
be found inside the energy 1nterva1 of (12.13). Thus, the
unknown V;=V*. Let us find V* from the equation

1 (E,—pV)=E, (12.16)
This equation, besides having a trivial solution V* =0 ,
also has a second solution:
2.,
Vo= (12.17)
Ei+p
Consequently, if the energy of the primary particles
E! =
E\ < ﬂ(—imji‘). (12.18)

then the spectrum of the secondary particles with mass m,
will always have a characteristic maximum., From (12.18),
it follows that: if my—0 , then Ei1—o0 ; in the con-
verse case, 'n,mM Elmax~M . Having determined the values
of E-, ani B,, for a meximum in the spectrum the value of

M can also be calculated.
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We shall now consider the reduction of the secondary
(primary) energy spectrum with respect to the state of the
primary (secondary) spectrum. The general formulae quoted
earlier (see Section 7) permit a complete solution for decay

into two particles. However, the solution sometimes requires

extensive calculations, and therefore we shall only consider
a few problems.

First of all we shall consider the simplest case of the
structure of the spectrum of the secondary particles.

Let, for example, =% -mesons be formed as a result of the
reaction

1+p—=>=+p

and let the angular distribution of the = -mesons in the
CM-system have the form

N.@)=A-+Bcost¥ ™. (12.19)

In this case, the angular and energy distribution of the
secondary photons, formed as a result of disintegration of
the =" -mesons, has, in the CM-system, the form [12]:

: . 1 Bsin® §
NT(E' H= 2g1(1 — Vcos 3){‘4 +2]‘"‘(1 — Veos 9)2 +

+£B[l s z(cosﬁ-—V)f_l]
2 3 2g1(1—Veosd) E [ 1—Vcosd 3

\ (12.20)
J

where
p—— = 9m . E. —{—mz
3 a
q:.-Va —mt =L F b=
1 4

E
V=E‘;-|I—ms, y £, 1s the energy of the incident photon,

E 1is the energy of the secondary photons. The angular
distribution of the =° -mesons, represented by the function
(12.19) has one more property** [13]. The energy spectrum

*The determination, in the general case for energy and
angular distribution of the secondary particles, 1f the
primary particles are moving along one direction, was
quoted earlier (12.8), (12.10), (12.12).

**Irrespective of the method of production of the =%-mesons.
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of the secondary photons, at angle {},.:arccm—-l-g , 15 sym-
metrical about the value of the energy Er:%"' , whether the

nl -mesons are moving in one direction or even if their
angular distribution is isotropic. Thus, the relationship
(12.15) is applicable to the photons produced in the decay
of =%-mesons having an angular distribution (12.19)*.

The problem of the reduction of the energy spectrum of
primary particles decaying into a two-particles with respect
to the spectrum of the secondary particles, has been discus-
sed in works [11-16]. For a sufficiently large energy,
namely when the condition archE > archE.is achieved, the solu-
tion was obtained in the form of a series [11]:

Py g ,
N(E)=—=5 ¥ e+, E)NiEE+op), (12.21)
A
where

g, = —;% ch A arch E,‘.
= —";—4’— sh A arch E,,.
(A=1, 3, 5...)
N’ is derived from the energy spectrum of the particles with
1 = .
mass m,. When FE ~p , the expression (12.21) is some~
what simplifieds

2myp
N@E)=— A;fuﬁzea lrch'ﬁ,lN:(EenlrchE.l)' (12.22)
A
In particular [16], for the decay 00— 2= :

N (Ey) =—0,83E[0,91N’ (0,91E)4-9,7N’ 9.7E)+...]. (12.23)

*On the properties of the angle V,, see also [14, 15].



CEAPTER IV

INTERACTIONS INVOLVING THREE SECONDARY PARTICLES

Reactions, in which three or more particles are present
in the final state, are distinguished fundamentally from two-
particle reactions by the number of parameters necessary to
characterize them., Whilst reactions with two particles are
characterized by two parameters, reactions with many parti-
cles naturally have a larger number of parameters and, in
particular, there is no fixed value for the momentum py ,
which substantially determined the conclusions drawn in the
preceding chapter, Consequently, for reactions involving
many secondary particles, it is possible to pose only limited
problems, not dependent upon the role of kinematic factors.
In this case there exist three fundamental classes of prob-
lem: 1) Calculation of limiting relationships; 2) Calcula-
tion of the energy distributions arising from representations
concerning the special role of phase factors; 2) Calcula-
tion of general tendencies in the extreme relativistic case,
when it is possible, to a greater or lesser degree, to apply
formula (4 5), into which the momentum distribution of the
secondary particles does not enter.

Section 13, Limiting Relationships

If, as a result of some interaction, there are three
secondary particles, then the Laws of Conservation of Energy
and Momentum are written in the following form:

Ey=V Wi R+ Vm R+ i 5 (13.1)
. =p+m+p, (13.2)

The trajectories of these particles no longer lie within one
plane in the general case, and the relationship between the
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angles of emission of the secondaries, or between the energy
and angle of emission of any one of them is not definite.

I+ is easy to show that if there are three secondary particles
then even in CM-system, where the vectors of the momenta of
the particles lie in one place, each one of the vectors is

no longer characterized by a specific value for p, f(Eﬂ

(in accordance with 8.24), but any value from zero to a
certain p,, can be found in any direction. For this
maximum, the momentum of the given particle (e.gs 1) cor-
responds to the emission of the other two particles as a
single entlty in the opposite direction. It is obvious

that py . E,m“ are characterized in the given case by
formulae (8. 24) and (8.25), with the substitution of m, by
(my+my) e Thus, as a result of the formation of three
particles, the value of the minor semi-axis of the momentum
ellipse which appeared in its original construction, loses
its distinct significance, and it is possible to speak only
about its maximum value. The presence of only the upper
limit (but not the lower, equal to zero) for the momentum

of each of the particles in the CM-system by no means implies,
of course, that in the L-system any momenta are also possible
- up to a certain maximum - for any angle of emission. In
each particular case, the possible intervals of the angles

of emission of the particles and their momenta in the IL-
system, are determined by the relationship between the para-
meters of the ellipse, 4 and V , in accordance with the
principle established above. One should note in addition,
that the actual mechanism of the processes which result in
three secondary particles may allow a number of more specific
conclusions to be drawn - the mechanism involving two suc-
cesive acts with emission in each of them of two particles,
is for example I4-ll—/4(2,3)>243 . As a result of
such a mechanism, the momentum in the CM-system of one of

the three particles (in the given case, / ) is a maximum,

and therefore a definite relationship is maintained between
its direction of motion and the energy in the L-system,

from the presence of such a relationship it is possible to
draw a conclusion about the occurrence of an intermediate
state ( (2, 3) ) during the course of the interaction being
discussed.

In the very general case for reversion to a simple equation
of the type (8.1-8.3), it is necessary to fix the momentum
of one of the three particles, for example 3 , and hence for
E'=F;—V mi4p: and p’=p, —p, they will be correct for all
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the relationships given above, and it is possible to plot
the momentum ellipse for p; and p, for a fixed p; « As a
result of this, of course, the CM-system is no longer the
centre of mass of the entire system, but only the centre
of mass of particles / and 2 .

Let us consider a particular example of decay into three
particles, namely { -decay of a nucleus M at rest (p,=0) ,
and we shall look for possible values for the momenta of
the electron (p,) and the neutrino (2) , for a given
momentum of the recoil nucleus py (which can vary from
anln-—{) up to a certain annd) It is obvious that here
p=—ppand E'=A—Wg , wvhere A =M —mp and mp and Wg
are the masses and kinetic energies of the recoil nuclei.
In the centre of mass system of the electron and the neutrino,
the total energy of these two particles E'=V(E¥—(p)R =
=) A2 —2MWR, and the minor semi-axis of the ellipse, in
accordance with (8.24) is

Ae—- m —HQMWR
b=y Ty (13.3)

a*—m?
M
therefore the magnitude of the difference of energy of the
initial and final nucleus A can be determined by the maximum
energy of the recoil nucleus. For W’R——anu. b=0,

also a,=f=0 , so that the neutrino receives none of the
energy. Since p*w?MW’ then (13 .3) can be written in
the form

Since &#>0 , it is obvious that Winpu= , and

2 2
Pﬁmax'_FR
b S ———a']
2V 7}, (13.4)

The recoil nucleus removes only a small portion of the
energy of the fJ -disintegration and consequently the eccent-
ricity of the momentum ellipse

v=Lx R, (13.5)
and its major semi-axis
ba pzllrnn_"PE
a=~ = = A " 1 .6
Vicm R fesl

For pg=0 , the momentum ellipse is turned into a circle,
and for ppmsx into a point. With increase of py , in
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this manner both wvalues @ and b decrease. For a definite
value of «, Wwe easily obtain, in accordance with (10.7)

___Pr anu P R
a,—VA_2_P;]/e+ E=) (13.7)

Phmax =02 —mZ, (13.8)

Since

then

] s —pR) e

a‘=%ﬁ|:l+ (ﬂe 1}_,,,: ’ (13.9)

In a similar manner, for the neutrino we have

3
Pr m,
=f=="|1— . 13.10
a, f 9 .ﬁz—p?‘] ( 3 )
The upper and lower limits of the kinetic energy of the
electron for a given momentum of the recoil nucleus are
obtained from (10.12) and (10,13) in the form:

_ (A—pg—m)e LT
Wﬂmln-———2 (A'_Pﬂ) - ( 5 )
and
_ (@t pp—myy
We max ——r—-—-—-——2( +PR; . (13 112)

The discussion presented is a typical example of analysis
of the kinematics of interactions involving three secondary
particles via reduction to various particular cases of paired
combinations of two particles. In the example given, we
have obtained in this way, the maximum energy of the recoil
nucleus and the limits for the kinetic energy of the @ -parti-
cle for a given energy of the nucleus, Ultimately, we
shall return to analysis of interactions involving three and
more secondary particles, but for the present we shall pass
on to the determination of the limiting angles.

From formula (7.14) it follows that the maximum angle,
through which a particle with a mass m, is deflected, in-
creases with its momentum in the CM-system. Therefore,
the maximum permissible a.ngle ﬂm“ is determined by formula
(11 Ts where in place of p, px 1t is necessary to substitute
the value p,m "
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If the mass of one of the particles is negligibly small
compared with the mass of the other secondary particles,
then p,,, is converted to p, . Consequently, the method
of analysis described in Section 11 does not discriminate
very well between events involving a decay into two particles,
or decay into three particles, of which at least one has a
mass negligibly small compared with the masses of the other
particles.

It is well-known that it is also necessary to be cautious
in the analysis of the permissible angles ¢ (see Section 11).

A similar ambiguity can arise in the analysis of the com-
planarity of the tracks of the primary and the two tharged
secondary particles (see Section 11).

Actually, it is possible to demonstrate the need for care
by the following case. Let the particle decay into two
charged and one neutral particles. Hence, if the mass of
one of the two secondary charged particles (e.ge my ) is
close to the mass of the primary particle M and the velocity
of the latter Va~1 , then the tracks of both the charged
and primary particles are almost co-planar., In the L-system
relationship (13.2) is fulfilled.

Let us multiply both parts of equation (13.2) scalarly by
the single vector n , normal to the vectors g (plzp_r} and
P13 we obtain

(np;) = — (npy). (13.13)
Since in the given case

P AVE;, > 1 (py+VE )~ py
then

ICDSﬂzI=}%‘]cosbal<<l (13.14)

( #, and #,, are respectively the angles between the vectors
pyand n and py , and n ); consequently, the vector n is
close to the normal to the momentum p, » Thus, if the n
particle disintegrates into two charged (whereupon m,~M)
and one neutral particles, then the vectors p, p;, p; are
almost co-planar,
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Section 14. Fnergy Spectrum of the Secondary Particles

For a rigorous calculation of the energy spectrum of the
secondary particles, formed as a result of a decay into three
particles, it is necessary to know the mode of interaction
of the particles with a field. However, up to the present,
in not one case has it been possible to establish the nature
of such interactions. Therefore, it is advisable, in order
to obtain an estimate of the energy spectrum, to use approxi-
mate methods. The accuracy of the usual methods of evalua-
tion of the characteristics of decay processes depends on
the assumption that they are determined only by the statisti-
cal importance of the final states and do not depend on the
mode of interaction. It should therefore be expected that
such an approach is justified in every case for weak interac-
tions. Thus, the evaluation of the form of the energy
spectra of the electrons, formed as a result of the decay of
n -mesons and by 3 -decay, are approximately in accordance
with experimental data [1?]. A similar method was used with
success to study multiple processes for high energies of the
interacting particles flS] (See Chapter V).

Evaluations of energy spectra as a result of such a supposi-
tion were carried out in works [19, 20]. It has been shown
that in the CM-system, the probability dw that a particle
with mass m, will have a momentum between i pi—dp, , is
determined by the expression:

17 =0

Bpy 441 ~
dw o — l_ﬁ.;_ (o ¥ 14.
ooy = [( AA_PE)B-H ]dp. (14.1)

where
A=M—Vpi+m.
B= G)’:’ +m2 4 — A — 4nim2,
C=6A[A"— (P4 m2+m2)].

Naturally, the distribution is determined only by the initial
masses. In order to proceed to the energy representation,

~

it is necessary to substitute p, in (14.1) by

i

V”Ei—-mf and .‘.":r;, by ~§l dE,_
1
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Let us consider particular cases of the relationship (14.1)

1) mi<< P (i=1, 2, 3),
dw, oo (3M° — 6Mp, + 27%) 7 dp; (14.2)
2) m; > i
dw, 0 [2 (a4 mg) We — %E?]”‘Efd};. (14.3)
3) m1<<;1- mz>>sz, ma:"‘>;3.
dwyco (W — )" 2 dp,; (14.4)
4) 'm'l>>;;1' m!«%- m3>>;;3-
dwlm(fﬁi"";ﬂ;f’ d;u (14-5)
5) my <<P~1- iy << .f;:- ms 353-
d'm-'l"-‘o( T?: —;21) :5? d;l- (14 .6)

We shall calculate the energy and angular distributions
of the secondary particles for decay in flight. These
calculations also allow us to draw some fairly general con-
clusions for the relativistic case.

Let us calculate the energy and angular distribution in
the L-system if the distribution in the CM-system corresponds
to function (14.2).

In this case, in the CM-system

N (p)dp,dcosT co(3M* — 6Mp,+ 22) 2 dp;dcosT. (144T)

For the functions J(}) a:mi ;7(,9) we shall use the approxi-
mate expressions (7.23) and p=1E(l —Vcosd) « Hence, the
momentum distribution

1
: 3M2 — 6Mp, -+ 277 B
N (p)dpieadp, f ( l—-Vlcosi} 1) Lsinddb =

vond (9

INTERACTIONS INVOLVING THREE SECONDARY PARTICLES 85

1
=dp, f [3M2 —6Mp, (1 —V cosI)+
Cos l‘lm“(pj

422 (1 —V cos 9)2] p? (1 —V cos §) sin d ab. (14.8)

Hence it follows that

( 1 Flmu i _;imu —_— |

7(1 T ) for (1 1P1 )> ]

cos by, = " 1 (1 Pioax) o
—1 or = .

(14.9)
After integration we obtain

N (py) dpyeo p} (3M2[y2— (1 —V)?l —
— 4 Mp P — (L = VPR -0 =V} (14.10)

M M

o T P2 HOEVY
1= M

1+V for A<maFmy

The values of the momentum p, are included within the inter-
val from 0 to T_‘g(1+v) .

In the case of interest to us (relativistic particles), a
very general relationship can be established for average
momenta. In accordance with (12.10), the average momentum
p, in the L-system, corresponding to a fixed momen tum ';;: 4
is equal to: Ezmﬁé: , whence in the case of an arbitrary
distribution in the CM-system

M

2
= ok AR 14.11
p.%*{f N (p) prdp, = 1py- ( )
o

Proceeding to calculation of the angular distribution

Prax (B

N(#)dcosbecodcos ) [3M? —6Mp, (1 —V cosd) 4
of ' (14.12)

+2p3(1 —Vcos #] pi(1 —V cos¥)dp,.
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wiereupon

M
Pﬂ'“(a)z?ﬂl-—- Vcos&f'

After integration we obtain

dcos &
N(\‘}}dcos{}m '-'(-‘1—_—'17265—5-}?—. (14.13)

This expression agrees, if it be normalized, with the
angular distribution of ultra-relativistic particles, arising
as a result of decays into two particles (12.9). Such agree-
ment is by no means a mere chance. The special feature of
the expression is its independence of the energy of the second-
ary particles (provided that they have sufficiently large
velocities). Therefore, for any momentum distribution of
ultra-relativistic particles in the CM-system, their angular
distribution in the L-system will be determined by relation-
ship (12.3).

CHAPTER V

MULTIPLE PROCESSES

For increased energies of colliding particles, the possi-
bility of the formation of many particles in one act of
collision is increased. Of particular interest are multiple
processes with participation of mesons. In this chapter
we shall consider the kinematics of such processes, To
them, to an even greater extent than in the case with three
secondary particles, the comment concerning the impossibility
of a purely kinematic description of the processes applies.
Consequently, particular problems will be treated in the same
way as in the previous chapter.

Section 15, Iimiting Relations

In the general case, two overall relationships can be
obtained: for the maximum momentum of a given particle with
a mass m; in the CM-system and for the maximum angle of
emission of this particle in the L-system. It is obvious
that the second relationship is determined, to a considerable
degree, by the first.

Determination of Limiting Momenta in the CM-system

The momentum of a certain particle will have a maximum
value if all the remaining particles 2, 3, ... N are mov-
ing in the opposite direction.

This circumstance substantially simplifies the ensuing
discussion, in so far as in place of vector dimensions, it
is possible to consider scalar dimensions.

Since the energy and momentum of particle I have the fol-
lowing values:

87
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N N
E=FEtm— X E=F—3 E,
i i

el N S~
=2 pi
then its velocity
N ~
- E Pi
==, (15.1)
' B—YE
fm2

We require to find the maximum value of this quantity for
the condition

E;=Erp, (15.2)

i.e. to solve the problem by calculation of the limiting
condition., Following Lagrange's method, we shall look for
the absolute limit of the expression

N
K=[§‘,+Q1§1Eﬁ (15.3)

where Q is a factor which will be determined later on, The
limiting condition K is determined by the system equation

IK =0, j=2...N. (15.4)
. 0E; o ] : .
Since ?—z?,j s then this system can be written in the
Pi
form
N e N ~
i > p N
fmd i=2
I ot ot T =0 (15.5)
Ex— 3L, Er—3E, Er— 2 5
fomd foe fm2
j=2...N.

Here the value of Q should satisfy all the N —1 equations.
This is possible only if all the equations are identical,
i.e. if it fulfills the condition

h=th=...=f, (15.6)

¥ L}

4
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The method presented for the proof of relationship (15.6)
is due to Sternheimer [21]. It follows that for the limit-
ing case, particles 2...N are equivalent to one particle
N
with a mass Mm; .
i-2
Hence, the determination of the maximum momentum of the
particle reduces to the problem of two particles. Conse-
quently, by formula (10.55),

N 2
e z__ AR
- N "‘1“"’": (z,zms) (15.7)
‘I max QET
and
Piyu =
1 N 4 = % N 2 N 2
'I/ﬁf],-bvmt-l (iz‘f-mi) -2 {E.;.m’l o E—‘r( ‘2.. m‘.) + mi (}-‘t m;) }
25p (15.8)

In the more general form this problem is formulated for the

case where the momenta of the primary particles 1, 2, ...,

d are given, Hence, the maximum momentum of the (d-}-1)

-th palrticle is oppositely directed to the summed momenta:
L

;B: 2;‘ y and its value is determined from the relation-
i=t

ships
~ ~ N —~
P =pn‘+"‘,q§”1)i- (15 -9)
N u
DE=F,. (15.10)

Proceeding to the calculation of the angles %, in the
L-system we note, first of all, that # , is increased for
increase of p (excluding the case when this angle attains

its limiting value % ). Therefore the limiting angle
corresponds to ;,m and is determined by relationship (7.14).

Substituting the value for the velocity -ﬁa from equation
(15.1), we have finally

V94
Cimy T (15.11)
T

0 = arcsio ]
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where

A= [(Eﬂu {zlj‘,zml)z = mf] [(ET = § mi)2— mf] . (15.12)

=2

Figures 23-27 show the maximum angles for =N - and NN -
collisions for wvarious energies.
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Neutron energy W, , ReV -meson energy W, , BeV

Fig. 23 Fig. 24

Dependence of maximum angle  Dependence of maximum angle

$nay Of the recoil proton v &, of the recoil proton

in np-collisions with form- in =p -collisions with form-

ation of N =-mesons, on the ation of N = -mesons, on the

kinetic energy w, of the kinetic energy w. of the in-

incident neutron in the cident =-meson [21]
L-system [21]

For the derivation of (7.14) and consequently also (15.11)
it has been assumed that in the CM-system the particles can
be emitted at any angle; however, in principle the case is
possible (it is brought about as a result of collision of
particles of sufficiently large energies E.) when the
angular distribution of the secondary particles in the CM-
system is essentially anisotropic, and consequently, in the
CM-system there is also a certain limiting angle # war .

We shall derive the corresponding angle in the L-system,
assuming that in the CM-system the dispersion takes place
symmetrically relative to a plane perpendicular to the direc-
tion of motion of the particles. In this case corres-
ponds to the particle moving through a limiting angle in the
rear hemisphere in the CM-system
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sin§

oxir

. 1
Dmax = arcig — v

S _-—
A+ 4Eim]
if §,,, 1is the largest angle ¥ , determined by (15.11),

In the alternative case it is nmgéessa.xy to use (15.11).

cos s‘utr ‘+‘

(15.13)

Another problem arises in that case, if the momenta of the

B G oo~ ooy
SEEY
Y g ey iy

1 S
80 Er bl

Fig, 25

Dependence of the maximum angle 8,,, of the recoil

nucleus in nucleon-nucleon collisions of high

energies, with formation of N m-mesons, upon the

total energy of the incident nucleon., Curves
calculated by N.G, Birger,

many secondary particles are measured. Let us consider the
case when the momenta are known for all the secondary parti-
cles except one (l), for which it is required to determine
the maximum angle [22].

The equation of conservation for this case can be written

in the form:
N

[Er— pil 4=my = X (E; — picosd) 4 Ey—pycos . (15,14)
je

If my-=0 and the energy FE, is sufficiently large, then
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Fig. 26 Fig. 27
Maximum energy F,,. of the Maximum energy E. max Of the

z-meson formed by meson -
nucleon collisions with forma-
tion of N » -mesons [33].
The energy is measured in BeV.
Numbers by the curves indicate
energy of the primary = -mesons
in the CM-system

the term Ej—p<<my, and can

m-meson formed by nucleon -

mucleon collisions with forma-
tion of N= -mesons [33].
The energy is measured in

BeV. Numbers by the curves
indicate the energy of the
primary =-mesons in the

CM-system

be neglected., Then

e =-§ml"—a,[8 cos ﬂl—i_-VBzumf sin? \‘}J‘ (15 «15)
waere
N
B=my— 2, (E;— p;coshy) (15.16)

il

and consequently

. B
n‘}lm“:arcsmm—l. (15.17)

: 8
As usual, if E}] y then .=+

> « We shall consider

finally the determination of the thresholds of formation of
new particles in collision processes. The minimum energy
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necessary for formation of new particles corresponds to the
case, when all the particles after the reaction are at rest
in the CM-system, This corresponds to the condition:

N
VitV mi+ =2 m, (15.18)

where p is the momentum of the colliding particles. Hence
it follows

=1

N 2 2
(2} m;) -+ mi — mfl
__N—' '_'_mlz,

23 m, (15.19)

i=1

=y
[

N 2 . R
(E m‘) - my—my;

E—lz Lt N
22 m;

i=1

N 4
(z ms) + miy— m
Ey=""A% (15.21)

' (15.20)

2 E m;
1=1
and
Lytheesh= 7 (B4 VD), (15.22)
where
r ;
v=2=2, (15.23)
E“
Actually, if my=my=m , then
N J
. ;m‘ _)_flm;
Er=Ey= =1 d T=‘-

Section 16.  Angular and Energy Distributions of
Multiple Processes

It has already been mentioned that for multiple processes
it is impossible, from a purely kinematic consideration, to
obtain the characteristics of these processes. However,
the idea advanced by Fermi that the characteristics of

-multiple processes leading to the formation of particles
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are determined by the statistical weight of the final
states is in reasonable agreement with experiment, A
certain similarity between these methods can be found in
the fact that neither of them take into account the details
of the interaction between the particles, although the very
fact of establishing statistical equilibrium is a conse-
quence of this interaction (and herein is ultimately the
essential difference between the statistical and kinematic
conception), A detailed review of statistical theory
exceeds the bounds of this book, We shall only mention
that in the energy region around several BeV this theory,
taking into account the isobaric states of the nucleons,
predicts correctly the energy distribution and the multi-
plicity of = -mesons formed* for energies of F,—1—6 BeV,

Formally the contents of the statistical theory can be
written in the form of the simple relationships

”f"!\'(ii‘:-r)ﬂ\"Pg:r b (16.1)

Wy (E-r- T’l] d;’;\ = .
mQpﬁwhf_.1(Er—Vﬂ:?+Ef,pl)dp;***). (16‘2)

where Wy is the probability of formation of N-particles,
if the total energy is equal to E;, and the total momentum

*For a detailed survey of statistical theory see (23], We
note additionally that for very high energies (Ey=>>10 BeV)
the statistical theory, not taking into account the inter-
action between mesons, is not justified, For a description
of this interaction L.,D, Landau has suggested the use of
relativistic hydrodynamics for an ideal liquid [24],

**In general, the processes are considered in the CM-system.
**¥fe note that for calculation of the momentum distribution
of the system for N-particles the function is considered

wN- I(ET_V‘"E "f':;f.;‘l)'
where my, p, are the mass and momentus of a certain specified
particles,

K N-R/H
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is equal to zeroj; PRy is the density of states, and

wy(Er, p)dp, is the probability that in the system under
consideration, one of the particles has a momentum within
the intervel py, p4-dp, . We shall write the expression
for the density  of states of the system with an energy Er
and with an momentum pg , in the form

(& )”“ 4Qy (Er. Pn)

8
dET

(16.3)

Iy, 1~ x5 (Er. pr)»

where V is a certain characteristic volume (for the case of
collision of 2 nucleons this volume, in absolute value is

equal to (ﬁ—y ; the exponent of the power is equal toN -1

(and not N ) in consequence of the Law of Conservation of
momentum, and ¢y, 1is a factor which takes into account

the conservation of the normal and isotropic spins; it is
calculated according to well-known rules of guantum-mechanics

(see [25] and Chapter VI). The factor {gfiﬁglfll

T
to the volume occupied by the system in momentum space, for
the conditions

, equal

N

S E =L, - (16.4)
t;lﬂ _

Epi'—p-r (16.5)

is equal to the 3N -dimensional integral

A 1 =~ ~ N_‘~ v et
i o] a[’ér—EVm‘§+;erﬂ[pT~Lm] I a%p. (16.6)
3N fesl

fml o

In the general case, the evaluation of this integral is
intricate; it was carried out recently in [26]. The result
was obtained in the form of a complex non-power expansion.
We shall confine ourselves here to the two extreme cases
useful in practice: the ultra-relativistic (all m;=0 5
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and the non-relativistic case (E ﬁ;) [27, 28].

In these cases

dQN (Er .P-y}
dZ‘
3 3 =
o ,}_}zn 1 myms .. My B Vo ';Z_r [?{-ﬁwl}—].]( )
rg ' _ < ot "(16.7
(3= q! Em‘ EEfi
- =

where W, is the total kinetic energy of the particle (non-
relativistic case) and

- N—=1 2 ™2 a2
dQx(Ey 7y = (BE—T)N .
— gN-i P
dET g F‘!‘
X

i (ET p.r) {-E.T‘Jl‘p'r - [ E + P E —~
b T T T
?C WHi= N — =T [N == 1~ N -,-;—1

(16.8)

i
(ultra-relativistic case).

From (16.7) and (16.8) respectively, we obtain

N *h
T EN 1 m; ;
QuFr®)___eo?" " - gEW-0-t (16.9)
dF. h (N—1)— 1]; s
i—1
"QN(’T 0) _ (=\¥! an-a_ (N4 @N—1)

Omitting unimportant multiples (which should be taken into
account by normalization), one can write

N
E m;
wy By, p)=pi | Wy — f‘ e (16.11)
my 2 m;
sl
and ;
@n(Fr. p)=1i(Ex —2p)" " %
y _M l"fr ! (B 2?‘=l'_ [__?fr___ Ey—2p t] (16.12)
I EN —i—4) [ON—i- 37 Ni--2
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Figure 28 shows the momentum distribution of = -mesons
formed as a result of annihilation of anti-nucleons at rest;
Figure 29 shows the relationship between the average multi-
plicity of m -mesons and the kinetic energy of the colliding
nucleons, The momentum distributions in accordance with
(16.2), (16.11) and (16.12) are given in the CM-system. In
order to determine them in the L-system, it is necessary to
know the angular distribution of these particles in the CM-
system. Unfortunately, the theory in its present form does
not permit accurate calculations of this distribution, since
to do this it is necessary to take into consideration the
Law of Conservation of angular Momentum for a number of
motions, which has not hitherto been done. However, for
comparatlvely moderate energies ( <5 BeV), experimental data
shows that the angular distribution' of the secondary particles
in the CM-system is approximately isotropic. Assuming the
distribution to be isotropic we can, for conversion from the
CM-system to the L-system, apply formula (7.4) or (7. 18) and
then derive the integration with respect to momentum.

201 , 4 \.\\

Wy (€q.p)

T
/i

_1'/ " \

; 1 L 1 1 1 1 \|'\.\|\

a7 02 03 04 05 06 07 08 09 (0 gjve

Fig. 28

Momentum distribution of = -mesons formed as a result of
annihilation of stationary anti-nucleons. The
distribution was calculated by V.M. Maksimenko [34]
according to precise formulae from Statistical theory
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Dependence of the average multiplicity of = -mesons
formed as a result of nucleon-nucleon collision,
on the kinetic energy of the participating nucleons.
The calculations were carried out in accordance with
formulae from statistical theory with the assumption
of an isobaric state [23]

It may be expected that a similar approach to the solution
of the problem will not hold good for very large energies
when, in the CM-system, an appreciable departure from iso-
tropy occurs (see for example [24] ). Bearing in mind such
a case, we shall derive the conversion formulae’ from the
CM-system into the L-system, when the angular distribution
in the first system is assumed a cosine function, and the
momentum distribution a & -function [5].

N (¥, pysin¥abap =210 coswTa (5 — 5 sin Vabdp,, (16.13)
where k= 1, 2, 3, sees By using (7.18) and integrating
with respect to momentum, it is possible to obtain

_ @41 (rtgh® 3
N @) sin 8 db = === Geigrg 1 1y ekricosd <

. [g4-V1—[(’%)2—1]T’tg’DJ![-gT9 tg=u+]/ 1—[(3)2—1] r lg’n]2k+
VoA e
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LV G e [ [ By i@y ] )
AN CRITET

(16.14)

N@sindas=2k1+1 __ Gtgde
2 (1 qTigzgyrk+z

AN GRTD | BN
(ol

|
¢
] (16.15)

N(®)sinddd=2 1 g [T“"tg‘ﬂ—'!]“ 16
( ) n {2k+ ) cos & h!fg'-'ﬁ—k]]z-""" . (16 )

Figure 30 shows the angular distributions N(¥) of particles
in the L-system for various k& and -% = 1.01. A special

feature of this distribution is the presence of two maxima
in the case when %&/0 . This circumstance is a conse-
quence of the fact that the angular distribution in the
CM-system in this case is similarly characterized by two
maxima at #=:0 and == . By transformation from the
CM-system to the L-system the directions of propagation of
the particles moving in the forward hemisphere in the CM-
system are inclined close to the axis, forming a so-called
narrow cone, at the same time the particles moving back-
wards in the CM-system are similarly propagated forwards

in the L-system (at sufficiently large energies). However,
their velocities are contained within a considerably broader
cone., It is appropriate to illustrate a similar picture
with simple determinations. Let the angular distribution
in the CM-system be symmetrical relative to a plane perpen-
dicular to the axis of motion, but anisotropic in such a
way that all the particles lie within the interval of the
angles 0, # and «—%, = . Then, in accordance with

(4.3) for {=> 1 , the semi-angle at the apex of the narrow
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Angular distribution of particles in the L-system, if their
angular distribution in the CM-system is represented by a
cosine function (16.13), and their momenta by a © -function.

Parameter B 1.01

)
cone
1, ¥
dh=-tgg, (16.17)

and the semi-angle at the apex of the broad cone is

02=—}‘-ctgg, (16 .18)

Hence it can be seen that the narrow and broad cones can be
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sharply demarcated in the IL-system, and this demarcation
should be most sharp for small § . The characteristic
feature of the distribution considered here is frequently
observed using photographic emulsions in investigations of
high energy jets, which substantiates the anisotropy of the
angular distribution in the CM-system of the secondary
particles arising as a result ef the collisions.

Section 17. Determination of the Energies of Fast Nucleons

The energy and momentum of the primary particles are the
most important characteristics of nuclear reactions. For
relatively moderate energies, a number of methods have been
developed for determining these values for charged particles

measurement of deflection in a magnetic field, counting

the grains in a photoemulsion, measurement of multiple
Coulomb). For inecrease of energy, however, the difficulties
of measurement are sharply increased, and for energies of
5.100 — 10" ev, the usual methods become ineffective.
But an appropriate method for the determination of energy
has been developed just for such fast particles, based upon
a kinematic approach. It consists of measuring the angular
distribution of the secondary particles formed as a result
of collision of the particles whose energy it is required

to determine. [29-31]. The great advantage of this method
is the possibility of measuring the energy of a neutral
primary particle. In this case it is necessary to determine
additionally the direction of their motion, identifying it
with the axis of the shower, The determination of the

axis of the shower, of course, introduces an additional
inaccuracy in the value of the energy (relative to deter-
mination of the energy of the charged particles),

Basically, the method depends on relationship (5-5), which
we shall write in the form

(£ +my)? (
o i MM A 17.1)
g (m +2Eymy + m}y)
If B> m and E\>>my , then
E,
2___ 1
= omy (17.2)

On the other hand, the value of 1 enters into relationship
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(4.1), determining the transformation of the angles of omis-
sion from the CM-system into the L-system.

For determination of the value of 7 from (17.1) and (4.1),
it is necessary, generally speaking, to determine.f and 3
(the value ¥ is determined experimentally), which is scarcely
possible., However, in the most important case of very fast
¥y and then relation-

particles it can be assumed that s

ship (4.4) will no longer depend on the velocity of the
particles in the CM-system. It is precisely this substitu-
tion which is the essence of the method under consideration,

From (17.2) and (4.4) it follows
B Zoltige 3 (17.3)

Formula (17.3) is essential for determination of energies
according to angular distribution. Usually it is applied
to a particle producing a shower with a small number (< 3.4)
of slow particles (so-called jets). Although there are
certain reasons to doubt that these showers are formed as a
result of collisions of nucleons with nucleons, however,
usually the mass mn is assumed equal to the mass of the
nucleon, i.e. m=mp=m. . We shall make for the present
this assumption* and, furthermore, we shall estimate the
possible error associated with it. This it remains to
determine the angle § . As a result of the collision of
two particles, it is natural to assume that axial symmetry
occurs, in the sense that the function @ @®) of the
angular distribution is independent of the azimuth angle.

As already mentioned, in the collision of two particles
it is necessary to assume an even greater degree of symmetry?

dH=x—9.

We shall assume first of all that for every particle with
a momentus p corresponds a particle with a momentus - E.
Then it is easy to obtain the relationship which is very
often used,

Let 9, and #,_, be the angles within the limits of which
are found f and1—f fraction of all particles. Then, from
the assumption of symmetry in the CM-system, & _,=n—1,

#For the kinematic criteria of nucleon-nucleon collisions

see [35].
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and consequently, on the basis of relationship (4.4):

1
P (17.4)
or
2m
Er~ % FEath (17.5)

In practice, if f::_% y then

2m
¥

ETm .

We shall now take into consideration the fact that the
conditions for the existence of two particles moving through
complementary angles ( ¥ and =—F§ ) are achieved only on
the average. In this case it is necessary to assign some
particular form to the function @ and to the function for
correlation of the angles of emission of the particles.

We shall find the maximum probability of the value of the
energy for the given function @© , assuming that the angles
of emission of the particles are statistically independent
[30, %31, At the present time there are no experimental
data which would verify the accuracy of this assumption.

We shall see it as being the most simple assumption, bearing
in mind the necessity for verification of the results by
experiment*.

In this case, the probability ¢ of the particles being
emitted at the angles 9,...9y i.e. equal to [30]:

N
O, ... b= Ff @ an, (17.6)
where #;, di}; are related to 5; dﬁ by the following relation-
ships (see (4.4) )

cos § = 1—rtg*d

T 21ghy (17.7)
d = 2ysec? a9 (
= Trgry O 17.8)

Hence, the maximum probable value of the quantity T=17Ts

*This supposition is adequate, of course, if the number of
secondary particles is large and if there are no decay
products of secondary particles. among them.
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(consequently also the energzy) is determined by the eguation

{Foo... o0} ,cm,—z{“‘“m‘“}n e’ (1749)

Dilworth et al.-[30] have calculated Ts., assuming that
O () == alc053|ksin§ (R = const).

In this case 7w can be found from the equation
N

N 1 k 1 1
'_'=E|V 18 2 "__2‘{ 2400 ‘_l‘—‘;"’lg‘zﬂ‘-}]' (17010)

2y ety L
We shall also find the spread of the value T.

Let us write (4.4) in the form
InT=—lnt"ﬂ+En—-— (17.11)

Summing over the angles of all secondary charged particles
we obtain

t\:j el

‘\

Iny=—- Intz i Intg
SR DULTEED> (17.12)
(In the given case N is the number of secondary charged
particles in the shower,)

For the maximum simplification we shall use the fundamental
limiting theory of probability, according to which the sum
N of several random values for N —oois also a random value,
the spread of which is represented by a Gaussian function
with a dispersion of N , where o2 is the mean square devia-
tion of the primary random value*, Therefore (17.12) can
be represented in the form

In-;_.-————Z!ntg{) +—— (17.13)

wiere

c2-—f lntg nfg 2) (Intg%), (17.14)

and the function 7 is the standard deviation of the value

Intgug in the CM-system.

Naturally the value of ¢ depends on the degree of anisotropy
of the angular distribution in the CM-system. However, for
approximate calculations the value of ¢ can be taken as equal
to 1.

*This supposition is adequate, of course, if the number of
secondary particles is large and if there are no decoy pro-
ducts of secondary particles among them,
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As mentioned, the methods described here for determining
energies are adequate for the case when the ratio-%—approaches
1, In practice this implies that the energy of the primary
particle is greater, and consequently as a rule, also the
number of secondary particles is greater than 1., It is
impossible to determine the precise limit of the method,
however it can be relied upon in every case to give an
accurate order of magnitude for the energy of the primary
particle for energies of E,> |0t ev.

An estimation of the error, due to the fact that the veloci-
ties of the secondary particles do not satisfy the above-
mentioned conditions, can be carried out in several ways,
however, all things equal, there remains the difficulty
associated with a small number of secondary particles. We
shall note here a few of these methods. Thus, it is possi-
ble to use the method of successive approximations, having
assumed in the first approximation -%—::1, and to determine
in this mamner a certain To , then according to formula (4.?)
to evaluate E and to carry out all the calculations again.
Naturally, as a result of this, it is necessary to determine
independently the momentum and mass of certain secondary
particles, Another method of determination of energy for
the case when the momenta and masses of certain secondary
particles are known is symmetrization of the angular distri-
bution [22]. This method boils down to a determination in
accordance with formula (17.1) of a value of 71 4 for which,
in the corresponding system of co-ordinates, the angular
distribution has maximum symmetry relative to the plane
perpendicular to the direction of motion.

An additional substantial source of error can be the
energy distribution of the primary particles., In this
case (as happens in cosmic rays), when the energy spectrum
of the particles causing the showers is represented by a

*For the derivation of the theorem, it is assumed that the
dispersion . exists. Moreover, generally speaking the
Gaussian functién so obtained is displaced relative to
zero; this function is symmetrical relative to zero in
one important actual case, when function ¢ is symmetri-
cal, i.e. it is fulfilled by the condition 2?M =G-8 ,
This also is the second condition for applicability.
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rapidly falling function, even insignificant fluctuations in
showers of definite energy can give rise to a large error.
The reason is that the primary particles of low energies

are more frequent in the spectrum and consequently, are
registered with a greater probability than particles with
higher energies. Therefore, the method in the form descri-
bed above gives good results only in the case when the spect-
rum of the primary particles is constant or almost constant,
For the study of cosmic rays it is necessary, in addition to
the effect of the spectrum, to take into account the relation-
ship between the total number of particles in a star and the
magnitude of the energy. This problem is analysed in detail
in the work [32].

PART TWO
QUANTUM THEORY



In this part of the book we shall consider the conse-
quences of the general properties of space-time for nuclear
reactions, by means of quantum mechanics. These conse-
quences, as we shall see below, prove to be considerably
more important than in classical mechanics. It is essential
to emphasize at the very beginning that our problem is to
discriminate from amongst all the properties of a reaction
those which are consequences of the established laws of
nature, Such a discrimination proves to be very useful.

It permits the determination of the requisite number of
actual parameters of a reaction (generalized phase shift
analysis), and the association of the various processes
with rigid relationships. Moreover, it assists the assess-
ment of experimental data and permits the most important
characteristics of particles to be established (their spin,
parity, isotopic spin).

In the main we shall use non-relativistic quantum mecha-
nics, Our treatment assumes a knowledge by the student of
quantum mechanics to the extent of a University course or
D.I. Blokhintsev's book "Foundations of Quantum Mechanics",
to which we shall refer frequently, and does not demand a
knowledge of Group Theory, In certain places we shall
indeed be obliged to use results from Group Theory, but
this does complicate the understanding of the physical sig-
nificance of the theory set forth below or the application
of the general formulae to analysis of experimental data,
In connexion with this, a small number of results will be
presented without proof, For students interested in this
side of the work, we shall refer to the appropriate section
of the book by L, Landau and E, Lifschitz "Quantum Mecha-
nics" or to a special review of articles from periodical
literature,
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We shall construct our account on the basis of the funda-
mental concept of the S-matrix* which is of great signifi-
cance in the theory of elementary particles and in nuclear
physics, Therefore the ability to work easily with this CEAPTER VI
concept becomes a necessity to every gqualified experimentor
for whom the present book is designed, In this part of
the book we shall apply the formulation of quantum mechanics
advanced by Dirac**, This terminology and notation is a THE SCATTERING MATRIX AND ITS PROPERTIES
most appropriate form of quantum mechanics, applied broadly
in theoretical works, which illustrates in concise form the
significance of the various coefficients encountered in the
theory of angular distributions, correlations and other Section 18,

problems, and so facilitates working with these coefficients, 2hs Jumyipi

The general formulation of the problem in the case of a
nuclear reaction consists in the comparison of the proper-
ties of the particles and of the parameters by which the
state of their motion is described prior to the reaction,
with the parameters and properties of the reaction products,
In the case when the interaction and motion of the particles
can be described by means of classical mechanics, one speaks
of comparison of the initial and final co-ordinates, of the
momenta of the particles, and of any variables characteriz-
ing their internal state, In guantum mechanics we should
speak about the comparison of the initial and final state
of the system, But the state, as is well-known, is given
by a set of quantum numbers, Thus, it is necessary for us
to find a rule, which allows us to compare the quantum num-
bers describing the initial with those of the final state
of the system, For example, in the case of scatfering of
spinless particles by a powerful field, we can speak of a
rule connecting the quantum numbers which characterize the
orbital angular momentum !, its projection m in a certain
direction, and the energy E in the initial and final states,
We observe that the state of motion of a spinless particle
can also be given by its momentum p,

In the case of interaction of two spinless particles, the
following sets of quantum numbers can be given (4, f, my, m,,
E,. E;) or (p. p:) . IT the particles have spin, then in the
corresponding set it is necessary to include the numbers s
and 1, characterizing the magnitude of the spin and its

*This method of discussion of the formal theory of nuclear projection, If, as a result of collision, other particles
reactions is used in [23 and 24], are created or the internal state of the colliding particles
**Tt is assumed that the student has a knowledge of the is changed (such a collision is customarily called inelastic),

theory of the introduction to quantum mechanics to the
extent of Chapter VII of [1],

1.
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then in the number of variables it is necessary to include
further quantum numbers characterizing the structure of the
particles, their internal state,

Since the study of the structure of the particles does not
enter into our task, we shall denote all these other charac-
teristics of our system by the single index a ,

In accordance with quantum mechanics, the state of a sys-
tem is described by the wave function W, (x), where n is the
index of state, i.e. the short symbol for the set of quantum
numbers proposed above, giving the state of the system, and
x is the index of representation, i.e, a set of variables
upon which the wave function depends, The wave function
satisfies Schrodinger's Equation*,

1O —Aw. (18,1)
Equation (18,1), defining the increment W in a certain
small interval of time Af can be written down in the follow-
ing manner:
t+ 42

(A=Y ()—! J. ﬁllf(z)dt. (18.2)
¢

Having established this equation, we shall introduce the
operator[?ﬂ%%ﬂ.ﬂ::l—-H?At.which transforms the value of the
wave function from that at instant of time f to that at the
instant of time f-4-Af , An integral operator U (¢ f) can
alsc be introduced, converting W(f) into 'W(f) , where {—f,
is the final value, It is easy to prove that**

15 =AU. (18.3)

Let us consider a reaction of the type
411142, (18.4)

i.e, as a result of collision of particle I with particle II,
particles 1 and 2 are formed, having, generally speaking,

an altogether different characteristic and even another
nature.

*The cap over the letter denotes that the corresponding
guantities are operators, Here and in future h=c=1.
**¥See for example [3].
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Equation (18,1) describes the entire process of interest
to us, i.e., there exists such a solution , which for
t——co transforms into the wave function W;(x), describ-
ing the two non-interacting particles I and II by specific
characteristics of motion and the internal state -{, and
for t—-toco transforms into the wave function w, for the

4 - : r
two non-interacting particles I and 2,

Since in practice the states of non-interacting particles
are recorded prior to and after collision, i,e. for {=—co
and f—=-4oc0 , then the operator transforming W(—co) into
W (4-co) will be of interest to us

limU (¢, tg) =S8,
ty»—co
t >4

¥y (4 00) = S (— c0). (18.5)
The operator § is called the S-matrix.

For calculating {f or S, as is evident from our discus-
sions, it is necessary, in general, not only to know H
(usually the operator H is of course unknown for interaction
of nuclear particles), but also to be able to solve the
Schrodinger equation for this value of H, At first sight
we haven't in the least simplified the problem, The advan-
tage of introducing the operator $ consists in that the
matrix elements of § are very simply related to the
observed characteristics of the process - the probability
of transition, and that the general laws of nature are
directly expressed in the properties of the operator S .
That is, by means of the S-matrix we can solve the problem
formulated in the introduction - to discriminate from
amongst all the properties of the reaction those properties
which are consequences of the established laws of nature,

We shall derive the general properties of the S-matrix,

We shall show that the squares of the matrix elements of
the S-matrix determine the probability of finding one or
other value of the dynamic transitions in the final state,
for a specified initial state,

We shall resolve ¥;(—oo) and ¥, (+o0) into eigen values of
the operator @ , describing any dymamic transition (angular
momentum, force etc,):
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Q¥,=g¥, ¢ is the eigen value of the quantity Q .
Vi(—00)=2Clq V(o0 = Cl,.
7 7
Substituting these in equations (18,5) we obtain
C£’=q25ﬁ'qcé-
If, in the initial state the quantity ¢ had a definite
value ¢, i.e. Cq=1g, *, then
o
Cy=3Sgq.-
But, according tc the general ideas of quantum mechanics,

|C§42 is the probability of finding the value ¢=g¢’ in the
state f; therefore [S,, |* determines the probability of
transition from the state ¢p into the state g¢’,

Section 19, Unitarity of the S-matrix

We recall that a matrix is called unitary, if it possesses
the properties

A? Sﬂ"Sﬂﬂ — "'ﬁ: 2 Smss:lu = [ﬂlﬂl
or more briefly, in symbolic inscription
$*8=17 and S§* =1; (19.1)
(the asterisk stands for a complex conjugate, the plus sign
for a Hermitian conjuate); / is here and henceforth a unit

diagonal matrix, This property arises from the orthogona-
lity and normalization of the wave functions:

(T, ‘]rn)‘_"'[mu' (19-2)

* %vhas usual denotes the Kronecker delta:
{1 forg=4qo
“ o forqg+# g0

For simplicity here we shall consider the value with a
discrete spectrum, The discuss.on of the case of a con-

tinuous spectrum of the value ¢ is obvious by generalization,
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Under the scalar product we shall assume (as usual) the
summation and-integration with respect to every index x
(the index of representation) upon which the wave function
depends; /,, is an abbreviation which describes a & -func-
tion if the quantum numbers have a continuous spectrum and
a Kronecker delta if the quantum numbers have a discrete
spectrum, The relationship (19.2) leads to*:

i?_ s

d s
‘aT(‘D. ‘L):( FTR

: av e s

)+ (@ 5F) =1@. Fn)—i@, Ay —o,
Let us consider the consequences arising from (19.2) for
the operator U(/, ¢) introduced above:

Ty () = Uay (¢, 1) T (1),
i ; )= )jr U;m (£, fo) ]I‘.:» (fo),
(‘rﬂ‘ W)= aa} = ??J U;ﬂUﬂl = 2; U:;;EU.... — ( u dl*)s?'

For fj—»—co and f— 4+ o , we obtain the very important
result
§8*+=1.

This equation has a simple physical significance., In fact,
taking "he diagonal elements from both its members we
obtain

%Isanizz | A (19-3)

Since | S| defines the probability of transition from the
state n into state « , then equation (19.3) simply denotes
that the sum of the probabilities of all transitions is
equal to 1, Hence it is obvious, that by omitting any state
in the sum of (19,3), we shall underestimate its value
Equations (19.1) impose a strict limit on the S-matrix for
different processes, From these limits there arise a whole
series of relationships between the cross-sections of diffe-
rent processes, which we shall consider below,

*We point out that H is Hermitian,
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Section 20. Constants of the Motion

By constants of motion in quantum mechanics are implied
dynamic variables, the operators of which Q satisfy the
equation:

daQ _ aQ

—r =5 +1HQ=0.

If @ evidently does not depend on time, then this equa-
tion is reduced to a state of the commutativity of Q with
the Hamiltonian, It is easy to see that such operators Q
also commute with the operator §, Actually, S by our
definition, comprises an infinitely large number of infi-
nitely small operators, each one of which is proportional
to H, i.e,

15Q1=0. (20,1)

But commutating operators can be reduced to a diagonal form*
Consequently, if we choose constants of motion (angular
momentum, momentum, energy, isotopic spin etc,) as the
indices a and nr , then the S-matrix will be diagonal with
respect to this index:

@7 1S = 18" 1) 30 **). (20,2)

where ¢ includes all the remaining gquantum numbers with
the exception of ¢, This relationship is the basis of the
theory of correlation in angular distributions and other
important phenomena, The index ¢ denotes that (1 1S% 1)
depends upon ¢,

It should be emphasized that not all the constants of
motion commute amongst themselves (e.g. angular momentum
and momentum, different projections of angular momentum) ,
This means, on the one hand, that it is impossible to
select simultaneously as indices n , all consfants of
motion, On the other hand, this means that S plainly does
not depend upon certain quantum numbers, We shall show,
for example, that the S-matrix does not depend upon the
quantum number characterizing the projection of the total
angular momentum, § commutes with all the operators of the

*See (1], page 94 .
*¥z shall write down the matrix elements in accordance

with Dirac's notation: Sg,=(¢"1S|q)
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projection of total angular momentum

81=0. [J,81=0, [LS|=o0. (20.3)

We shall denote the guantum number for the projection of
the total angular momentum on the 2z axis by M, and write
it in matrix form using equation (20,3), Taking into
account that J,W + constWly, we obtain

Jg'.(fw | Jp| M"Y (M"Y’ | S| 1 M) = % (M| S| 1M")(M” | 1| M).

But according to equation (20,2), the S-matrix diagonal
with respect to M:

(M| T, | M) (| S2 | ) = (o' | SE [ (M | | M), M5 M

Hence it follows that (y'|S¥[4) is independent of M, This
result emerges from the property of isotropy of space (a
consequence of which is the Law of Conservation of angular
momentum), Actually, as was shown above, |S,,[* characterizes
the probability of transition and is also independent of the
choice of the reference system, and the quantum number M
(projection of angular momentum) is changed by a simple
reversal of the co-ordinate system,

In a similar mammer (7'1S8%|7) is independent of the total
momentum of the system, of the projection of the total iso-
topic spin of the system and so forth, Briefly, § is inde-
pendent of those gquantum numbers which are changed as a
result of transformations under which the Hamiltonian of
the system is invariant., The profound relationship should
be emphasized between transformations leaving the Hamiltonian
of the system invariant and the constants of motion, A
detailed discussion of this relationship is beyond the
bounds of the present book*,

Relationship (20.2) is used below for discussion of the
following constants of motion: energy, momentum, angular

momentum, its projection, parity., It is assumed that the

basic properties of these constants of motion are well known
to students**, In addition, as an example we shall consider

*For the relationship between transformations of a system
of co-ordinates leaving the Hamiltonian of the system
inveriant, and such constants of motion as angular momentum
and momentum, see [2], Sections 13 and 24,

**See [1], Sections 25, 103 and [2], Sections 24-28,
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one further important constant of motion - isotopic spin,
The student can pgeome acquainted with this concept through
[9]. It should be noted that adaptations of (20,2) are
extensively used in the literature, and also applied to
other constants of motion (intrinsic parity, strangness
etc,), the consideration of which lies somewhat aside from
our theme, We shall not discuss the weak interaction of
particles liable to disintegration, the study of which led
to the discovery of the non-conservation of parity.

Section 21, Time Reversal¥*

If the system is not within an external field, then all
instants of time for such a system are of equal right as
are also all directions of space, In classical and guantum
mechanics this circumstance leads to the Law of Conservation
of Energy, In addition, in classical mechanics equations of
motion are invariant relative to the substitution ¢—-—¢ .,
Let us, for example, consider a solution of a Newtonian
equation describing the motion of a system of material
points, Suppose that at the instant of time ¢#=¢, the radii-
vector of the points and their velocities are equal to
ri(t), v;({,) and after the lapse of an interval of time
Aft=¢,—t, , at the instant ¢, these dimensions have the
values r;i(f), 9;(f) . The invariancy of the equation rela-
tive to the substitution {— —{ means that a solution
exists characterizing the fact that the radii-vectors and
velocities of the material points r(f), —o;(t) , are trans-
formed in the same arbitrarily chosen interval of time into
ri(ty). —o;(¢) . Not all systems possess such symmetry,
Consider a system of charged particles in a magnetic field.
In this case as is well-known (see for example [11]), it is
necessary to include, in the operation of time conversion,
the reversal of the direction of the magnetic field, If
this is not done, then the reversibility of time does not
hold for the system, Since classical mechanics is the
limiting case of quantum mechanics, it should be expected
that time reversibility finds its counterpart in quantum
mechanics, Let us consider the guantum mechanics of

*This paragraph is designed only for the more advanced
student, For this study one should be familiar with
Sections 22 and 27, It can be omitted for a first reading
without loss of understanding,
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conservation, i.e, the Hamiltonian is independent of time,
The Schrédinger equation

v (¢ pre
t_ML}-zH\I: 6] (21.1)

for a time (- —{¢ transforms into

W (— 1)

— =T (—) (21.2)

(21,2) does not coincide with (21,1), This does not permit
us to designate W(—¢) as a time reversal solution of equa-
tion (21.1), For calculation of th. latter we consider the
complex conjugate of (21,2):
AV (— 1) -

= = H"T" (—1). (21.3)
Since A is Hermitian it follows that H and /* have the
same proper value (but generally speaking, dif ferent proper
functions); this means that a unitary operation V exists
such that

VAV =H. (21.4)

From (21,3) by means of relationship (21.4) we obtain

. Mg_;;mz H V™ (— B). (21.5)

Equating (21.5) with (21,1), we see that VVI*(—¢) naturally
qualifies as a solution by time reversal, Thus, time rever-
sal transformation contains a complex conjugate

T (8 = VK (—£); (21.6)

Here, 7 1is the operator for the time reversal, and K is
the operator for the complex conjugate,

We shall consider the Law of the time reversal transforma-
tion of operators and we shall assume that the wave fumnc-
tions for such a transformation maintain their form, and
that the operators of the dynamic quantities are changed
(c.f. we are changing from Schrddinger's representation to
Heisenberg's representation [1]). '

For such a transformation it follows from the general
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formula of quantum mechanics

(FW (@), OTW (1)) = (¥ (—1), Q¥ (—1)).

=
where Q is the transformation operator (time reversal),
Thus, for operators independent of time we have

VrOr =0 (21.9)

The symbol "T" signifies that the corresponding operator if
transposed, If 5:0 , as happens for A in accordance
with (21.4) and the Hermitian property of H , then we say
that this operator is invariant relative to time reversal
(t—>—10 .

_ It is not difficult to show that from the invariancy of
H relative to the operation ¢-—s—¢ , the invariancy of the
S-matrix also follows:

- -

Sv=35" (21,8)

Relationship (21.8) is terms the theorem of reciprocity, It
indicates a very general property of the S-matrix, However,
(21,8) itself represents a small supporting confirmation
whilst a clear idea of the operator V is unknown., In order
to find V it is necessary to assign transformation proper-
ties for the operators of the dynamic variables constituting
the entire set of values characterizing the system, This
determines the transformation properties of every other
dynamic variable, The sources of our knowledge concerning
the operators of quantum mechanics are the principles of
co-ordination and experiment, Consequently, we shall super-
impose on V a requirement that the values not changing

sign as a result of the transformation ft—»—f in classical
mechanics (co-ordinates, energy etc,), should have operators
which are invariant relative to the transformation (21.7),
Indeed, the values changing sign as a result of the trans-
formation f#—»—¢ in classical mechanics (velocity, momen-
tum, angular momentum, vector potential, electro-magnetic
field etc.) should have operators obeying the condition

ViQr=—Q". (21.9)
The operators of spin, being dimensions analagous to the

angular momentum should also beﬂtransformed in accordance
with (21,9)., If the operator V exists, possessing these
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properties, then by definition the motion of the system is
reversible in time,

Let us find an explicit form for the matrix operator V
for a state, of specified quantum numbers for angular momen-
tum [, ! (for example, orbital angular momentum of one of
the particles of the system) and its projections m and m':

('m'a’ |V |Ima),

here ¢ and o« are the remaining quantum numbers,

From the conditions imposed upon  for the requirement
of time reversal and that the operators under discussion
are Hermitian,

ViEy =P, (21,10)
VIV =—1I". (21,11)

From (21,10) it follows that V is diagonal with respect to
the quantum number ! , The dependency of V on the quantum
numbers m and m’ can be established by solving equation
(21,11) using an explicit expression for the matrices of the
projections of the angular momentum (see [2], Section 25):

(Um'a’ |V |Ima) = (&,| V| &) gy me™m. (21,12)

Using (21,7) for all the remaining dynamic variables
(squares of angular momenta, spins, momenta, etc,), (21,12)
can be written in the form:

(Um'a’ | V| Ima) = 8,,8p8 _ e ™ (Bl D Hm),

where the phase f is arbitrary; it can be chosen so as to
simplify the calculations, Generally, f is chosen such
that

(U'm'a |V | Ima) = Buadpyd_ e pet=T+m, (21 . 13)

The first reason for our choice of f is the fact that the
matrix V is real; the second reason follows from a con-
sideration of the addition of angular momenta (see Section
‘27): :

W arn = 2 (JM | jujapo) We inWastsin s
Fibs
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Warn is the wave function of the total angular momentum,
Into the index A of this function enters j,. @ Jo @ , If
each one of the states W.j, and W,;. , are transformed as
a result of substituting ¢——( by means of (21,13), then
using the property of vegtor addition coefficients zsee

Section 27):
V=M ji—pfs— pa) = (— 1T UM jip o),

it can be showm that W, is also transformed in accordance
with (21.13).

Thus, as a result of our choice of f , there is no neces-
sity to bother about transformation of the phase - all the
wave functions of angular momenta and spins are transformed
in a like manner,

Let us consider the S-matrix in the representation which
is determined by the total angular momentum / , its projec-
tion M and the dynamic variables, invariant relative to
the transformation ¢— —t¢ , For example, for a reaction
of the type ¢+ X—b-4V, in accordance with the preceding
paragraph we shall hdve

(s'l'a’ | 87 | sla) By pBarnes

here s, s’ are the total spins of the particles, !, [ are

the orbital angular momenta of the relative motion, Substi-
tuting this expression in (21.8) and using the explicit

. form of the matrix operator V (21,13), we find that the
S-matrix in such a presentation is symmetrical:

(B|S7| A)=(A|S’|B). (21.14)

This result reflects one of the fundamental properties of
the S-matrix, having considerable value in applications,

Similarly the equally important relationship,
(P,rf i fopaa’ | S [ 2 ypya) =
sy 1}.'5( R S TV A YT 1 TR AT
X(=pPii —mu—pnz| S| — ppjy— pijs — paa’), (21.15%)

can be proved, here /i, p; are the spins of the particles
and their projections; p; and p, are the momenta of the
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relative motion in the initial and final states,

If the function VW is transformed by a unitary matrix W

=W, (Y =W,

then from (21,6) and equation’
(Fry =vae

we find

V= Wwvw, (21.16)

i,e. V is transformed from one representation into another
(see Section 22) not as the general unitary matrix, but by
means of a transposing transformation,

Since the form of V’ can be found f}-om consideration of
invariancy, the choice of phase for V implies an unambi-
guous choice of phase for the transforming matrix W,

Let us consider an example, Let V be fixed by (2}.13)
and let W transform it from the representation /m into a
representation assigned the single vector n :

W= ¢"1tYy,, (n). (21,17)
where .y, is the phase factor.

The vector # can be directed with respect to r (the
radius vector of the particle) or with respect to pthe momen-
tum of the particle)., From the requirement of time reversal

(V'pV =—p% V'rV=r) we have
PVipy=s( +p)i '|V|r)=sG" —r). (21.18)
We shall carry out transformation (21.17) on V, having the
form (21,13), in accordance with formula (21.165:
(H" | 4 iﬂ'} e 2 e(Tr Vl'm' (ﬂ’) al’IB-m’meﬁ{“'m]e“lylm{a} =
lml'm’
8(n'+n) for 1,=0

2iy kinl e -
= ): e 4 Vi (') Yo (n) = " - P
e 8(n’—n) for i=—r-
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Comparing this with (21,18) we see that our choice of phase
in (21,13) corresponds to the wave functions of the orbital

nl
momentum lﬂmff), in the p -representation and ST T
yh"(g)::{—qﬁm(;) in the r-representation,

Section 22, Transformation Functions

We have examined the most important properties of the S-
matrix, Now it is necessary for us to establish in what
manner these properties are connected with experimentally
observed values, for example with cross-sections, angular
distributions and so forth,

It was mentioned above that the squares of the matrix
elements of the S-matrix determine the probability of
transition from a particular state of the initial set of
quantum numbers { , into a particular state of the final set
f. This means, that if we choose as quantum numbers the
angles 0, ¢, determining the direction of flight of the
particle, then the square of the S-matrix will give the
probability density of detecting the particles in a given
direction, PFurther, if we choose the quantum numbers [, m,
then we obtain the probability of detecting particles with
a specific value and projection of the angular momentum,

We shall now deal with the transformation of the S-matrix
defined by a given set of quantum numbers, into the S-matrix
defined by another set, Such transformations will be
extremely useful to us in future, We shall cite an example,
The Laws of Conservation impose a number of limitations on
the form of the S-matrices, If, in the set of the quantum
numbers & and » there occur the guantum numbers of constants
of motion, then the S-matrix is diagonal, If the limita-
tions imposed by the laws of conservation are of interest
to us, for example in angular distributions, then we should
transform the S-matrix from the representation specified by
the quantum numbers of the constants of wotion, into the
representation specified by the angles,

In accordance with the general principles of gquantum
mechanics [1-3], in order to find the probability of the
variable ¢ , having a particular value, it is necessary to
resolve ¥, (x) into eigen-function of the corresponding
operator §,
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‘Jrﬂ (x): GZC;'FQ (X) (22,1)

and to Fake tEF square of the modulus of the coefficient of
resolution Cy , The set of coefficients Cy is a wave
function in the "¢-representation",

Expression (22,1) can be written down in Dirac's notation
thus:

(xju)z?_‘,(xlq)(qln)- (22.2)

Hence it follows that the eigen-function of the operator
¥, (x)=(x|g) 1is the transformation function from the g¢-
representation into the x-representation,

The convenience of Dirac's notation consists in the fact
that they reflect, with the maximum accuracy and in the most
general form, the fundamental principles of quantum mecha-
nics, In fact, the notation of the transformation function
(x|g) stresses a certain symmetry between the indices of the
x-representation and the indices of the ¢-state, Moreover,
this system of notation permits us to explain in a simple
form the significance of the various coefficients encounte-
red in the theory of angular distributions, correlations
and in other problems,

It is easy to prove that (x|¢)® is equal to (q]%), i.e. the
functions effecting reverse transformation, Actually, we
shall multiply (x|n) by (¥]¢')" and integrate with respect to
x . Then, by virtue of the orthagonality and normalization
of the function (x|¢) we obtain

[y mdx=(|n,

hence the transformation function (x|¢)’= (¢'|x). From the
representation it is clear that in the case of discrete
spectra for example, for the quantities x and ¢, |(x]q)[?

is simultaneously the probability of finding the variable
g in the state x and the probability of finding x in the
state ¢ ,

Let us cite examples of very well-known functions of
quantum mechanics which play a major role as transformation
functions, The eigen-function of the momentum operator in
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co-ordinate representation is a plane wave:

W, (r)= eirr = (r|p).

)l

And its complex conjugate {rlp?::(p|r) is the eigen-function
of r in the p -representation,

The eigen-function of the operator of angular momentum in
a momentum representation has the form

Yim (3, @)= (Yo |Im),
%, ¢ are the polar angles of momentum,

The following analysis is well-known:

m=1 J 1(.5'-’)
2 — = V(3 ®) Vin (. o).

1 ipr
L

(2“)‘J’|

.',Ma

where © and & are the polar angles of the vector "'ﬂ+i
is a Bessel function, It can be written thus: 2

(r|p) =2 (B [Im)(r | p); (bm | 3¢).
M
Here we obtain, in accordance with Section 21:

(Imlﬁd)}:.f}’:m(a- ‘D)'
J ;(Pr)
1+—
(r|p=

—-‘ —
Vor
These functions are orthogonal and normalized, and are

important examples of transformation functions:

lzm(n’] Im)(im |n)=(n'|n)=5(n —n').

Here n and n’ are unit vectors, the direction of which is
determined relative to the angles {p and 3o’ :

f 'm’ | mydQ,, (n]im) = 3B s

J @inrareimn=5e0 —n.

We note that (p'—p)=i(n’"—n) pi, BI(p’ —m.
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Transformation of the matrices of operators from one repre-
sentation into another is an obvious consequence of what has
been stated:

' |Plm)= EZE, O IEYEIP %) &),

i.e, the transformation is carried out by means of the same
transformation functions, This, obviously, is also related
to the operator §.

Knowing the form of the S-matrix in a representation where
constants of motion are taken for the variables § and ¢,
and kmowing the transformation functions from this represen-
tation into the representation corresponding to the condi-
tion of the experiment, (§|vw) , it is easy to obtain the S-
matrix in the required representation and consequently, also
the relationship between it and the values obtained experi-
mentally,

Section 23, Relationship between the S-Matrix and
Effective Cross-section

As has already been mentioned, the square of the matrix
element of the S-matrix defines the probability of detecting
in the final process, one or other states of the system,
Knowing this probability, it is possible to calculate the
effective cross-section of the process, Up to the present
we have considered the collision of particles in a very
general form, implying under initial and final states,
various states of the many particles,

We shall now consider the collision of two particles,
Suppose that prior to collision (for ¢-——co ) particle I
had a spin j, , spin projection | , particle II had a spin
Iy and a spin projection Py j; the particles were moving,
not interacting, with a momentum p in a centre of mass sys-
tem, We shall assign in the same way the so-called channel
index* ¢ - a quantity defining the type of particles I and

*We are adhering to the usual terminology in nuclear physics,
Reaction channels are the different routes (in the sense of
the properties of the reaction products) along which a reac-
tion can proceed, In the concept of channel of course, is
included not only the quantum numbers characterizing the
internal state of the particles, but also the total spin of
the particles and the orbital angular momentum,
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II (mesons, neutrons, protons, etc.).

By the state / can be understood, for the present, any
state of any number of particles which can arise as a
result of the collision of particles I and II, The effec-
tive cross-section is defined as the ratio of the number of
events of a given type occurring in unit time at one parti-
cular target, to the flux of the incident particles over
unit surface area, According to this definition, it is
required to find not the simple probability of obtaining
the state f as a result of interaction, but the probability
that this state occurs in unit time,

We have defined the S-matrix by the energy of the initial
state and used the fact that energy is one of the constants
of motion

(181D =(fo| S| &) 3 (E,— E)). (23,1)

where f, and i, denote the quantum numbers characterizing
the final and initial states, excluding the energy E.,

Squaring, we obtain
I(f S1op=|(fe| S¥| W) - [3(B,— EdP=

3
= Jim |(fy| S| )35, —Ep) [ 5 e Cr
-t

df.

Integrating this expression with respect to all E, , we
find
; 1 E 2
lim S7\1,) | AL,
Jim o [(5] %)

From whence it follows that the probability of conversion
in unit time is equal to

n

;Tl;|(folSEIin) .

Concerning the matrix (fa]-S'E | 2) , one sometimes talks about
the energy fixed on the surface, We shall find the flux of
particles in the state |f§). We have defined the initial
state by the set ’a.f[tl,jup-np) . Since in this state the momen-
tum has a definite value, then the flux, as is well-known
[1] is equal to v/(2r)*. Further, the state |4) is defined,
not by the quantum number p , but by the quantum member for

(23.2)
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the energy of relative motion of the particles, E.

It is easy to show that the wave functions |%/itJ/ytup)
and [f) of these states are connected by the simple rela-
tionship:

i) = | 21 ubup) F ) (23.3)

Hence we find the expression for the flux of particles in
the state |iy):

p!

@ (25.4)

Thus, the expression for effective cross-section takes the
form:

42 . . a
o= 2l St 5.5

3r, can also be expressed by the matrix elements of the S-
matrix in the representation where account is taken of the
transformation of Im :
4z2 BEl..s . 3 .
=T Z(fuls | ey Jyteylrm) e | )

L

2

(23.6)

*We shall verify this relationship,
‘Let ¥p=%¥ps be the wave function, normalized in accord-
ance with the conditions:

fw;mtrp.“. di=Y(p—p)= s_,a(p-—pf)n(u—n')ﬂ
—_— WE—E)b(n—n')

here 7 is a single vector along the direction p , Equating
this with the condition of normalization for wp,

f Wy ¥ g,y d3 = (E—EN 3 (0 — n),

we find

Noting that —-=v , we obtain formula (23.3).

¥, — ]/-E
=PV ZE¥m
dE
dp
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In accordance with the previous paragraph (Im|m)= Viu(n) .
We shall select as the Z-axis, the direction of the incident
beam, when

A1,

}J:m{o- 0}= 4 O _mo»

and expression (23,6) takes the form

9= wA?

2 Va1 A SEJ“fIPIjﬂ\“nm) s
7

(23.7)

where A is the De Broglie wave length,

We shall show that the expression for cross-section
agrees, in the limiting case, with the expression obtained
in classical mechanics, Let the system possess such pro-

- perties that a reaction takes place only if a particle has
a definite orbital angular momentum [—=! , Let moreover,
the reaction proceed with maximum intensity, i,e, the
?orresponding square of the matrix element of the S-matrix
is equal to 1,

In this case, from (23.7) we find

oy = X2 4 1),

Let us derive this result from quasi-classical considera-
tions. Let a parallel beam of particles impinge on the
target, The angular momentum of the particles relative to
the centre of the target is Pp , where p is the momentum,
and P the impact parameter, but, on the other hand, the
angular momentum can teke only the discrete values Vi(I4-1)
therefore for [>>» | , the approximate equation will be I
fulfilleds:

pp=zl

or P=Ik , i,e, the particles with a given wave-length and
orbital angular momentum strike at a fairly definite dis-
tance from the origin of the co-ordinates. We shall find
the area of the anulus, in the plane perpendicular to the
direction of the beam, on which particles with a given [
will fall:

oy =mp} | —wpi =wRI[({ 4 1)2 — 2] = mA2 (2L 1),

THE SCATTERING MATRIX AND ITS PROPERTIES 131

Hence, it is obvious that the effective cross-section
determined above, for large [ converts into the cross-
section defined in classical mechanics as the area of a
circle in the plane perpendicular to the motion of the
particles,

The expression derived in (23,7) is not the expression
most generally used for the cross-section of any process
operating as a result of collision of two particles, We
have found the cross-section 9 for the conversion of the
state ¥, into the state W, , by taking the square of the
matrix element of the operator §. In the case of elastic
scattering of particles, one is interested not merely in
the probability of a system remaining in the original chan-
nel, but the probability, that as a result of interaction,
the system is reconverted into the original chamnel, This
implies that from the wave function v, , it is necessary to
calculate the wave function W :

V=¥, — V=S — )Y,

where / is a unit matrix, and in order to calculate the
cross-section of elastic scattering, the square of the
matrix element of the operator §_j must be found, The
matrix [, as is well-known (see [1]), remains unity in all
representations, Therefore the general expression for
cross-section (including also elastic processes) takes the
form

Orll =nk2 B

2 Va+1]((fl S—1Ijaj it l0)]
1

(23.8)

If the beams of colliding particles are not polarized,
then this expression must be summed over all values of the
projections of the spins of the primary particles, This
gives _ i

0= .
)R 2:"“ (23.9)
1
The general expression for cross-section through the matrix
elements of the S-matrix in representations where trans-
formations are taken for Im, instead of n has the form

Ar? 2 * .
51’..=“p_-;|(fo|S'_"’J°U|I‘u’.|ﬂ-"u”)]2' (23 .10)
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APPLICATIONS OF THE GENERAL THEORY OF THE S-MATRIX

Section 24, Relationship between Effective Cross-
sections of Elastic and Inelastic Processes

On the basis of formula (23.8) it is possible to draw a
number of general conclusions on the properties of effec-
tive cross-sections,

1) Let us suppose that the interaction of the particles
occurs only in a state with a specific orbital moment / ,
(i.e, a specification of interaction such that the elements
of the S-matrix differ from zero only for [=/,); then

G;f‘ =R (2L 1) | (-ff' [S [ ﬂf,}l-, ju Py ‘!10) ]2'
This value is called the partial cross-section.

From (19.1) it follows that |(f,|S|4)[?< 1, i.e. the partial
cross-section of any inelastic process cammot exceed =i2(2/
—+1). This agrees well with the result from classical
mechanics considered previously,., Thus the unitarity of the
S-matrix (19.1) gives rise to the simple fact that the num-
ber of interactions producing the state f,, camnot exceed
the number of particles falling on the target,

2) No inelastic processes exist which are not accompanied
simultaneously by the process of elastic scattering. In
fact, even if one element of the S-matrix differs from
zero, then by virtue of the property of unitarity, the
absolute value of the diagonal elements of the S-matrix are
less than unity, and this implies that the cross-section of
elastic scattering, in accordance with (23.8), differs from
zero,

3) Collision of spinless particles, From the general

132
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results obtained above, it is possible to derive very simply
the well-known expressions for the effective cross-section
of scattering of spinless particles, In this case, using
(20,1) and (20,2), we represent the S-matrix in the form

Sty 8 (B — E). (24 ,1)
From the requirement of unitarity, in the absence of
inelastic processes it follows that
SISt —1,
or

si= e (24.2)

Substituting this expression in formula (23,8), the final
state in which is now characterized a definite moment [, we
obtain the partial elastic scattering cross-section

Fm=nkt [V A1 (e — 1)[° = 4x22 (2 + 1) sin?3,,

and we find the total cross-section by summation over all
values.of /3

— =32 H
a=4nk Ez,(2£—|—l}sm23;, (24.5)
here & is the phase shift,

In order to obtain the differential scattering cross-
section, it is necessary to transform the S-matrix into a
representation of the angles  and ¢:

A2 2 2
o = — 2+ 1Dle *—1) P (cos )| dQ* .
I E:( +1)( ) Py (cos 0) (24.4)

*The element of the solid angle arises as usual in expres-
sions associated with guantum numbers having a continuous
spectrum, If the wave functions are normalized by a &-
function, then the square of the modulus of the wave func-
tion determines the probability density; the probability

is obtained by multiplying the square of the modulus of the
wave function by the differential of the spectrum, For
example, if W(x) is the wave function in co-ordinate presenta-
tion, then the probability of having a co-ordinate x is
written down as |W(x)|2dx , If it is a function for n parti-
cles in the momentum presentation, then in order to obtain
the probability, it is necessary to multiply the square of
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Integration of (24.4) with respect to angle, as is well-
known, gives (24.3). In deriving formulae {24,3) and (24.4),
it is obvious that we have used only the general properties
of the S-matrix**,

We shall now consider the case when inelastic processes
are also possible as a result of collision of spinless
particles, In this case, it is no longer possible to derive
from the condition of unitarity, a simple expression for
the S-matrix, and under / in formula (24,1) should be under-
stood the total anguler momentum of the secondary particles,
For elastic scattering ! is, as before, the orbital angular
momentum, Therefore, the cross-section for elastic scatter-

is obtained from (24.4) by replacing ¢t with the complex
number S having a modulus less than unity

day =2 | ¥ @14 1)(S'— 1) Py cos 6) [ 2.
i

Integrating with respect to angle, we obtain the total
cross-section of elastic scattering

o =R 3@+ 1)|S— 1] (24.5)

We shall find the total cross-section for all inelastic pro-
cesses by means of formula (23,8), choosing for f, a set of

quantum numbers including the total angular momentum of the

particles emitted:

a,=nxe§(2:+1;|(n|s‘lo)1"‘.

Under the summation over all values p, we understand as
usual the summation over every discrete variable (including
the enumeration of all types of reaction), and integration
over every continuous variable,

the modulus of the function by the product of the differen-
tials of the momenta of the particles: dp,dp.dp,...dp, . This
product is generally called "the element of the phase space",
**oreover here, of course, the assumption has been made
that for ¢—+co, the particles can be considered as free,
For scattering potentials, falling off to infinity as l/r
and more slowly, special consideration is generally neces-
sary,

o
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Using the condition of unitarity
21| [0)F+10]S o) =1. (0]s'|0) =5
hence
==X @A+ 1) (1—]S]). (24.6)

Let S‘::B,e‘al . Then the partial elastic scattering cross-
section can be written in the form

of

L —_— —
m—-—l 23;1:055;—‘—82.

and the partial inelastic scattering cross-section in the
form

___ji_____[ B

Tl P
From these expressions, it is particularly obvious that
inelastic processes are accompanied at all times by elastic
processes, For a given value of cross-section of elastic
scattering, there is a maximum possible value for the cross-
section of inelastic processes oM, and when o =oix, o

is also equal to o®* ; the maximum possible cross-section

for elastic scattering ofer—=4smex,

4) We shall consider the limiting case, when the inelastic
processes play a very great part, That is, let there be a
great many channels, and since all matrix elements of the
S-matrix are of approximately a single order of magnitude,
and since rZI(fulSHo) 2=, then every every element [(fo] S|ig)]
<1, The collision of mesons and nucleons at high energies
is a typical example*: )

T+ N’
r
a4+ N— S
In4 N’

The cross-section of each individual inelastic process is
very small, However, in accordance with (24.6), the sum of

*With certain modifications these representations are widely
used in nuclear physics,
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the cross-section of all the inelastic processes is approxi-
mately equal to

oy 2 A2 (204 1).
3

For summation with respect to the state f,, we have used
the relationship rg](f.,fSl%)F: 1—|tip| Slip)|* and we have
vFh

neglected [(i|S|iy)|e in comparison with 1, We shall make a
similar approximation for the cross-section of elastic
scattering (24.5):

0y = 3 A2 (2 1).
H

The expression used for the matrix operator §—I is not
correct for all /, As mentioned previously, for large
values of /, it can be considered quasi-classical, and

these values of [ correspond to large impact parameters
p=*xl. If the radius of interaction of the colliding parti-
cles is equal to R (this, obviously, is a certain effective
value, but not necessarily fixed rigidly), then the maximum
value of [/, for which interaction is still possible, is

. . . R
equal to zum% . This implies that for [>ly=5 the

particles do not interact and §=1J, This is, summation
with respect to [ goes from zero to [, , Hence, it is easy
to show that o, =o,==R?. Putting it another way, the
cross-section of elastic scattering will be very large -
equal to the total cross-section of all the inelastic pro-
cesses, Our result bears, at first sight, a paradoxical
character, since the total cross-section of interaction is
equal to 2rR2, This paradox is explained if the angular
distribution of the elastically scattered particles is con-
sidered, For this it is necessary to transform the opera-
tor § —f~— /7 into a representation of angular scattering,
The transformation function, as mentioned above, has the
form:

Vim (B, @)= (O [Im),

Ig;,fl’rm’m(i’m’[ﬂ?)= Yim (9, %). (24.7)

Let us substitute (24.7) in the general formula for the
scattering cross-section (23,8); as a result we obtain

R ]
L-T

24.8
2 Q_i/.tj Py (cos)| d2. (24.8)

tul

da::ka
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It can be shown (see [2] p.495) that the summation in (24.8)
is equal to
J,(-;in)

X ’
(=)®
where J, is a Bessel function of the first order. Thus, in
this case, when inelastic processes are large (intensive
aborption of particles from the beam takes place), the

angular distribution of elastically - scattered particles
has the form:

R 2
Jil= 8
d LK
7o =R (., ) (24.9)
B R . . R
ut JlLY' essentially differs from zero only for j-Dﬁ,l,

or for Bna%—. Hence the explanation of the paradox follows:
for conversion to classical mechanics, the relationship

0, =3, 3, =2rR? holds but the particles are elastically
scattered through very small angles ﬁh%, consideration of

which requires the application of gquantum mechanics, The
criterion of applicability of classical mechanics consists
of precisely the fact that it should be possible to neglect
the wave length of the particle in comparison with the
dimensions of the system, But this implies that 3; should
be neglected, and ¢ becomes

at:nF:E(?I—{— )= =R

Expression (24.9) agrees exactly with the expression for
Frauenhofer diffraction by a perfectly black sphere, . This
agreement is not accidental but is a conseguence of the
wave nature of particles, In connection with this, by
optical analogy, the elastic scattering of particles caused
by the presence of inelastic processes is called diffrac-
tion scattering, As is evident from what has been stated,
the angular distribution is characteristically sharp, the
half-width is determined by the ratio between the De Broglie
wave length and the effective radius of interaction of the
colliding particles,

5) Optical Theorem, In the example presented, we have
used the property of unitarity of the S-matrix to show the
close connexion between elastic and inelastic processes,
We shall prove that between these processes there exists
an accurate relationship, independent of those assumptions
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which we have used for discussion of our example, This
relationship is also a consequence of the fundamental pro-
perty of the unitarity of the S-matrix.

We have seen above that §—/ is the operator, the squares
of the matrix elements of which determine the crqss—§ecticn
of various processes, In place of the operator S5—7, the
operator R is frequently introduced, defined as jR—=8—7/

R and §—J differ only by an unlmportant phase factor,
Let us write down the property of unitarity of the S-matrix
through the operator R :

$8F = (I 4-1R)(T—1IR*) =1, (24.10)

whence

IR—IRY +RR" =0. (24,11)

Let us consider the matrix element of the operator equation
(24.11), when the wave functions are the functions —

| apponE %}. We have,
- 2n ran: 2 7
(1, RYy= 5 (n'pp’ | R mpgy) 02 — ). (24.12)

As can be seen from formula (23.10), the square of the
modulus of the expression

2 ., "D
o7 (e | R | mpyge2). (24.121)

occurring in (24,12) gives the differential cross-section

of elastic scattering., This value is called the amplitude
of elastic scattering., The matrix element of the third term
in (24,11) can be written down as

(lp'f RR ll.l')_.
= X (s RN Y| R* i) O~y (24.13)

\! - . . . -
2:, as usual signifies the sum over every discrete variable
N

and intergration over every continuous variable, which can
occur as a result of collision of particles I and II,
Substitution of (24,12) and (24,13) in (24,11) gives a
system of integral equations for the amplitudes of the pro-
cesses, The existence of such a system, as was seen from
the introduction, follows only from the requirement of
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unitarity of the S-matrix, These integral equations have
a particularly simple form when, by virtue of the Law of
Conservation of energy, only a process of elastic scatter-
ing is possible, It is easy to show, that by means of the
system of integral equations derived, it is possible to
determine the phases of the scattering amplitudes, if their
moduli are known, Thus, by measuring the effective cross-
section, we find the squares of the moduli of the scattering
amplitudes and then, by means of the integral equations,
their phases, In practice, for elastic scattering of spin-
less particles we find

([ R |m) 22— | R|m) 2]

21: 2r - "
= [ &2 w|Riwag (| R* | )

or, introducing the symbol f for the elastic scattering
amplitude, we obtain,

4dn .
Lim i, mi= [ flw, 0 dQf 1w L (24.14)
where (n’, n) is the scalar product of the singl vectors,

Relatlonshlps of the type of (24.14) were used, for
example, in [8] for analysing a complete set of experlments*
on the elastlc collision of nucleons with nucleons, We
shall consider only the particular case when the integral
equations reduce to a simple relationship, Let n’ =np=p;
po=4p, &’=a, Then the expression (24,12') will be the
amplitude for forward scattering without change of projec-
tions of the spins (we shall denote it by f(0)), and (24,13)
is reduced to the following simple expression:

8(E'—E)aq,

where o is the total cross-section of all processes which
can occur as a result of collision of two particles with
given projections of spin p and p,. On the basis of
(24.14) we find

4z

_’l =

e (24.15)
Or, expressing it another way, the imaginary portion of the
forward scattering amplitude is proportional to the total

effective cross-section,

Let us sum the left and right portions of (24.14) with

*See below,
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respect to the spin projections of the colliding particles,
Then we obtain

2 Sp Imf(O)=(2/1+ 1) @Ju 413, (24.16)

where o y in accordance with (23.9) is the total cross-sec-
tion for collision of non-polarized particles, The rela-
tionships (24.15) and (24.16) are the so-called optical
theorem, and they are frequently used for theoretical con-
sideration of the various processes of collision, and for
the analysis of experimental data, Consider for example
the process of scattering of photons in a Coulomb field,
From the point of view of quantum electro-dynamics, the
process is of a high order of e*®, however, the fact emerges
that in a Coulomb field a fairly intense pair formation
occurs (inelastic process), a marked scattering of the
photons will occur (the so-called Delbriick scattering),
Whereupon, by means of (24.14), knowing the cross-section
for the pair formation, it is easy to calculate the lower
limit of the forward scattering cross-section, An important
application of the optical theorem is found in the analysis
of dispersion ratios [7]. It can also be used for making
more precise phase analysis of the various scattering pro-
cesses, particularly in those cases when it is difficult to
measure the cross-section of scattering through small
angles,

From the optical theorem it is possible, without drawing
upon the model dependent representations used previously,
to obtain the basic shape of the angular distribution of
elastically scattered particles for high energies,

Let us consider a ;imple case, the scattering of spinless
particles; then, from (24.14) it follows that [34],

e, (P )
FOP> (),
but this implies that the angular distribution of elasti-

cally scattered particles at high energies is sharply for-
ward, and is focussed within the solid angle:

AL = nl? < (%)z Ty
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Section 25, Relationship between Effective Cross-sections
of Direct and Inverse Reactions

Let us consider the two reactions:

I4-Nl—=7142.
The cross-section of the direct reaction, in accordance
with (23,10), is written :

da; 4n? =
ﬁ;f=—p§—ff—nﬂh 2| % pr pr) [P (25,1)

The minus sign for the unit vector n, denotes that in the
state f, the particles are moving away from the original
system of co-ordinates, The cross-section of the inverse
reaction has the form:
a‘cﬂ
du;

_4:1:'3 & i
5 __‘J{i(—”i Py f"‘urs [ 7 pa) . (25.2)
Equating (25.1) and (25.2) with (21.15) we see that there
is no simple relationship between the cross-section of the
direct reaction and that of the inverse reaction in which
the spins of the initial and final state are orientated in
an opposite direction relative to the orientation of the
spins in the direct reaction, It is then necessary for us
to sum the cross-section with respect to the spin projec-
tions in the final state, and to sum over the projections
in the initial state; +this gives

Mo 42 1
W= F EENGTY X N (] S nmu)

FBpp By By

o A2 ' .
& = R D ) [ (= iy | S% sy
b1 Pty by

If now, we use relationship (21,15) and make the summation
over all the spin projections, then we obtain the equation

e,

dag,

At ) @t 1)=—t-Chit D @it-1). (25.3)

As was evident from the derivation of the last equation,
comparison of the cross-sections of the direct and inverse
processes can only be made for one and the same energy E,
Furthermore, it is necessary to remember that (25,3) is
accurate only for the case when the colliding particles are
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not polarized, In the general case there is a more complex
relationship between the direct and inverse processes,
determined by formula (21,15), For reactions with polarized
beams of particles it is also possible to derive a series

of useful relationships between the cross-sections of the
direct and inverse reactions,

Equation (2%,3) is frequently described as the relation-
ship of detailed balance, This description is inaccurate,
gince in classical physics by detailed balance is usually
understood the equation for the probability of the direct
and inverse processes, but this equation, as was pointed

out above, does not hold, (The difference between a recipro-
cal and a detailed equation is discussed in [6].)

Let us consider examples of the application of relationship

(25.3).

1) Determination of the spin of the =-meson, The spin of
the =n-meson was established with greater certainty by a
study of the reaction

P+p=d 4=+, (25.4)
Application to it of relationship (25,3) gives

By =-“;‘~—p;(23+1). (25.5)

dﬁi" P‘-

du;

Here the factor % is introduced, taking into account the
identity of the two protons; s is the spin of the =-meson,

From formula (23.5) it is obvious that the cases s=0
and s=1 give a ratio of the cross-sections differing
between themselves by a factor of 3, Thus, even the some-
what rough measurements of the differential cross-section
of the reaction (25.4) for only one angle makes possible
the determination of the fact that the spin of the =-meson
is equal to zero,

In view of its generality, relationship (25.3) can also
be used for determining the spins of other particles,
Relationships between the cross-sections of direct and
inverse reactions are frequently used also for reactions
involving photons, In this case, however, it is necessary

APPLICATIONS OF THE GENERAL THEORY OF THE S-MATRIX 143

to modify them somewhat*, Actually, although the spin of

a photon is also egual to 1, the number of its different
projections is equal not to 2j41=3, but only 2, (only
two different polarizations of a photon are possible).
Hence, it follows that modification of (25.3) is of a triv-
ial nature: the factor (2j+4-1) is replaced by 2 for a
photon,

2) Of great fundamental significance is the measurement
of the cross-section of the photoproduction of w-mesons by
neutrons:

T+n—>p4n-. (25.6)

however, neutron targets do not exist, and this process has
to be studied by means of a somewhat complex interpretation
of the process y-+d—2p-+=-. But obviously, in place of
process (25.6), it is possible to study the inverse of this
process, and determine the cross-section of the direct pro-
cess by using relationship (25.3), taking into account the
photon polarizations:

3) In theoretical calculations of the photodisintegration
of a deuteron,

1+d—p+n (25.7)

it sometimes proves to be convenient to calculate the cross-
section of the inverse process, and subsequently by means
of (25,3) to obtain the cross-section of process (25.7).

In this case (25.3) is written

Papn _ Ppn,a

du,, d

2
3

=

ol

T

*The question concerning reactions involving photons will
follow below in more detail,



CEHAPTER VIII

COLLISION OF PARTICLES POSSESSING SPIN

Section 26, Statement of the Problem, Examples,
Determination of the Parameters of the S-Matrix

As indicated previously, from the general properties of
the matrix of scattering, it is possible to obtain informa-
tion concerning the cross-sections of interaction of spin-
less particles, In practice, the unitarity of the S-matrix
and the conservation laws, allow a description of a process
in terms of phase shifts, The specific character of an
interaction is manifested in the magnitude of the phase

shifts and their dependence upon the energies, For example,

in the case when the radius of interaction is comparable
with the wave length of the particle, the cross-section is
described with great accuracy by the smallest number of
phase shifts (this statement immediately follows from the
conversion to classical mechanics made previously).

Thus, by studying the properties of particles and their
interactions which are subject to investigation (theoreti-
cal and experimental), these parameters can be found. By
carrying out phase shift analyses of experimental data it
is possible to determine the properties of the processes
which are related to the general laws of nature, and also
the properties which are associated with a specific colli-
sion of particles of a specific kind,

Is it always possible to carry out phase shift analysis?
What are the special features of collision of particles
possessing spin?, These questions are the subject of dis-
cussion in the present chapter, Let us consider for a
start elastic collision of particles with spins:

R G S (26.1)
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The difference in this case from elastic scattering of spin-
less particles is that the state of the system must be des-
cribed not only the direction of motion of the particles
(the angles 0, ¢), but also by the values of the spin pro-
jections of the particles, u. The S-matrix now has the
form:

(0 1y | S” [Douyy) 3 (E"— E), (26.2)
and for spinless particles it had the form
(0’| S” | 09) 8 (E' —E). (26.3)

In the case of spinless particles we replaced the variables
0, ¢ , by the variables | and m, and applied the conserva-
tion laws (20.2), Then the S-matrix had the form
B & e
S5'8,.,8 1 m8 (E" — E). (26.4)
The conversion from expression (26.3) to (26.4) was achieved
by means of the transformation function (U¢|im)= ¥, (0, 9)

LS ’ » 2{ 1
09" |SF | 09)= 3} Vi (1", ¢) S Vi (0, 9) = 3y 2L Py (cos w)S",
Lin i
where o is the angle between the directions (0, ¢) and(, ¢'),
§' are complex parameters, dependent on the energies, The
application of unitarity allowed the introduction of a
single effective parameter - the phase shift.

In the case of particles with spin, the application of
the conservation laws gives

STop gt ad (E'— E)y (26.5)

but S’ is now no longer a number but a matrix., In fact, we
have assigned the four quantum numbers 6, ¢, p. pp to the
state (not taking into account the energies), but the laws
allow the possibility of using only the two quantum numbers
J and M. Consequently, for the two remaining quantum num-
bers § is the matrix, and its dependence on these numbers
is ‘determined by the specific interaction*, Hence it is

*The number of quantum numbers required to determine a
state is determined by the number of degrees of freedom of
the system and obviously, does not depend upon the repre-
sentation, Thus, for example, for spinless particles there
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evident, that in the case of a particle with spin, it is
impossible, generally speaking, to simplify the expression
for cross-section, as in the case of scattering of spinless
particles (introduction of phase shifts), In particular
cases, however, the introduction of phase shifts still
appears to be feasible, Let us consider the scattering of
spinless particles by particles with a spin of 4 (for
example, scattering of = -mesons by nucleons, or neutrons
by Het), The state is characterized by assigning the num-
bers (E, I, m,p), where p may assume two values: —=1j,. If we
include the orbital angular momentum ! and the spin of the
particle in the total angular momentum of the system J and
its projection M in place of the guantum numbers m and p ,
then our system will be characterized by the numbers (E, [,
J, M). Where, from the law of addition of angular momenta

J::!:t-%. Taking into account the laws of conservation of
angular momentum and of the energy, the S-matrix has the
form:

S8y s8uud (E' — E),
where 87 is a double-series matrix:
1 1
(1+211+3) (147I8710—3) ()
1 1 1 1 3 ’
(J— 21870+ ?) (1—5 |87 J——?)

Let us study one further law - the law of conservation of
parity (see [2] 29):

= (—1)' Il = (—1)" I, ==,

are three numbers (E, 6,¢), or (£ m and so forth, but for
two particles with spin there are 5 numbers (E 0, ¢ 21 b2 or
(E, t, m, p1, w2) , Should the spins of the particles be linked
by a single total spin, then in place of p;. and p, , two new
quantum numbers are introduced - the total spin s and its
projection p, As a result of this, the state will be
assigned the numbers (E, I m, s, p), It is possible to link
the spin with the orbital angular momentum by introducing
instead of the projections m and p, the quantum numbers J -
the total angular momentum, andM, its projection:(E, J, M, L, s)
is the new set of five quantum numbers, In the text, the
discussion is concerned for example, with the quantum
numbers [ and s ,
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where =; is the total parity of the initial state and =, is
the total parity of the final state, and Il and Il are
the intrinsic parities of the particles*: +thus, in our
case I'=I[+2n , where n=0, 1, 2,... But, by the law of con-
servation of total angular momentum, [’*can be different
from / by not more than 1; consequently, the non-diagonal
term in (26,6) is equal to, zero, and the S-matrix of the
diagonal term is:

ST s8araudyd (Ef — E).
The requirement of unitarity gives
o
S{eS] =1 and S} =¢"7,
i,e, in the case when one of the particles is spinless,
and the other particle has a spin of %, the concept of
phase shift retains its normal meaning, However, the phase

shift depends not only on { but also on /,

Let us consider another important example - elastic
scattering of particles with a spin of % (for example,

* scattering of neutrons by protons),

The system is characterized by the quantum numbers
(E, I, m, py, pa), Let us introduce the quantum numbers for
the constants of motion J and M and the quantum number for
the spin of the particles $ (it can assume the values O and

1,
(J ME'S't | S| IMEsl) = ('l | ST | s1) 3 pdagaed (B! — E).

In accordance with the law of conservation of angular
momentum

J—-1
=317 for s=1and [=J for s=—=0,
| /41

* We are occupied in the study of nuclear reactions, and in
principle the question is one concerning strong interac-
tions, Violations of the law of conservation of parity are
detected only in weak interactions, In strong interactions
parity is conserved,
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Taking into account the law of conservation of parity gives
the selection rule [ =I-+42n, where n is an integer, Thus
only transitions between [=J/4 1 and [=/—1 and transitions
without variation of . are allowed, For a given total
angular momentum and a given parity, the state of the 5-
matrix has the form

Su Sie
(3-.-1 Sn)'
where the indices I and 2 refer respectively to the states
(l=J—1; s=1) and (I=J+1; s=1), or the states(l=1/ s=0)
and ({=/J; s=1), The matrix elements§, are, of course,
complex parameters and must be expressed through the real
parameters r,, and B»-’
1y,
So="r.e ™.
The condition for unitarity, taking into account the theorem

of reciprocity (S,,=3S,) can be written in the form of the
matrix equation

1%, i3y =iy, —ihy 1 0
; e Ty e riz¢ =
SSI==( i )( )__(n 1)' (26.7)

i i —1i%
riaet ™t ranet™) \r1pe™0 rage™t

This equation is a short version of a system of equations
which gives the possibility of expressing one parameter
through another, As a result of solution of this system,
we find

{73 gt iret G
S:(V rte re ‘1)- (26.8)

et G Y TR

Here we have introduced three new parameters: 3§, v and r;
their relationship with the old parameters is obvious from
a comparison of formulae (26.7) and (26.8),

Thus, in the case considered, the introduction of the
phase shift concept in the usual sense has been shown to be
impossible, The application of the general properties of
the S-matrix has, however, sharply reduced the number of
parameters which it is necessary to determine by experiment,
Actually, even after application of the laws of conserva-
tion of angular momentum and of parity, we have obtained
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the S-matrix for a given J and parity, in the form of
tables, which involve four complex parameters, i.,e. eight
independent real parameters, The application of unitarity
and the theorem of reciprocity has led to the fact that for
a given J and parity, the S-matrix is expressed entirely
through three real parameters,

For the application of these results to elastic scattering
of nucleons, it is necessary to take into consideration the
identity of the particles (for np-scattering - isotopic
invariancy). This results, as is easily seen, in singlet
to triplet transitions (s=1%s=0) being forbidden and
thus to additional simplification of the structure of the
scattering matrix, From the examples given, it is obvious
that the higher the spin of the colliding particles, the
more complex is the structure of the scattering matrix, The
complexity of the structure of the scattering matrix is a
simple consequence of the circumstance that we have at our
disposal only a small number of limitations on the S-matrix,
whereas with increase of spin the number of quantum numbers
on which the S-matrix depends is increased,

A study of the structure of the scattering matrix has a
great practical importance. As a result the S-matrix can
be expressed through a small number of real parameters the
magnitude of which is determined by the specific interac-
tion of the particles, Subsequently, measurements are made
of those interactions, from which it is possible to obtain
complete information concerning the parameters of the S-
matrix, As a result of this, a great many experiments are
found to be superfluous - they give information which can be
obtained from data from other experiments.

As an example of such an investigation the work (8] may
be cited, where all possible polarization experiments for
the elastic collision of nucleons were studied and it was
pointed out which were the most advantageous and indepen-
dent, "In this work the S-matrix was expressed in terms of
a different set of parameters to those we have used,

It should also be noted that all the considerations given
are applicable, obviously, not only to elastic collisions
but are very general, In section 34 we shall apply the
theory given here for establishing the relationship between
scattering processes, photoproduction of = -mesons and the
Compton effect by a nucleon, This relationship arises from
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the same considerations, which were stated, if in the number
of variables of the S-matrix p and v are included as inde-
pendent indices of open channels.

It can be shown [14, 6] that a study of the fundamental
properties of the S-matrix - unitarity and the theorem of
reciprocity for the S-matrix, given in the form of a square
table for N complex elements - reduces the number of inde-
pendent real parameters from 2N? to%N(N—{—l) parameters,

Section 27. Vector Addition Coefficients

From the examples presented it is obvious that in the case
of collision of particles possessing spin, as well as for
the collision of spinless particles, it is possible to make
a number of inferences concerning the structure of the S-
matrix, arising out of the very general properties of space-
time and from the laws of guantum mechanics,

Now we must ascertain the limits which these properties of
the scattering matrix apply to the values observed - cross
sections, For this, it is necessary to be able to trans-
form the given S-matrix in one representation into another
representation, in particular into that which applies to a
particular experiment,

In the case of scattering of spinless particles, a single
transformation function (0p|im) was adequate - a spherical
function, As is obvious from the examples presented above,
we require transformation functions which transform a total
representation (in which the S-matrix has the most simple
form) into a representation of total angular momenta (spins
of particles, orbital angular momenta), From this representa-
tion it is even possible to change to an angular representa-
tion and, by applying the general formulae for cross-section
(23.8), to obtain the angular distribution and other
characteristics,

Le’ the eigen-functions Wj, and W, of the operators
of the angular momenta Ji and J: be known, and it is required
to find the eigen function V., for the operator of their
total angular momentum, The function W;,, can obviously be
represented in the form of an analysis with respect to the
total system of the functions, consisting of the product of
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L iy and “"j,m,.-
.-lr.(lf m— 2 C_‘{I.ﬁ.j,m,l]rjlm,‘]rj,m,n (2T . 1)
™y

If we know V,, , then Cjism, should not be difficult to
find by using an orthogonal function, In the Dirac notation
assumed by us, equation (27,1) can be written as:

(22| J1doIM) ::m% (Jumyfams | JidadM) (xy | Fymy) (X, [ Jama).

From this it is obvious that (Jimjams|JijsJM) are precisely
those transformation functions for which we are looking -
they effect transformation from a representation of consti-
tuent angular momenta into a representation of total angular
momentum, The singularity of these functions consists in
the fact that they have as well as an index of states, an
index of representation which are discrete quantities and
assume a finite number of values, Consequently, the coeffi-
cients (Jimifomy| jifsJM) themselves represent elements of
finite matrices, In spite of the simple physical signifi-
cance ‘of these coefficients, obtaining them in an explicit
form involves somewhat complex mathematical calculations,
The first general expression for these coefficients was
given by Wigner [12], For their derivation Wigner used the
fancy mathematical device of Group Theory, Later Racah, in
an important paper [13], showed that the coefficients can
be derived by an algebraic route without recourse to Group
Theory methods, The coefficients ¢/ ;. play a very great

and ever increasing role in the various applications of
quantum mechanics, A variety of titles and symbols exist
for them, The most generally used title is "Clebsch-Gordon
Coefficients" (according to the name of the authors of an
important theorem in the theory of irreducible representa-
tions of group rotation), They are also called Wigner's
coefficients and vector addition coefficients, We shall
adhere to the latter title, We shall denote the symbols
for vector addition coefficients as generally used in the
literature:

(Jumdymy | IM); (fifamymy | J\f2dM); Cﬂf,j,m‘;
Cliis chptm; (=)™ MY QTN Sjguniad -2t

The most commonly used are the first three, We shall use
the first,
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The reader, interested in the derivation of the general
expressions for (Jymjamy  should acquaint himself with
the appropriate separate works [12, 2], wherein is given an
account of the theory of 1rredu01b1e representatlons of
group rotations, For narrow practical purposes (calcula-
tions of angular distributions, study of the properties of
the scattering matrix, the proplem of correlation of parti-
cles and the phenomenon of polarization of particles in
nuclear reactions, etec, ), it is sufficient to understand
the physical 31gn1f1cance of the coefficients (Jimyjama|JM),
as Dirac transformation functions, to know their general
properties, and to know how to use the tables of these
coefficients. We shall proceed to an account of this pro-
blem,

The formulae for the forward (JM|Jjimijam:) and the reverse
transformation (fim jom,| JM),as we have already observed, are
connected by the simple relationship

(M | Jimyfams)® = (fimy jam, | JM).

The representation generally used in the literature is such
that the coefficients (JM|jmyjams) are real, This signifies
that the coefficients of the direct and inverse transforma-
tions are simply equal, It is obvious that the physical
results should be independent of the series into which we
have summed the angular momenta Jf, and j, , i,e. the coeffi-
cients (JM|jimjoms) and  (JM| jomyjymy) differ only by the phase
factor (since the transformation coefficients, or what
amounts to the same thing, the wave functions, describing
one and the same state, can be distinguished only by the
phase factors),

It can be shown that

(M| jamyfam) = (— 1T UM famafimy). (27.2)

In courses of quantum mechanics it is demonstrated that
for addition of angular momenta, the quantum numbers J and
M can assume the values:

J=|ji,—J:|s |fi—det+1) oo it M=m+m. (27,3)

From the latter eguation it follows that the sum in (27.1),
with respect to one of the indices,m , M2, bears a formal

character, since for given m, and m, , M is already determined
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by equation (27.3).

From the entry (/M — mpfamy|JM) it is obvious that the vec
tor addition coefficients can be represented in the form of
a matrix, the rows of which are denoted by the number /,
and the columns by the number i, The number of rows is
equal to 2j-41, where j is the minimum of the values J
and j,, 1t is easy to see that the number of columns is
equal to the same number, Thus, the number of vector addi-
tion coefficients is equal to (2j-41)*. (In Appendix II
tables of vector addition coefficients are given,) The
operators J. Q , and J: are comnected by the relationship
J=j,+Jja, but this relationship can also be written down
thus:

j:=j—f:1 j2“_—‘j—jll

i.e. any one of the vectors entering into the triplet

(. J, 7 (triplets of summed vectors are frequently called
triads), can be represented as a resultant vector. The
properties of the vector addition coefficients correspond
to these relationships:

(— 1/ -M 1yfi—n

Vﬂ UMJWJMJ—%Q fomy | IMfy— my) =
(—_”“ii.l;%__ attts |y — myJ). (27.4)

Moreover, the relationships occur:

(umofa my | IMY = (— VYT Gy —my o — my | ] — M) =

= (— D Gy oy | IM) = (fo — mig jy — my | ] — M).
(27.5)

In addition to the properties enumerated, vector addition
coefficients, as every other transformation function, have
properties of orthogonality and normalization:

”'21 (M7 f iy foma) (Fymy foms | JM) =8 IO l ( 6)
N 27 ;
%:r(jlm:jzm.HJM)(JM[ Jymjym)=3 - &

i "
g ity

and, in accordance with the property of symmetry,
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; 5 2741 . o
2 (JM | Jymme dy i, (JM i,r m, jom ) =g jl_ i o‘?zjzomgm& (27.7)

M
Finally, we shall introduce the explicit expression
obtained by Wigner [12] for the vector addition coefficients
for an arbitrary Ji and /»:
UM | fim, fyma)=

T4 =S T =Ji+ ) U Fs— DU 4+ M) — M)+ ljx
U7+ A+ =m) U+ m)t (= mal (s + ma)t
N (— 1EF Tt g m — (= m, A (27.8)
P =it h—BIT+M=R R+ =M1

Section 28, Some Examples

As an example of the use of the tables of properties of
vector addition coefficients we shall consider the simplest,
but important case of scattering of particles with a spin
of # by particles having a spin equal to zero,

In accordance with the general properties of the S-matrix
(19.1) and (20.1), in the case being considered it will have
the form

2
ez’ulaJ’JBM’HBI‘Ia (E’—E)‘ (28 .1)

In order that it should be possible to use formula (23.8)
and to obtain the cross-section, it is necessary to trans-
form the S-matrix from the representation JMIE into the
representation pmlE , The corresponding transformation
functions (JMsi|lspm) is not the same as the vector addition
coefficierft of the vectors of the spin s and the orbital
angular momentum { in the total angular momentum J, Per-
forming this transformation on (28,1) we obtain

J
J%g‘“* 8y adaradsd (B — E) (/' M’ | spdm) =

o )
= ¢"13y8 (B’ — E) (JM | splm). (28.2)

If we do not transform the final state to another variable,

and we substitute (28,2) in (23.8), then we obtain the
cross-section of collision of the particles with a fixed
orbital angular momentum and its projection in the final
state.
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This cross-section is written down in the following
manner:

a§:=sx=(2£'+1]|1 "3[ I(JM[SIL‘I’U)] (28.3)

We shall sum (28.3) with respect to M and also over the
two possible spin directions of the initial particles to
obtain the result for an unpolarized beam., The latter

; ; ; 1 -
implies the operation §-IEP . By virtue of the property

(27.7) of vector addition coefficients, we obtain the
result:

of = Vmreasineef 2/4-1) 5.
1

The total cross-section will have the form
1 ]
o= o = 4=iz [{[-{-— 1) =.;in36:+7£-|—.fsir12 Ei 3]. (28.4)
T 7

If the phase shift is independent of the spin, then g P=9

and (28.4) converts into the total cross-section of scatter-
ing of spinless particles,

We shall assume that the phase shift of the state J=3),,
l=1 passes through ‘r (in other words, this state resona-

tes at three energies, for which we shall consider collision),
The quantum numbers chosen correspond to rescnance, or as it
is otherwise known, the iscobaric state of interaction of the
= -mesons with nucleons In this case, the partial cross-
section attains its maximum value (geometrical limit)s:

82,

If we wish to find the angular distributions, then the
transformation function for the final state of transition
into angular representation is required, For this, it is
first necessary to convert to the representation Imsp in
the left hand portion of the matrix equation, having used
the transformation function (Im sp| M), and then by means
of the function (U3(im)to find the S-matrix in the represen-
tation (g,

We shall not carry out here the corresponding calculations,
since we shall obtain below the general formulae for angular
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distributions for nuclear reactions,

If we are interested in the application of the complete
relationships to the scattering of =-mesons, then it is
necessary to include the isotopic spin in the number of
variables, But, as is well-known, the laws of addition of
isotopic spins are the same as the laws of addition of nor-
mal angular momenta, Therefore, a generalization of the
theory to include the scattering of particles possessing an
isotopic spin does not present any difficulty,

Isotopic spin is a constant of motion, consequently the
S-matrix has the form:

SEITSJ'JEI'IBM'HST'T&T'TI §(E'—E),

here T and T, respectively, are the total isotopic spin of
the system and its projection. The requirement for unitarity
gives

T
SIITZ eziﬁi’ .

For =0, only the value J=1f,, is possible, for [+ 0 two
values are possible: J=£¢—é- . The isotopic spin for a
meson-nucleon system can take the values %k and .. Hence

it is clear that S-wave scattering of mesons of all three

charge states, by a neutron or a proton, is described by
11 1

a
3 ° and % ° . Scattering in the conditions with [£0
is described by four phase shifts
At S e

All the transformations which we have carried out above
hold, It is still necessary to make additional transforma-
tions of the S-matrix into a representation appropriate for
an experiment, And indeed, experiments shows that a meson
of a specific sign of charge (positive, negative, neutral)
is scattered by a nucleon into a definite state of isotopic
spin, i.e, in the experiment we have the state where the

isotopic spins of both particles are f=1 and:;:é_ , and

their projections f3==1 and0, ‘t“=j‘l§, and the properties
of the S-matrix are lmown in the representation, where the
sum of the isotopic spins and its projection are given, The

1
transformation functions (773|157, obviously, are the
2 3 Yy
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same vector addition coefficients, because T =F4< , and
the laws of addition of isotopic spins conform exactly with
the laws of addition of normal spins,

For the scattering =+-mesons by protons, (TT3|1 1%%)

in accordance with the table in Appendix II is equal to

! 1 for T=T3=%

Lo for all remaining 7 and T,.

Hence it is clear that the example considered previously
(without taking into account isotopic spin applies com-
pletely to this case, The scattering amplitude for the pro-
cess n-+p—+n-—+p is expressed in the following manner by
the scattering amplitude in the states of isotopic spin
T=3/2 and 1/2:

" 11
(xp |R|w-pr)= Y (1 —lgy T’T;)x
T'TTT
% 11
X (] R|¢}aT'T°T'T|(TT3| 1—13 "2“)-
s
Hence 2’ and denote all the remaining transformations

except transformations of isotopic spin, By using the
tables of vector addition coefficients, we find

o) +2 (| &%),

As an exercise we suggest the student expresses the total

1 3
(==pa’|R “‘P3)=§‘(=' R®

cross-sections and angular distributions of the reactionz—-p
[p—Hr'
—_
P+

cross-sections, the expression

in terms of phase shift analysis, For the total

a (‘K" —=>n)=
3 1
AT Z

=+ 1
= s T 2 iy a2
=;ﬂ;—512‘{(£+l)[sm—oﬁ—{—QSm-ul,-.—Esm~(ol;‘——ﬁ;>]+
=0

3 R 3L
i [sinE 3E 4 2sin? 3t — 5 sin? (af,_uaf_) ] }

a(m= ==l =
o ]

1 _3‘ ’l_
=%"—=E{(:+ 1}sin2( 3 —B?)»{—Isin? (aﬁ- - a;"-)}.

120
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should be obtained. Here the upper sign of the phase shift
denotes the isotopic spin and 7; and @- denote the phase

shifts corresponding to a given/ , and to the angular momenta

corresponding to [+, and [—1f,. . The formulae obtained
for the angular distributions are too cumbersome for them
to be introduced here,

Section 29, The Coefficients W, X, Z, Z, *

In the theory of the spectra of complex atoms, of angular
correlations of particles resulting from disintegration,
and of angular distributions for nuclear reactions, there
arise unwieldly summations derived for certain vector addi-
tion coefficients, We shall see this when we obtain a
general expression for the total and differential cross-
sections for reactions of the type: I-4+I1—=7-42, In order
to simplify the calculations and to obtain more compact
expressions, Racah in a paper [13] concerning the theory of
spectra introduced the coefficients W, subsequently known
as Racah coefficients, These coefficients have also found
extensive application in a number of other problems, In
recent papers by Racah and other authors [13, 19, 27], a
number of other coefficients were also introduced for a
similar purpose,

The coefficients W , similar to the vector addition coeffi-
cients, may be defined correct to a factor as transformation
functions permitting a transposition from one representation
into another, But if vector addition coefficients arise in
the problem associated with the addition of two operators of
angular momentum j, and J, then the coeffigients Warise in
the problem of addition of three operators i J. and Js , Let
us find the wave function appearing as the eigen function
of the operators J2=(+Jf.+J)and J,. This problem is
easily solved by means of vector addition coefficients, if
the functions (x,|/jim,). (x2|/omy) and (xg]fstms). are known, The
eigen function of the operators J,=(}+/)? and J, is
written down thus:

(x4 | JaMy2) =

- (29.1
=m2“ah ey [ Jimy) (%2 | Jama) (Jumyams | JoM o), )

*This paragraph was written by V,A, Petrun'kin,
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and the corresponding function for the operators J? and I,
can be obtained by the application of a similar formula to
the functions (X1%2|JeMp) and (Xs|Ja™3) Hence we find

(xyxaxs | Jip s M) = MZm (%123 | JaMy3) (g | Fyms) (JiaM 2 jmg | JM)
or
(x1x2%5 IJIZjSJM] =
= 2 (xy| jimy) (xz| fuM — my— mg) (xs | fams) X

Tty

Xty foM — my — mg| JoM — mg) (oM — mg jyms| JM). (29,2)

Here we have substituted (x,%|JuMyp) in expression (29,1) and
used the fact that the coefficient (azb3|cy) differed from
zero only as a result of the condition that a+j3=7y. It
should be possible to obtain the corresponding function for
the operators J? and [, coupling the funection (xi|/imi) in
another sequence, for example, first of all the second with
the third and the result with the first, In this case we
obtain

(x,X2%5 | 1 JpadM) = 2 (2ey | ymy) (g | Jamg) (x| JaM — nty — mg)X

™My

X (Jaty M — my — mty|JpgM — my) (JymyJysM — my | JM). (29.3)

Since the functions (x;|jm;) are orthonormal and represent a
complete set, then the functions (%1255 | Sya oI M), (X1X0%5 | jiJos /M)
will also be orthonormal and will also represent a complete
set, This follows from consideration of vector addition
coefficients as transformation functions producing a con-
version from one representation into another, In the case
of (29.,2) the state is characterized by the following six
quantum numbers: Ji. Jo. js o J M in the case of (29.3) we
have Jji Jju f3u Joso o M, We shall resolve the function in
(29.3) in terms of the function of (29,2):

(X1x2%3| JiJasd M) = }; (215633 | JiadaM) (Uradad | jides]). (29.4)

In order to obtain an explicit form of the coefficient
(12437 J1Je3)), we shall use the fact that the functions (29.2)
are orthonormal, Multiplying the left side and the right
side of the series (29.4) by the function (¥iXeXs|/i2/s/M) and
integrating with respect to X X%y , We Obtain an expres-
sion for the coefficient required:
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seds| idasd) = gﬂ’{m — mjamy | J M — m - my) X

X (Jamy fam — my | Jygm) ( jiM — myym | JM) X
X (JuM —m—myjym —my | JM).  (29,5)

From (29.4) it is not difficult to see that the expression
(Jinj3d| Jides)) is mot the same as the wave function of the
state /i4y/) in the representation (J,j,/| and consequently,
according to Dirac, it can be used for transformation from
the representation (Ji/»s/| into the representation (Jij,J|.
Indeed, relationship (29,4) was used by Racah for determina-
tion of the coefficients W, in his notation we have

1 1
Qe+ 1)% (2f 4 1)T W (abed; ef) = (e de|afyge).  (29+6)

Racah evaluated the sum with respect to m, my, in (29.5) and
obtained a general expression for W, but since it is so
cumbersome it will not be given here, It need only be
noted, that after summation the dependence upon M vanishes,
This, in fact, has already been used earlier in equation
(29.4), From the definition of W, it is obvious that they
have significance only for integral and semi-integral
values: a,b,¢,4d, e, f— with the following limitations:

a) The sum of each of the triplets of numbers enumerated
below

(abe), (edc), (bdf), (afc) (29.7)
should be a whole number;

b) In order that the coefficient W should differ from
zero, each of the triplets of numbers should satisfy the
principle of the triangle, i.e, the length of any side of
the triangle should be less or equal to the sum of the
lengths of the other two sides,

The derivation of both limitations is clear from the
definition of W, Racah's coefficients have a high degree of
symmetry with respect to the permutation of their arguments,

The relationships shown below characterize the fundamental
properties of symmetry of the Racah coefficients (these
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properties are easily obtained, resulting from the general
expression for w which we have omitted)s:

W (abed; ef) =W (badc; ef)=W (cdab, ef)=
— W (achd; fe)=(—1)"""""%W (ebef; ad)=
= (— )W (aefd; be).  (29.8)

It is not difficult to obtain also a number of other pro-
perties of the coefficients W Since the coefficients (eydc|
afys€) are transformation functions from one representation
to another, the transformation corresponding to them should
be unitary, This property is written down thus:

> (eqp dc | afpac) (eqy dc | agpat) =

L 2.3
=3 Qe+ 1)©2f 4 1)F (2g + )W (abed; ef) X
’ X W (abed; eg) =17,
Using the orthonomality of the function (x;i|jym;) and substi-

tuting (29.2) and (29.3) in (29.4), the following expres-
sion can be obtained:

(aab3|ea—-B)(ea+-pdilc a+B+0)=
— B+ )T @+ 1 (331542 X
rx (axf 34-8|c a—+348) W (abed; ef). (29.9)
This expression can be used to obtain the summation in terms

of a single index of the multiplication of three vector
addition coefficients:

%(mbﬁle a+8) X
X(eatBd y—a—3Blen)(b3d y—a—3|f 1—a)=

1 1
— Qe+ )T @+ )T @af {—a|en)W (abed; ef).  (29.98)

Formula (29.9a) is obtained from expression (29,9) if the
unitarity of vector addition coefficients is applied, This
is the basic formula for simplification of the summation
over multiplications of vector addition coefficients, In
an actual case when e = 0, the value of the Racah coeffi-
cient can be obtained from the simple expression:

1
ST

W (abed, 0[}:(—1)""7“'“1'{2&!-‘,—l}-?(i?c—}-l) Saplea- (29,10)
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This formula is obtained from the general expression for the
coefficients W, which we shall mot introduce, We shall not
discuss here the methods of obtaining the recurrent formulae
and tabulated Racah coefficients. In Appendix II calculated
tables of W for various values of @, b, ¢, d. e [f. are given,

In one of Racah's subsequent works, written jeintly with
Fano [16] and also in a paper [17], the coefficients X,
were introduced, These coefficients are introduced in com-
plete analagy with the coefficients W. Only in this case,
they deal with the addition of four operators of angular
momentum, The coefficients X , like W , is simply related
by a certain function, effecting transformation from one
representation to another:

1 gl J1a
(2124 1) (2J3 1) (2134 1) (2 4+ 1)1° X(fs Ji -’.u) =
Jig Jay J

z(]lgjsijijl:!f"dn‘ (29.11)

Hhere :}sz :.}E"]—}z- Sy =Js+Ji -’13=J'1 —+Ja Su=rh+Ji andj;g+
Ju=J or Ju+Jy=J . The coefficient X is a function
of ten arguments, being able to assume only integral or
semi-integral values, As on the triads of numbers from
(29.7) limits are imposed upon each of the triplets of the
numbers

Uideha)e  Usdsdad. (hdshs) Uddihds Uidad)s (D))

If the corresponding wave functions are written in the manner
used in the previous case, then it is not difficult to find
an explicit expression for the coefficient X, It will be
represented by the sum of the products of six vector addi-
tion coefficients with respect to a magnetic quantum number,
In future, a portion of the relationship and also the pro-
perties of the coefficients X will be given without proof,
For details one can refer to the work [17]. The expression
referred to above for the coefficient X can be transformed
into a more simple form if Racah coefficients are used,

Ultimately we obtain

ab e
X(C d e’): ;{214— D)W (fghd; f)) W (eged; e')) W (febe; ab).
Ire (29.12)
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It is not difficult to show that the Racah coefficients are
a particular case of the coefficients X, Actually, if we
assume one of the six arguments b,c,d,e,f or g.encountered twice
on the right in (29,12) equal to O, and we use the proper-
ties of symmetry for W (29.8) and formula (29,10), then we
obtain a simple relationship between X and W , For example,
if we assume g=0 and e=¢ and f—f respectively, then
we obtain

abe 1 1
X (: d e) =(—1)il-=d(2e 4+ 1) T (2f - 1) Z W (abed; ef).
rro
(29.13)
uu wue basis of this, the coefficients X are sometimes
called generalized Racah coefficients, The generalized

basic Racah coefficient formula (29,9a) is very useful in
its applications, and has the form

2 (Jimdypy | $19)) X

L
X (Jamalaprs | $502) (J iy fo — mry Ifmj) (haly — o [ ) =

1
=(— 1" P25, 4 1) (28,4 1) @+ 1) 2L+ 1T X

y J1l iz
X 2 (81918, — a2 | gmy) (Smylm, | gmy) X (51 g s,) ;
gmg Ltls

(29.14)
Let us enumerate some of the properties of the coefficients
X, which can be obtained from the properties of the
coefficients W,
(1) Transposition of rows and columns
abe ac f
x(cde'J=x(bdf'). (29.15)
fre ee g
(2) Permutation of two rows or two columns
abe cd e fIre
X (c d e') =(_.1)°X(a b e ) =(_—l)‘}((c d e').
fre fre abe
(29.15a)
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where c=a-+b-+c+d+e+te +f+f +gis equal to a whole
number, Combining (29,15) and (29.15%a) we can obtain 72
different permutations for nine arguments of x ., TFor
example, we can rewrite formula (29.12) in a more symmetri-
cal form

ab e
X(c d e | =(—1Y 2 (2~ 1) W (beef; ha) X
A

rrE KW (bef'e’; )W (efe’f'; 2g).
(29.16)

where the diagonal elements of X are the final arguments of
three W coefficients. This formula is generally used as a
standard formula for the relationship between X and W. Two
further useful relationships can be written down:

ab e ab e
E€2f+‘)(?f’+1)x(= d e’) X(° d *-’i)= [(2e 1) (2’ 4 1)1 7"8ee 3, !
I fre fre

W) o 1) X
n

ab e ac f ab e
x(gf’+1))((cd e’) X(d b f’):}((d ¢ e'),
rre kb g ki g

As has been shown in papers [18, 19], for the case of
nuclear reactions it is more convenient in place of W to
introduce the coefficients Z and Z,, The coefficients Z
is defined by the following formula:

1
Z (abed; efy=i""""*[(2a+ 1)(2b+ 1) (2e+1)(2d + 1)) F X
X W (abed; ef)(a0c0|f0). (29.17)

There is a simple formula for calculation of the coefficient
1a0c0| f0), which is given in Appendix II. Thus, evaluation
of the coefficient Z reduces to the evaluation of the co-
efficient W corresponding to it, The coefficient (20c0]f0)
is equal to zero when ae-+c--f is equal to an odd number,
Therefore, for Z we have the additional relationship

Z=0, if a+4c4f 1is odd,
Using formula (29,10) and also the properties of symmetry
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(29.8), it is easy to obtain an expression for two actual
casest

Z (@bed: O = 8 ghea (— 1Y+ ((2a 4 1)(2c+ 1)]% (a0c0 | £0).
(29.18)
. = —_1)b—e ‘;_
Z (abed; e0)=18,00pq(—1)"-¢(264-1)%. (29.18a)

Here we have used the formula for the coefficient (a0b0]00)
1
(060 | 00) = 8, (—1)* 26+ 1) 2. (29.19)

As will be shown in sections 30 and 33, it is more convenient
to define the coefficient Z without the factor f-e+¢ , But
since in all major works and tables of the coefficient Z
the definition in (29,17) is accepted, we have not deemed it
an advantage to change it, We define the coefficient Z,
thus:

1
Z, (abed. ef)=[(2a+1)(26+ 1) (2c+ 1)(2d 4+ D] T X
X W (abed. ef)(a— 1cl]|f0). (29.20)

The formula is considerebly simplified for the case ¢=0 ,

1
Z,(abed, 0f) = (—1)"*"~"[(2a+ 1) 2c + )1¥ (@ — Le1]f0) TyyPea- (29.21)

Our definition of Z, differs somewhat from the definition of
the coefficients being used in similar cases by other
authors,

Section 30, Angular Distributions in Nuclear Reactions
(Cases when the particles have a non vanishing
rest mass)

The mathematical device described previously permits a
general expression to be obtained for the differential
cross-section of an arbitrary reaction of the type*:

I+ 1l— 142 (30.1)

*See papers (19, 22, 27].
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In accordance with what was said previously, this expres-
sion distinguishes clearly between properties of cross-
section associated with the general laws (laws of conserva-
tion, the general laws of guantum mechanics), and properties
associated with a specific reaction (these properties will
be- distinguished by parameters of the type found in phase
shift analysis),

In Section 28 we considered the simplest examples, Now
we shall turn to the general case,

From (20,2) it follows that the S-matrix in the representa-
tion of constants of motion (in the CM-system) has the
following form:

(s'Va’ | 7| sla) 3, By (E' —E), - (30.2)

where a and o' denote quantum numbers characterizing the
nature and internal structure respectively, of the primary
and secondary particles, For example, if we had applied our
theory to the collision of hydrogen atoms, then the quantum
numbers characterizing the state of the electrons in these
atoms would occur in (30.2), In the following we shall not
consider particular a and &', but only those interchangeable
S-matrices about which we are able to give a definite
opinion, In a« we have included the quantum numbers of the
spins of the particles, but not their projections. s and s
in (30.2) are the total spins of the channels, the vector
sum of the spins for the incident particles is s=i+iy

and for the secondary particles is §'=i -+, . | and !/ are
the orbital angular momenta (in the CM-system) of the inci-
dent and secondary particles respectively,

Qur aim is to obtain the differential cross-section of
reaction (30.1), The relationship between the S-matrix and
cross-section is given by tge general formula (23,8), The

differential cross-section E% is obtained from (23,8) if the

angles of scattering ¢ and ¢ are included in the number of
variables denoted by f,. Let us convert (30.2) to these
variables, For this, we shall first change to the variables
s''mym’ (my is the quantum number for the projections of s,
and m’ the projections of I'), With this transformation
function there will be, cbviously, the vector addition co-
efficients (J'M’ fnﬂfnf), After this we convert to the
variables 0, and ¢ by means of the transformation function

(0? | Fm’}= Yo (0- Q?) .
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In accordance with (23,8), we must take as the variables
of the initial state Impyy. For this we transform (30.2)
by means of (JM|smgdm) and after this by means of (sns|iypriytay) &

As a result of this we find that in (23.8) in place of
[(fol S| 04pwinMy) —1] it is necessary to substitute the
expression
.rm%:'m. Yy 00 @) (8"Umygm | JM) (s'Va’ | RT | sla) X
X (JM | sm J0) (sm | Eypipn)- (30.3)
Our problem is now virtually solved; it is only necessary
to transform and simplify the final result. In the first
place, our formula is related to the case, rarely realized
in practice, when the incident particles and the target
particles have a strictly defined orientation of spins in
space; in the final state we have also fixed a definite
value for the quantities s"and m,. The case encountered
most frequently is that in which neither the incident parti-
cles nor the target particles are polarized, where the
polarized particles in the final state are of no interest.
Thus, after substitution of (30.3) in (23.8), we must norma-
lize to the initial state and sum over the final states of
the spins of the particles, Using the orthogonality of the
coefficients (smg|jisnpy), we find

da,, RE LY *
= R & (5 R )X
P e (i;s’a’]Rf-|tzsa)K(J1£;£1; b, s's; ﬂ). (30.4)

The summation is made over all-hhﬂh&ﬂ&{.

From the quantity K we have excluded the factors detér-
mined only by the kinematics, For a specific collision (a
particular channel), the matrix elements of the operator R
are determined,

The expression for K :
KLty Bty s's; 0) =
1 1
=2+ DT @b+ )T X (Osmy| LMy) X
,"1 "Izill.NI'
X (L0smy | ,My) (11"*15'"’-: | LM)) (I;M;S'mil fzmz) X
XV, O 9) Yy, (0, @)

can be considerably simplified by reducing it to a combina-
tion of Z coefficients and Legendre polynominals, Using
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the formula
y:.nl.(o' (P) Y;'m‘(s- T)=

= [Zuthanty ]2—
Al werD (L0]4,010) X

X (LMl —mibmy) (—1)™You (0. 9).  (30.5)

we obtain K in the form of a sum of the products of vector
addition coefficients, These summations can be transformed
by means of formula (29.9a). The summations over m,, m
and m; are incorporated in the Racah summation, Subse-
quently the summations over m, M; and M, are similarly
incorporated in the Racah summation, This Racah summation
is proporticnal to the coefficient (LM|[0[,0) , whence it
follows that M=0 , The final result, after simple trans-
formation, is written in the form

da Az 00.‘
= GO 2 BrPucosD (50.6)

where Pp(cosl)is a Legendre polynominal, and

B.=Y, ‘—__‘.-j: Z( Ity st) Z (Ghlah; sL) X

V-1, ‘ .
X AT Re [(1s' 0 | RY L s2)* (s’ | RT3 | Lsa)] f .
{ [ | R L2 M s o5

The summation is over  JhlLLLLS  and s', It is not diffi-
cult to see that expression (30,7) satisfies the theorem of
reciprocity*,

Summation over every guantum number is formally extended
from O to co, However, only the summation over one of the
numbers is unlimited (for example, with respect to ). The
remainder are limited by the rules of choice of the W co-
efficients, through which the Z coefficients are expressed,
We note that all the terms in summation (30,7) are real,

*Formula (30,7) differs from the similar formula of the

paper [19] by the phasefactor  ,%~'*h—k , The difference
is associated with the fact that the S-matrix of the paper
[19] does not satisfy the requirement of invariancy under
time reversal (see Section 21 and [21]),
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For practical calculations, the following expression for
Bpis more convenient:

) J+s J+s'

B =Yy T"SE Y Y zewsvyx

Jol l=|J—8| I'=|J-5"|
X ZWHT; s'L)|(Us'a’ | R | Isz) |2+

S+ s J1+dn , @ J4s
(— 1 -
+ =X X
s=|ji=dal &' =|J1—in | Jy=0 L= S =8|
gyt =0 Jats Jat+s'

Z Z (L oty sl
I;-]Jl—s'l {7 I,—r;,:—sl L‘;-[-%:—s'r (fyhlydy; sL) X
Ji+a Ji+s'
X Z (L4 s'L)Ref 14+ X X Z(hhly sL) X
fa=1,+1 I;"Iﬁ—s'j
J+5"
XZ(Whb); SLRe[h=Jd]+ 23 Z(hh; sb) X

Iy=l;+1

X Z(Lihlal; S'L)Re[hy= Iy, ly=1,]}.

The expression enclosed by the bracket in (30,7) should
be substituted in the square brackets, In this expression,
each term is encountered only once, As well as the limita-
tion of the extent of the individual summations, the number
of terms in (30.?) are also decreased by the following con-
ditions: (44l —L) and ({4l —L) are even numbers: (4 1)
and (lp44) are even (odd) numbers, if the channels a and o’
have the same (opposite) parity., The parity of a chammel is
defined as the product of the inherent parity of primary and
secondary particles, Moreover, there are limitations on ,
well-known under the so-called theorem concerning the com-
plexity of angular distributions [28], which is easily
obtained from the properties of the Racah coefficients (see
Section 29): Lo™, g™ g™=* . In the right hand por-
tion of these inequalities, which should be satisfied
simultaneously, are the maximum values of the angular momenta
participating in the process,

It is usually necessary to use formula (30.6) either when
small values for the orbital angular momenta are involved,
or when the reaction goes via a definite state with respect
to the total angular momentum, or when the colliding parti-
cles have small spins: O, 4 or 1, In these cases, the
formulae deduced are considerably simplified, The limiting
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number of Z -coefficients entering into expressions
obtained in this manner, are taken from the tables. given in
Appendix II,

One of the most important applications of formula (30,6)
consists in carrying out a generalized phase shift analysis
of experimental data, This analysis consists of the follow-
ing, The experimental angular distribution is expressed in
terms of Legendre polyncminals, From a comparison of these
with formula (30,6), the matrix elements of the S-matrix

(V's’a’|S|lsa) are determined, i.e, those parameters in the
angular distribution which are determined not by the kinema-
tics but by a special feature of the process are found,

In the general case, such an analysis is ambiguous, As
was indicated above, the quantities (I's’e’|S|Is®) are matrices
containing a large number of real parameters, and a study of
the angular distribution gives a number of equations which
is considerably less than the number of unknown parameters,
Generally speaking, for a complete determination of the
parameters, investigations of the collision of polarized
particles are necessary, giving supplementary equations for
determination of the parameters,

Even in the case of elastic scattering of particles with
a spin of % by particles having zero spin, analysis of the
angular distribution does not give the complete information
concerning the parameters of the S-matrix - the phase shifts,
In this case, as was indicated in section 26, the S-matrix
has the form'

il
‘0 oy 1855, (30 -8)
where [=Jz1/2, whence it follows that for given 1/, J,

and L, Z —coefflclents of four types will occur in the
coefficients of Bp:

—

z(h—ghdi—g b L)

4h+§4h——g )

z@—<%+§&@Q=4n
)

Z(hb g it g b 5 L)=

—2' =z“|
L)

- ol
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In accordance with Section 29, Z;; and Z,, differ from zero
when Jy+J—L is even, and Z;, and Z, differ from zero

when Ji+J/.—L 1is odd, Hence it follows that in the formula
for angular distribution, only the combinations ZnZy, Zndsn,
ZyZ, and ZpZ,. enter, But these coefficients have two
properties of symmetry: Z;,=2Z2Zy andZ,=—2Z2, .

From these results it is not difficult to see that the
value of Br is not decreased if the substitution is made of

Bj 143 ; 1 for all J simultanecusly,

z 3

In other words, the determination of the coefficients of
Bp from analysis of experimental data, does not give a
determination of the phase shifts, Thls ambiguity [32] is
esgsential for analysis of data with respect to scattering
of = -mesons by nucleons; it has a simple physical signi-
ficance [33].

By means of (30,6) and (30.8), it is easy to show that as
a result of meson-nucleon scattering, there is also an
ambiguity of phase shift analysis, associated with the
choice of the sign of the phase Shl ts - change of all
signs does not decrease the values of the By coefficients,
These ambiguities can be eliminated by analysis of experi-
ments in which the polarization of the nucleons after the
meson scattering has occurred is measured, and also by
analysis of the interference between the Coulomb and nuclear
scattering,

We shall leave the student, as an exercise, to obtain from
the general formula (30, 6) the differential scattering
cross-section for spinless particles and the scattering of
particles with a spin of % by particles with a spin of 0,
and to express these cross-sections via the phase shifts,
for the lowest values of the orbital angular momentum

[=0,1, The latter result is important for phase shift
analysis of the scattering of = -mesons by nucleons, We
also propose to prove that the angular distribution of the
particles is spherically symmetrical, if the reaction,goes
only via the state of total angular momentum O or &,



CHAPTER IX

POLARTZATION OF PARTICLES IN NUCLEAR REACTIONS

Section 31, General Formulae

In connexion with the development of experimental techni-
ques, the greatest value is derived from experiments with
polarized particles, The reason is that these experiments
measure the dependence of the scattering matrix on the
variables characterizing new degrees of freedom, Experi-
ments with variation of only angular distributions give
only data summed over these variables, A number of rela-
tions, arising from polarization and particularly from
reactions with polarized particles, can be obtained which
arise purely from the general properties of the S-matrix
as discussed by us in the first chapter, Consequently,
the relations discussed below are perfectly general, not
dependent on the nature of the particles participating in
the reaction and the details of their interaction., We
shall confine ourselves here to a discussion of the pola-
rization of particles as a result of collision of a beam
of non-polarized incident particles with non-polarized
target particles, Consideration of the general case* for
a reaction with polarized particles, and also correlations
as a result of multiple processes, requires a greater com-
plexity range of threatment and is beyond the scope of this
book.

Polarization, according to definition, is the mean value
of the operator of spin:

W, jO =T (31.1)

*3ee papers [18 and 24). A discussion of correlation
resulting from the decay of particles is given in greater
detail in [27],
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This, obviously, is a vector guantity,

We shall interest ourselves in the polarized particles
arising as a result of collision processes, We will consi-
der the polarization of particles characterized by the
index 1 ., We will denote by ¥ the wave function of the
particles formed as a result of the reaction, This wave
function in accordance with section 23 has the form

v=Vix 2 V=R @A D(fol Rl ajpypgl0).  (31.2)

If, into this expression formula (30.3) ig substituted in
place of the matrix element R, then wave functions are
obtained with indices of representation dU¢s'm, indices, on
which the operators act, Hence, it can be seen that for
calculation of the polarization (31,1), an explicit form
of the operator j; is required in the representation s'm, :

(sim, |4, ] sym?)- (31.3)

Having calculated the matrix (31.3), and then having
obtained the product of (31.1), i.e, having summed over
Sﬁ;m;”ﬂ, and integrated over all angles, we obtain the
mean value of the polarization vector {(the value obtained
by us will be of importance for the cross-section), This
is the so-called total polarization, If integration over
the angles 6, ¢, is not carried out in the product of (31.1),
then the so-called differential polarization which is of
most interest is obtained. It is important for the diffe-
rential cross-section; and is the mean value of the spin
operator of the particles omitted in unit time into the
solid angle d@ if the flux of the incident particles is
unity., For differential polarization we shall adopt the
. dP

notation —T

Frequently, the concept of relative polarization is intro-
duced:

dapP
1 d2
‘f=}=;da'
e
where-fi is the differential cross-section,

dg

Let us pass on to calculation of the matrix (31,3), In |2]
(Section 25), we introduced a general expression for the
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of the operators of the projection of the angular momentum,
These expressions are obtained only from commutation condi-
tions and therefore they also apply to the spin operator:

@1/ 4y 1) =V T T8 G —F Ddwu-1.
le— iy W)=V T—mU+p+ 1) dp-1n
(- f: [ ) = pdyrp

Comparing these expressions with the tables of vector addi-
tion coefficients for J==1 , the following connexion
between them and the general formula can be seen*:

WA =VUG+DJ Gp'|1vp), v=0, =1, (31.4)

where

Let us transform this matrix into the representation we
require:

(sime | 7, | sime) = 2 (simg, |y fata) VI D) (it | 1) (J e | S2m,) -
By

Simplifying this expression by means of the Racah formula
(29.9a), we find

VAU D[ @+ 1) @5+ 1) @+ 1] X

T .
- I)JrJll-;ras,‘v(s;__nl;szm;l 1 _y)w’(jls:jls;; Ja1):
(31.5)

*Formula (31,4) obtained here, is a particular case, well--
«nown in the application of Group Theory as the Wigner-
Eckart theorem:

(Jata | 75| Jis) = Uz | Ty 1) Uity | aRT4,) -

Here fﬁ is an operator which as a result of reversal‘of
the system of co-ordinates transforms like (%), Uelfhlq)
is the reduced matrix element, independent of the projec-
tions of the angular momenta (see [2], p.409).
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Let us multiply the right hand side of (31.5) by W) and
the left hand side by W;' and sum over simsim; . In addi-
tion, since particles I and II are not polarized, we shall
normalize with respect to the spin of the initial state

na?
T @)@+
1
X Db+ 1) @A) [(1si’ | R | sa)] [(Lisja! | RY:| lysa)| X
XX (L0sm, | Jym) (10sm, | Jym,) (Limisim, | Jim) X

i

1
———— [ z
ViiGi+1) (Qﬁi}ts_n—x

mmg m,

X (!;m;s;m’;, ’ sz‘a) y;‘m. y!,m, X
s ]
X (— 127 25 1) (25i4-1))P (si—my syl | 1—¥)X
XW(isss /5)d.  (31.6)

The summation over magnetic quantum numbers can be simpli-
fied in a mamner similar to that used for angular distribu-
tions, Apart from the application of Racah's formula, it
is advantageous to introduce, by means of formula (29.16),
the sum of the products of the three Racah coefficients in
the coefficient X determined in Section 29, The details
of these somewhat unwieldy but simple expressions is con-
tained in the paper [29], which we have used considerably
in this paragraph, The final formula for the cyclic pro-
Jections of the polarization vector has the form:

dP,
o= N AL (LOLY|Ly) V1, (0, o).

The complex expression for Ay is independent of v

From the tables of vector addition coefficients, it
follows that

dP,  dpP,

o =7 =0
dPy _(dP_y  dPy\ 1 1
d—rf*“( g *Tsﬁ)ﬁﬁ"?(y‘"‘_'_m}N
~ — i sin ¢P7 (cos ),
dP,
v i1 [dP dP_ !
E=ﬁ(2§*+?f)”““f(y"—y"’)~
~ cos P (cos ).

(31.7)
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p, is the normalized associated Legendre function.

We shall assume that we have chosen as the axis by the
direction of motion of the colliding particles, The posi-
tion of the axes x and y is not associated at present with
a distinet physical direction, Let us now choose the x-
axis so that it lies in the plane of the reaction (this
obviously implies that the angle of scattering ¢=0), In
this system of co-ordinates %£}==%£?=:U , whence follows a
very general confirmation that the polarization vector of
the particles is always directed perpendicularly to the
plane of the reaction, This is also clear from simple geo-
metrical considerations: the polarization vector is
obviously a pseudo-vector, and a unit pseudo-vector which
can be formed from the unit vectors n, and n, is the vector
product [#ft] |, hence it is clear that the polarization
vector should be directed along this unit vector., We shall
denote this unit vector by #&=|[n.n,], when the general
expression for the differential polarization vector can be
written in the form*

daP_.,
[

(21 G+ D @i+ )"
&+D En+

X SRe {1 [(sia’| R isa)]" (s’ | R%| tys)]} X

b

5 (— 1yt s et Tttt 7 e sy X
W (st justs ja 1) [@4A4-1) (214-1) (25741) (241 (2La4-1)X

¢ (2504 11" (10220 | LO) X (it1sh: Jolast LL1) P (cos B).
(31.8)

The summation proceeds with respect to Jilymmalialilesisy s and L

F are real,

All the quantities occurring in

*Our formula differs from formula (5.2) of [29] by a slight
essential factor, The difference is dependent upon the
unfortunate normalization of the tensor angular momenta
used in [29]. (See [25].) Moreover, there is a difference

) b=ty -1 ; .
in the phase factor ¥ %1 agsociated with an error

in [29], an error similar to the one mentioned previously
in [19],
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Section 32, TFundamental Laws Related to Polarization
in Nuclear Reactions

We shall consider the fundamental laws of polarization,

1) As has been indicated, the polarization vector is
always directed perpendicular to the plane of the reaction,

2) Polarization is essentially an interference phenomenon,

This is evident from the expression in formula (31.8)
which has the form %Rc [Ifff,-], where f; are the amplitudes

of the transitions in the individual channels; the terms
with {=/! are equal to zero, Thus, if the specification
of a reaction is such that only a single matrix element of
the S-matrix is non-vanishing, then polarization is absent,

A number of laws follow directly from the properties of
the Racah coefficients and the vector addition coefficients,

3) If in the reaction an S -wave participates (in principle
also in the final states), then polarization will be absent.

4) If the reaction goes via the level of a compound nucleus
of a definite parity and J==%—(or J=0, and any parity),
then polarization will also be absent,

5) If in the final state the total spin is zero, then the
polarization is also zero,

6) In the case of absence of spin-orbital coupling, the
polarization is zero,

7) If the specification of the interaction is such that
the value of the orbital angular momentum of the initial and
final states, or the total angular momentum J , participat-
ing in the reaction is limited, then an upper limit can be
set for L s

L2, 28, 20

L should be even if the interfering states have the same
parity. Anisotropy of the angular distribution of the
reaction obviously excludes the use of rules three and four,
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Non-symmetry of angular scattering relative to 90¢ indicates
that there are interference effects, and consequently pola-
rization is possible,

8) Certain predictions can be made concerning the angular
distribution of the polarization, For (=0 and 180°, Pi
is equal to zerc and polarization is absent, If in the
reaction, orbital states not higher than l=1 participate,

then the polarization will be determined by the functions

P}(cos®) and Pi(cosf), i.e, it should be expected that it
will be a maximum for angles 0 within the range 45° and
1352,

The formula given for polarization is very unwieldy. How-
ever, this disadvantage is associated with its extreme
generality, If particles with low spins participate in the
reaction, and only a small number of values for the orbital
angular momentum occur, then the formula can be simplified
and in every particular case the coefficients can be estab-
lished in the form of numerical factors by means of the
tables, It is particularly easy to use this formulae for
angular distributions and polarizations, if the numerical
tables given in Appendix II for the coefficients W, Z and
X are used,

We shall give as an example of application of formula
(51,8% an analysis of the reaction Lif(nz)H3, Interpreta-
tion [31] of the data for this reaction indicates that in
the energy region about 270 keV, its angular distribution
and energy dependence can be explained, if it is assumed
that the following elements of the S-matrix are non-zero:
the left hand portion of the equation in our notation and
the right hand side in the notation of [31]:

(1% IE)ZVL (2} 0%)2 a,

] ]
Oq)zb.

o

On the basis of this data and the general principles
formulated above, certain predictions can be made concern-
ing the polarization of the tritium nuclei arising as a
result of the reaction, Since the states with different
spins in the original states do not interfere (see formula
(31.8)), then the polarization can be specified by the

3
2
sk

3
gt

+ = b

S

3| =
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%nterference states v and 4 , and the sum with respect to L
1n_(31,8} for this case amounts to a single term with L=1
Using the properties of the W and X coefficients and the
tables, it is not difficult to find that:

1111, )1 3,1, 1
W (zg ?,01)_?_ W(Igﬁ—f:‘?l)-:-’—,é;
—(3,1. 1,41, 1
X=(g1gi 703: )= e
and formula (31,8) gives
ap 2

1
2 = kK2 (864) ¥ [1(b* — <*b)] Pj (cos 0) = kX? | *8 | sin 4P} (cos 6),

V 864

The angular distribution does not allow the determination
of the phase shift v, upon which the magnitude of the
p?larization depends, On the basis of data from angular
distributions, however, it is easy to estimate the maximum
value of the polarization which can be expected for this
reaction,

?ro@ the example discussed, it is obvious that the general
prlnclp}es formulated permit a sufficiently definite opinion
t? be given concerning the angular dependence of polariza-
tion and its magnitude, i.e, they permit a selection to be
made of the most advantageous conditions for measurement of
polarization, The measurement of polarization makes it
possible to obtain information about the phase shifts of
the elements of the S-matrix,



CHAPTER X

REACTIONS INVOLVING PHOTONS

Section 33, General Formulae

The mathematical treatment given also applies when photons*
participate in a reaction, In order to understand those
special features which arise in this case, it is necessary
to consider the quantum mechanics of the photon, We will
only consider this briefly, however, since only certain _
results of this theory are necessary for our narrow practi-
cal purposes, The student, desirous of studying the pro-
blem in more detail, should for example read the first
chapter of the monograph [20] where the quantum mechanics
of the photon is stated slmply.

Henceforth we shall use the following results of quantum
mechanics of the photon:

1) A photon, like any other particle, has a wave function
f. It is related very simply to vector potential and is a
vector quantity. The latter shows that the spin of the
photon is equal to unity, f, is the eigen function of the
operator of the projection of the photon spin with an eigen-

value p=0 ; the combinations— Vg(fx—}—ify)andv (fo—ify)

are the eigen functions of the operator of the projection
of the photon spin with eigen-values of + 1 and - 1
respectively,

2) The wave function of a photon satisfies the condition:
(n. f(n))=0 , where n is a unit vector in the direction of

propagation of the photon,

*See (22, 18, 26],
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From this latter result emerge the special characteristics
of the general formulae describing reactions with photons,

Our problem is to express this condition in such a form
that it should permit us, by a simple modification of the
general formulae obtained for particles with a non-zero
rest mass, to obtain similar formulae for photons,

For particles with a spin of 1, the wave function with a
finite orbital angular momentum /, its projection m and
spin projection g, has the form:

Oop” | Imp) = Yi,n (0, @) By, (33.1)

where 6§ and ¢ are the angles defining the direction of the
momentum of the particle, The wave function of a particle
in the same representation, but with a finite total angular
momentum g and projection m, is obtained from function
(33.1) by the rule of vector addition of angular momenta

(Ogp’ | Igmy) =”§(B?F' | imp) (Im 1| gm,). (33.2)
For a given g and m,, there are three linear independent
functions with /=g and [=g=1, The eigen function of

the total angular momentum g, in the general case, is any
linear combination of these three functions,

In the case of a photon, in contrast to the normal parti-
cle with a spin of 1, the wave functions should also satisfy
the condition n, f(n)=0. Therefore, in order to obtain the
wave function of a photon describing the state with a finite
total angular momentum and its projection, it is necessary
to construct the linear combinations of function (33,2)
satisfying this additional condition, Hence it follows,
that for a photon there will be not three different states
with the fixed quantum numbers g and m,, but only two,

If we find this combination
I ! L4
2.C(p) O3 | Lgmg) = (9’| pgm,)

(the index p can assume two values), then the coefficient
C'(p) can be considered as the transformatlon ({!p), convert-
ing the formulae valid for the normal particles, into
formulae valid for photons, Thus, our problem is that of
determining (/| p).



182 KINEMATICS OF NUCLEAR REACTIONS

Let us find C'(P)=(l|'p) from the following condition:

1) The functions (¢p’|pgm,) should satisfy the condition
n, f(n)=0 , We shall formulate this condition in a repre-
sentation for which we shall use

(n, f(n))==cos Of; () 4-cos ¢ sin Bf, () +4-sin g sin 0f, (n) =
=08 0f, (1) 4 (f+1f, ) sin Beie + 5 (o — if,) sin Oev =

=:‘/r§§(wah-F'Vuf|~F'VLJf_1)==U’

where f}, is the eigen function of the operator of the pro-
Jection of spin in the eigen representation, Thus, this
condition can be written in the form:

2 Vi (0 9) (9w’ | pgmy) =0, (33.3)

2) The functions (O¢p" | pgm,) should be eigen functions of
the parity operator,

3) The functions (Ogp’|pgm,) should be orthogonal and
normalized,

We observe that the functions (0¢p’|pgm,) , in accordance
with the properties listed, describe an electromagnetic wave
with a finite total angular momentum and parity, Such states
in the classical theory of the electromagnetic field are
called multipoles,

The functions (0pp’|lgm,) are eigen-functions of the parity
operator:
P (Ogn” | 1gmg) = (— 1) (Ogp’ | Lgm,). (33.4)

The factor (—1)' is obtained on account of the transforma-
tion 6 »=—0, § > p-4= in the orbital part of the function,
and (—1) on account of the spin part of the wave function,
Since [=g==1, g , then the state /=g pertains to ome
parity, and /:==g=1 to the other, There the functions can
be either (Ogp’|ggm,) or (Bgp’|g-= 1gm;), Hence we find one of
the functions required:

(Oop’ | ggmg) = (Bep’ | Ogm,). (33.5)

In (33.5) we have followed the notation used in the
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literature and made the index p equal to zero, Such states
are called magnetic multipoles; their parity is equal to
(—1)%** , Actually, for g=1 , one talks about the magne-

tic dipole state, for g=2 about the magnetic quadrupole
state and so forth,

Function (33.5), in accordance with its definition from
(33.2), satisfies our third condition, It is not difficult
to verify that it also satisfies the first condition,

;: Vig: 00 @) 2 Vom0 @) s (gn1p | gmg) =
=§ Vemg—u Yia (g — plp| gmay).

Replacing the product of the sphericcal harmonic functions
by means of formula (30.5), we find

I+1 L 1
N @41y (2 +1)]7
) D CLE T (l0go) L0)
B L-—zlil M-E-L[ =@+ J
X (LM I ll"'gm‘g_ F‘) (ll"'gmy_ I"’] gmg) Yin.
The two latter vector addition coefficients, by summation
with respect to p give the product 3;s0mm, , and since the

coefficient (10g0|g0) is equal to zero, then the second con-
dition will be fulfilled,

Let us find the second function, having a parity (— 1%
(in the literature the index p=1) is used and these states
are called electric multipoles:

(Ogp’ | 1gmg) =C*7" (1) (Bop’ | g — 1gmy) +
+CoH (1) (B’ | g+ 1gm,).

Uaing the condition (33,5) and maeking similar calculatioms,
we find

' (1) = V@§+=(l),

and by summation over all initial states we obtain the final
expression for the wave function of an electric multipoles

(Opp” | 1gmg) = ]/-2—«-—g‘j, : (Ogp’ | g — lgmg) +
+]/-§§.~i+11 (Ogp’ | g+ 1gmp).
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The coefficients C'(p) can be written in the general form:
C(p=p=—V2—111[0)s¢ p)(—1)" (33.6)

where the symbol 8(/, p) has the following values:

2 l for I=g¢g

a(l, = —

¢ p [0 fop Iif for p=0,

s, | for 1= (33.7)
i i [ R I+g for p=1.

Transformation (53.6) is of the greatest value since it can
be used to transform many formulae valid for reactions with
particles into formulae valid for reactions involving pho-
tons,

By means of (33.6) a transformation is made from the
variable [/ to a variable characterizing a type of electro-
magnetic radiation (electric, magnetic), where (and it is
necessary to emphasize this) the states of a photon are
given by the total angular momentum (orbital angular momen-
tum plus spin), whereas the states of particles have been
given by the total spin, This shows, that in order to
obtain formulae valid for reactions with particles, it is
necessary to carry out a further transformation, changing
the order of addition of the angular momentas:

h+i=8)+i->p+Un+i=g=J
And so forth,

But in accordance with the the result in Section 29, this
transformation is:

V(2g+1)@2s+ )W (1jn]gs)=(s]8)-

Here we assume ji=1, i,e, the case is considered when the
photon is particle I,

We shall now derive the final formula for transformation
from formulae for reactions with particles characterized
by variables of spin of the channel s, to formulae describ-
ing reactions with photons. The states of the photons are
given in the form of electric and magnetic multipoles.

1) It is necessary to transform the amplitude of the
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Process

£ ror

(1< | RE|1s2) - 3¢’ | RE | ) o
P
(stlg)= (sl p)=
=—V2(=D"V@eF N+ DW (Ujn; g) X
><(g—111|£0)3(1, o)
the meaning of the symbols was given previously,
2) For summation over the initial states, it is necessary

to take into account the fact that a photon with a fixed g
does not have 3 states, but only 2, Thus, we obtain from

formula (50.6) a general formula for angular distributions
in nuclear reactions involving photons [26]%*,

a) Photoreactions (photons incident, particles emitted)
ds (—1* -t
de T 2(2, 4+ 1) E 4 X
X Re {(4is'a" | RY: | pugia)” (2s'a” | RZ: | pegea)) X
B 1
X (— P20 2 2 (i S'L) %
X Z (gi)1e)si jul) Pr(cos0). (33.8)

Here the summation is over JJgg,pplilis" and L.

b) Emission of photons (particles incident, photons
emitted)

do _ 2
= @A+ X

D Y oot A

X X g Re|(pigie’| R |Lsa)" (hge’ | R%:| ys,2))
BB o g e
X(__ 1) 1 Zr(gljlgg 5 .)‘2{‘) (f) Iy+1,~L X

X Z (Wil sL)Pr(cosB).  (33,9)

*Our formulae differ from the formulae in the paper [26] by
a phase factor chosen from the condition of invariancy of
the S-matrix under time reversal (see Section 21),
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Here the summation is over JJgg,pp,lils’ and L.,

c) Scattering of photons

o x
de 7 22+ 1) X
(_‘I = j” P ) r_r
E Re {(plgla ]R{:]plga (ngz ’I ‘Pzgz

+ 'y ’ ’ 3
x(_l)h Hrey 27(5'1 \&slai J'IIL) Z, (gljxngz:fzf-) P (cos B)} .
(33.10)

For o

Here the summation is over J/,gg.4:.pppp, and L.,

It is not difficult to obtain an expression for polariza-
tion of particles arising as a result of photoreactions,
Transformation of formula (51.8) gives

AP _ % G 1) @A
an kR 2@+

X X Re [1(1is | RE| g o) (s’ | R | poge)) X
il i)f\_"'jl_fll'f--fz-f- Bytly — Iz.{(glf.ngzi jnL) (— 1)F1+P' X
X W (Jsidysz Jy1) X
X[+ 1) 24+ 1) (25 + 1)(2; + 1) (2 )28+ 1)]EX
X (HOL0 | LO) X (4ilist; hiiss; LL1) P (cos D). (33.11)

The summation is over J,J, g, g.p, p, L, L, s s, and L,
The properties of expressions (33.8), (33.9), «(53.10) and

(35.1151 are similar to the properties dlscussed above for

the corresponding expressions for collision of particles,

In the summations of (33,8)-(33,10), only those terms for
which P, +P,+€+&y - L is an even number are non-zero.,

REACTIONS INVOLVING PHOTONS 187

As an exercise, we suggest that the student, by applying
the formulae given here and the tables in Appendix II,
obtain:

1. The angular distribution in the photoproduction of = -
mesons at nucleons, assuming that the amplitudes E; for -
photoproduction of S-state mesons as a result of absorption
of a photon in the electric dipole state(g=1, p=1, J= 1/2),
and that the amplitudes M,; and M,; for photoproduction of P
-state mesons as a result of absorption of photons in the
magnetic dipole state, are respectively,(g=1, p=0,/=1/2)
and (g=1, p=0, J=3/2).

Answer:

“%=ELT ([ Eyy |24 | My P42 M3 [2] Py (cos U) 4

-+Re [— QE:1M1:+2‘E:1M151 P, (cos8) -}
[ [Mys [ — 2Re (M}, M,,)] P, (cos 9)) .

2, The angular distribution for the Compton effect by a
nucleon, assuming that the photons are scattered only in the
electric and magnetic dipole states,

Answer:

da

?g‘=3::T§{14!Em=+7|£m|=+4rMmJ=+7mel'—
—2Re (E:mﬁm + M:mMsrz)] +
+ 4Re[Elp (2Myp+ Myz) + Esp (Mip+5Myz)] cos 6+

+3[| Esee [+ | Mo [+ 2Re (ElpEsp+ Mi2Myz2)] cos® 0} ,

where E;p and Ey, are the amplitudes of the electric dipole
scattering in the states with a total angular momentum of
1/2 and 3/2 respectively, and M,, and M;p are the same for
magnetic dipole scattering.
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Section 34, Relationship between Photoproduction
Processes, Scattering of m-mesons and the Compton
Effect by a Nucleon

In Section 26 the determination of the parameters of the
S-matrix was briefly discussed, and it was indicated that
the treatment given there was of a very general nature, It
is, in fact, also used for reactions in which a change of
nature of the particles takes place,

In this paragraph we shall determine the parameters of
the S-matrix describing the fundamental process of T -
meson physics, and we shall establish the relationship
between these processes which result only from the general
properties of the S-matrix given in Chapter VI,

Let us consider the series of reactions:
1+N-—> 1"+ N'— Compton effect by a nucleon,
1+N—= +N’— Photoproduction of mesons,
®~N-—7 4N — Radiative capture,
n+4N-—sn"4 N — Scattering of mesons,

Here the symbols N, N’ designate nucleons (either pro-
tons or neutrons), and = -mesons (positive, negative,
neutral), T-photons, All the initial and final states
we shall consider as different states of a single quantum-
mechanical system,

If the energy of the photons is limited to below 300 MeV,
then the transitions between the states (TN). (YN'), (Nm),
(N'=’) practically exhaust the possible processes, Calcula-
tion of the remaining chamnels is slightly influenced by
the results discussed below, The chamnel with formation of
electron pairs requires special consideration, The S-matrix
element describing this transition is by no means so small,
that in accordance with Section 24 it causes no diffraction
scattering of the photons by the nucleons, It can be shown,
however [35], that if angles of scatter of the photons by

the nucleons less than ~ ”"E\‘J"
1

, are not considered, then this
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effect can be neglected,

Let us write the S-matrix of the processes we have
listed:

(Ko’ | S™| ka) BJ‘JBM’IIBH'::BT;T;

Here J is the total angular momentus of the system, M its
projection, = the parity of the state, T3 the projection
of the total isotopic spin of the system, & all the remain-
ing quantum numbers characterizing the channel a j «
assumes two values, corresponding to (yN) and (=N),.

In the case when « corresponds to the channel (zN) , the
index & takes into account the following quantum numbers:
the orbital angular momentus {, and isotopic spin of the
system., For a given parity = and angular momentum J, !

is single-valued, since t:Ji% and m=(—1)'*"', The

isotopic spin of the system can assume the two values T:-,!-

L=

and T—=23 . In the case when a corresponds to the chan-
nel (yN)~, index % takes into account the quantum numbers
g and p, characterizing the multipolarity of the photon,
And since m==(—1)/*?*! , and at the same time [=J+.,
then for given J and =, only two states of the photon are
possible,

Thus, (k'a’|S’"|ka) is represented by a four-series square
matrix, We shall write it in the form §,, , where the
indices u and v take all four values corresponding to the

following states:

p or v=1- nucleon + photon in a state of the magnetic
type with g=1I (the parity of the state is
designated by the gquantum number { of the
orbital angular momentus of the meson-nucleon
system),

p or y=2 - nucleon + photon in a state of the electric
type with g=I4-1 (p=1).
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@ or v=3 - nucleon + meson in a state with isotopic spin
equal to 1/2,

 or y=4 - nucleon + meson in a state with isotopic spin
equal to 3/2.

Without further use of the properties of the S-matrix, we
have, for a given total angular momentum and parity, 32
effective parameters by which the S-matrix is expressed,

Let us use the unitarity and symmetry of the S-matrix:

2 SpSur =Byt Sp=S,. (34.1)

The symmetry follows from the property of time reversal and
from the circumstance that amongst the quantum numbers k
and a, there is none which should change sign as a result
of substitution of ¢——¢ . Representing S,, in the form
rne = and substituting this expression in relationship
(54.1), we find the system of transcendent equations con-
necting the parameters r,, and ¢,, which we have introduced,
This system can be solved by the method of successive
approximations, using the simplest assumption, actually as
the result of experiment, that the matrix elements are re-
lated to one another thus:

(Siu—1~S~Sp—1):
: (Sm“"‘sl.l""szs""‘sza""sn) 1 (S~ Sy) =
p— e?' - f': .
T ¥V he

(34.2)

e

where f%:z y is the fine structure constant. Relation-

1
h 137
ship (34.2) is obviously unbalanced absolutely in the
viecinity of the threshold of photoproduction, We shall not
discuss this small region here, Below the threshold only
the elements Sy, Sp. Sy and S, are non-zero, and the para-
metrization does not differ from that given in Section 26,
Consequently, we shall consider the region of energy above
the threshold for photoproduction of = -mesons, As a first
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approximation we shall keep in each of the equations of
(34.1), only the terms involving one power %i. For

n oand p’, equal to 3 or 4, we find

SuSu=1 I SiSu=1,
hence

Syy == "'1, S“zez""'_ (34.3)
The effective parameters 7; and 7; introduced here are not
the same as the phase shifts for the scattering of = -mesons
by nucleons in a state with finite isotopic spin, total

angular momentum and parity,

When one of the indices p or p’ is equal to 3 or 4, and
the other is equal to 1 or 2, we find

Slx"f‘s::is:n: 0, Su -I-‘SIIS,‘:U. !

S+ ShSu=0, Sy + 85,8, =0, ] (54.4)
From (34.4) and (34.3) we obtain
Sig=1irpe'", Su=trye'™, (34.5)

i S
Syy=irge'", Su= ‘r-_qf”'- J

where r,, are effective parameters,
Relationship (34.5) expresses an important conmexion
between the processes of photoproduction and scattering of
= -mesons [9]. They considerably simplify analysis of
experiments on meson photoproduction, For example, by
applying the formulae of the preceding paragraph, a number
of conclusions can be made concerning interference terms,
knowing the energy relationship for the phase shifts
involved in meson scattering. And, alternatively, by study-
ing meson photoproduction, it is possible to verify the
accuracy of the results of phase shift analysis of scatter-
ing experiments,

VWhen the indices p and p’ are equal to 1 or 2, then equa-
tion (34.1), in the first approximation, can be written in
the following manner:
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Sti—14Su—1= -~ SisSs — S1eSu
Siz4- Siz=— 8152 — SiiSa. (34.6)
Sea— 14 Sip— 1 =— 83552 — SzaSez.

Let us deduce the scattering amplitude: IRy =S.—38. ,
and let us use relationship (34.5); then relationship
(34.6) can be written briefly as

Im Rub=?}{fas’sa+’a4’¢o)' (54-7}

where ¢ and b assume the values 1 and 2, i,e, the imaginary
part of the amplitude for the Compton effect is expressed
by the modulus of the amplitude for photoproduction of m -
mesons,

Relationship (34.,7) substantially facilitates analysis of
experiments on scattering of photons by nucleens, Using
the general property of the W, Z - coefficients and vector
addition coefficients, it is not difficult to show that sub-
stitution of the indices 12 under the summation sign in
formula (33.10) does not alter the value of .;& . Hence,
it is possible to replace the symbol Re by the product

(Pig@ | R P& o) (Pige’

in the form R}, iR\ , where R}, and RY are real values,

Ri;[pzé‘ga) If now R,, is written

da . . " .
then ‘E%'ls divided into two components; in the one only

the elements R, occur, and in the other only RY . In
accordance with (54,7) this sliows that the first component
is expressed only through a parameter subject to determina-
tion in experiments on the Compton effect, and the second
one only through the modulus of the amplitude for photo-
production of mesons, From this result a number of the
properties of the differential cross-section of the Compton
effect can be obtained witheut the use of the detailed
theory of the phenomenon,
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APPENDIX I
(To Part One)

In Chapter II methods of calculation and graphical con-
struction of kinematic relationships characterizing nuclear
interactions involving two secondary particles were given.
The number of such interactions, even if limited only to
transformations of elementary particles, is extremely large,
and moreover these interactions are investigated over ex-
tremely wide ranges of energy of the bombarding particles.
Consequently, we are not able to present here, concrete
data for all such interactions, and we are including in the
Appendix only a few fairly typical examples.

As examples of nuclear reactions at low energies, we shall
present a few reactions used for the production of mono-
energetic neutrons, such as dn -reactions:

1) D (dn)He?3, 2) T (dn) He4, 3) Ct(dn)N®3
and pn-reactions
1) T(pn)He3 and 2) Li7(pn)Bel.

In Figure 1* are shown the maximum and minimum energies
of neutrons (corresponding to their emmission through angles
of 0 and 180°) for different energies of the bombarding
particles in the spec’fied reactions. In Figures 2 and 3,
certain characteristics are shown of the reaction T(dn)He!
for energies of bombarding deuterons of Wg=05—3 MeV,

In Figure 2, the relationship between the angle of emission
of a-particles and the angle of emission of the neutron:
9. =f(d,) is given, and also the relationship between the

*Figures 1-8 in the Appendix are taken from a paper by
Hansen, Taschek and Williams, Rev,Mod.Phys., 21, 635 (1949).
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differential cross-sections of the emitted neutrons and the
a —particles for various {, ¢

n)
A— an (9n —_
afr 0y (8'“) f(sr.r)'

Figure 3 shows the relationship between the kinetic energy
of the neutrons and their angle of emission: Wy =7 (3,).
The numbers by the curves in these figures correspond to the
energies of the bombarding neutrons.
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The inter-relationship between the energies of the neutrons
emitted in the reactions listed above and their angles of
emission in the L- and CM-systems, and the energy of the
bombarding particles, can be defined by means of the nomo-
grams plotted in Figures 4-8, In these nomograms, the
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continuous concentric semicircles with a radius ¥V W, give
a number of values for the energies of the neutrons |y, in
the L-system. The angles §, in the L-system are shown by
continuous radial lines, traversing the energy semicircles.
The centres of the dotted (non-concentric) semicircles with

the same radiusy Wpare displaced tc the right by an amount
l/ﬁlgﬂ-V from the centre of the continuous semicircle, and

intersect the horizontal axis for different values of energy
of the bombarding particles - Wgor W,. The angular co-
ordinates of points on the dotted semicircles give the values
of the angles T, in the CM-system, and the dotted radial
lines give the geometrical position of points with a given
value of 3&.

Let us give an example of the use of the nomogram. Sup-
pose we require to find the energy of the neutron W, emitted
in the reaction D (dn)MHe? at an angle @, = 60°, if the
energy of the bombarding deuteron W, = 2 MeV, We find in
Figure 4 on the horizontal scale W, the value 2 MeV. and

g 124 W, MeV 0 ! ? 4
o

N s ma L e At

W, MeV ¢ J 4 & 5 7 8
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follow along the dotted arc corresponding to this index,
upwards to the intersection with the continuous radial
straight line labelled 6C°. From the point of intersection
we drop down along the continuous arc. The point of its
interaction with the horizontal axis of the energy of the
neutrons gives W, = 4 MeV.
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A & 8wl & 4 G0 80,

Fig. 13

-+

The subsequent graphs are devoted to a few of the simplzet
examples of interaction of elementary particles at higher
energies. In Figures 9-13, data is shown for the scatter-
ing of photons with energies up to 1000 MeV by hydrogen
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(Compton effect by a proton) - in the first two graphs, the W= o JMeV

relationship between the energies of the photons and the 160

angles of their scattering is shown, and in the two subse-

quent graphs the relationships between the energy of the 146

recoil protons and their angle of emission, and finally, in prp—=nen

Figure 13, the relationship between the angles of emission 120
of the scattered photons and the recoil protons. The num-
bers by the curves in these figures represent the energy of

the primary photon in MeV. It is obvious that the graphs 100
in Figures 9-13 are also applicable to the Compton scatter-
ing of electrons, if all values of energy of the photons &0k
and of the recoil protons are decreased by a factor ofﬁm Ay, Me¥
——280
In Figures 14-18, similar data for the photoproduction of i0t ;fg

o,
<3

=t -mesons at protons is depicted: 7+ p—n+t+4n . These
graphs can also be used for kinematic analysis of other I 'j:f

meson photoproduction reactions (y4+n—>n-4pand y4+N-—> ——
74 N ; where N is the symbol for a nucleon)., Figures 14 \ ....._J{gg

and 15 show the relationship between the kinetic energy of 2 7 W W 3 L’Iﬁ 0160 80°s
n -mesons and their angles of emission for Av=F, =160 - Fig. 14 ae
1000 MeV. A similar relationship between the energy of Woosf L

Z S : A ; e =6 B )MV
the nucleons and their angles of emission is given in a
Figures 16 and 17. Figure 18 shows the relationship between
the angles of emission of =-mesons and nucleons in processes \\

of photoproduction of = -mesons. oot

The subsequent three figures (Figures 19-21) are devoted 00
to the kinematics of the photodisintegration of the deuteron
for photon energies within the range 5 to 1000 MeV. 500

Figures 22-30 illustrate the elastic scattering of nucleons
by nucleons (for example pp-scattering - Figures 22-25)
and elastic scattering of = -mesons by nucleons. Data for

s00 pep—rin

the pp -scattering is given for proton energies from 20 MeV 408
to 10 BeV, data on =N -scattering for =-mesons with energ-
ies from 20 MeV to 1 BeV. As in the previous examples, the ok
relationships between the energies of each of the secondary

particles and its angle of emission are given, and also the il
relationship between the angles of emission of the two parti- 20
cles, The numbers by the curves in these figures denote

the energy of the incident particle. 100 | \R-""“

e e e (1]
Jil

L 2y
B0 B

In Figures 31 and %2* the kinematic relationships for the g _ ; ; A T
*The graphs in Figures 9-32 have been specially constructed 0 20 4 & 0 W BP0 14
for this work by B.B. Govorkov. Fig. 15
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(1956) relate to the interaction of K-mesons with protons*).

Figures 33%3-35 show the kinematic characteristics of elastic
scattering, K-+p—+K-+p , viz. - the relationship between
the angles of emission of the K-mesons and protons in the
L-system, and the corresponding angles in the CM-system, for
K -meson energies in the L-system of 50, 125 and 200 MeV
(Figure 33) and the relationship between the kinetic energy
of the K-mesons and protons, and their angles of emission
in the L-system (Figure 34, 35) for an initial energy of
10-200 MeV,

*The kinematics of interaction of K -mesons with nucleons
are given in tables published in 1958 in the form of a
Supplement to the Journal "MNuovo Cimento (ViII, Suppl.

No. 1, 1958)., The kinematics of the reaction K +p—>Itt
n¥and of elastic scattering K-+ p—+K-4p is discussed in
them. . The relationship is given between the angles and
energies in the L-system for both the products of the reac-
tion for different angles of emission of the n- and K-
mesons in the CM-system. The range of energy of the inci-
dent K -mesons in these tables is from 5 to 200 MeV (in 5
MeV intervals), and of the angles of emission §, from O
to 180° (by 2.5°).
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Figures 36-38 illustrate the kinematics of the reaction i 200
K+ p-—->=+ Efor the K-mesons with energies from 60-160 MeV, o \ I
Figures 36 and 37 are analagous to Figures 33 and 34, and in - - ]
Figure 38 the kinetic energy of the I -hyperon is given as s0° T
a function of the angles of emission, not of this particle, L ] \ 50 MeV
_ 1
but of the other reaction product, the mn-meson. 80°| -
gpelLLd
Finally, Figure 39, taken from a paper by James and Sal- *,

meron (G, James and R, Salmeron, Phil. Mag., 46, 576,

1955), gives the relationship between the angle of emission

of A-particles (upper) and K-mesons (lower) in the reaction

n4+ N> K-} Aand the recoil momentum of these particles. Fig. 33
The range of momenta of the primary =n-mesons in this figure

is from 1 to 10 BeV (numbers by the continuous curves). The

dotted lines in this figure denote different wvalues of the

angles of emission of the secondary particles in the CM-

system,
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In conclusion, it is necessary to reiterate that our book

has no pretence to being a complete handbook on the kine-
matics of nuclear interactions, and therefore the examples
presented in the Appendix by no means exhaust all that is
essential in daily practical work with cosmic radiation or
in accelerators. However, the essential expressions can
be easily obtained in all cases by means of the formulae
presented in the main text.



APPENDIX II*
(To Part Two)

Tables of Wy Z, Z;and X-Coefficients

a) Introductory Remarks
Tables of W, Z, Z, and X-coefficients are given below to-

gether with brief explanations of them, concerning changes
of argument and the accepted methods of recording the
numerical value of the coefficient, All the essential
information associated with the determination and properties
of theW, Z, Z,and X -coefficients is given in the text of
the book,

The numerical tables introduced here have been compiled
from the basic works [30, 36, 37, 38]. The tables of Z,
coefficients are newly complied, All the tables have been
carefully compared, whenever possible, with existing tables,
In doubtful cases the coefficients were re-calculated,

In selecting the tables, we set ourselves the problem of
deducing the values of the coefficients for the most impor-
tant, and at the same time the simplest, cases of nuclear
reactions, which nevertheless should embrance a wide circle
of phenomena (nuclear reactions with spin of the channel
not exceeding % , photonuclear reactions and scattering
of photons by particles with a total spin not exceeding %, ,
photoproduction of mesons by particles with a spin of 1/,
etc), Unfortunately, we were not able to provide these
tables, mainly because of their considerable bulk, for the
whole of the material in the book, In a number of cases
(this principally, relates to polarized particles in nuclear
reactions, and to reactions involving photons) by using the
general formulae of the main text, the student is able to
take advantage of the more complete tables of the required

*This Appendix has been compiled by A,I, Lebedev and V,A,
Petryn'kin,
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coefficients®, or to calculate them for himself, For faci-
litating the latter problem, in addition to the basic tables
of the W, Z, Z; and X-coefficients, certain supplementary
tables and formulae are given in this Appendix. Here are
given tables of vector addition coefficients (/,0/50|L0)

and ({4—1/50[L0), which are necessary for calculating the
Z and Z; coefficients according to formulae (29,17) and
(29.20) of the main text, tables of factorials of numbers
tables of formulae for calculating vector addition coeffi:
cients and W-coefficients, In the supplementary tables
are also tabulated the values of A (abc), which is deter-
mined by the relationship

1
_[la+b—e)(pt+c—a)(c+a—bt)Tz
8 Gabo) = @F6Fct J*

whereupon &, § , and ¢ satisfy the condition of triangula-
tion, and their sum is a whole number, Obviously, the
value of A(abe) is symmetrical with respect to any permu-
tation of its argument, With its aid, the explicit form of
the W-coefficient can be written down:

W (abed; ef) = A (abe) A (cde) A (act) A (bdf) w (abed; ef),
o (abed; ef) =

=E (_1)a+b+c+d+z(z+1)'
- F—a—b—o)z—c—d—e)l G—a—c—NE—b—d—) <

1
R EFbFeFd—Grdre f raGFeFrer—a

*From the most complete tables of Wand Z-coefficients, we
draw attention first and foremost to the voluminous ta.bl’es
compiled in the Oak Ridge Laboratories [30]. Tables of

W, Z and X=-coefficients are given in reports from the
Chalk River Laboratories [37]; these tables, unfortunately,
are prepared primarily for analysis of correlations in
nuclear reactions, The range of variation of the variables
is different from the ones presented here, The Wand X-
coefficients, for a fairly wide range of variation of argu-
ments, can be found respectively in works [38, 36], by
Japanese authors, Coefficients approximately to Z, are
tabulated in a synopsis by Biedenharn and Rose [27] and in
reports from the Chalk River Laboratories [37].
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where 2z tekes only those integral values which do not lead
to a negative argument for the factorisls in the denominator,
The vector addition coefficients (2060 |c0) for the integrals
a, b, ¢ with an even sum a4+ b+ ¢=2g are likewise expressed
by A(abe) :
iz gl
(a060]c0) = (—1)7+¢ - (2c +1)* A (@be) o—oyre— pyre—oy -

For a, b, ¢, not satisfying this condition, the coefficient
(a060| c0) vanishes to zero, The value of [A (abe)]~2% is
given in the tables,

Finally, in order to facilitate calculation of the diffe-
rent angular distributions, we give in paragraph e) the
explicit form of the Legendre polynominals Pp (cosf)*and the

normalize of associated Legendre functions withM:le(cosﬂ),
which enter respectively into expressions for differential
cross-sections and polarization,

b)Layout of Tables and Range of Variation of Arguments
A1l the coefficients are given in the form of fifty-seven
tables,

The first 15 tables (I to XV inclusive) contain the coeffi-
cients W2 (lyJyloSo; sL), for which § assumes the values 1/, 1
and By, and L takes all integral values from 0 to 4,In the
tables with s =1/s, ¥y, Iy and [, assume integral values from O
to 5, and Jy and Jy vary from ¥, to 9, ., In the tables with
s=11l and I, assume integral values from O to 5, Jy and
J2 vary from 0 to 4,

The tables of coefficients Z3(ly/yls/y; SL) have index num-
bers from XVI to XXXIII, The range of variation of the
variables is, as in the case of the W- coefficients, with
the exception that L takes the additional value L =35.

The coefficients Zﬁ (I4JylyJ sL) , which are necessary for
analysis of photonuclear reactions, are calculated only for
the cases §=1/, , They are contained in Tables XXXIV-
XXXVIII, in which I, I assume integral values from O to 3
and J1, Jp vary from ¥y to 8, , L takes all integral values
from O to 4,

The W, Z and Z, -coefficients are presented in the form
of individual tables for each value of § and L, whereupon

APPENDIX II 227

for I, ly, Jy and J, values are given for which the corres-
ponding coefficients are determined, The tables are arranged
in increasing order of L (for a given s ), and then s, We
do not give in the tables the W, Z and Z, -coefficients

for §=0 , since the reversion of s to zero essentially
simplifies the general expressions for these coefficients
(see formulae (29,10), (29.18) and (29.21) of the main text),
and the reader can calculate them for himself without much
expenditure of effort,

The values of the coefficients X3(abe, def, ghk) are pre-
sented in the form of 6 tables, In the first four tables,
XXXIX to XLII, g=h,¢=f=1),, k=1, @ and d take semi-
integral values from Y, to 7, , & and e take integral num-
bers from O to 4, The tables are arranged in increasing
order of £, which changes from 1 to 4, assuming integral
values, Tables XLITI and XLIV, respectively, contain the
coefficients X2(abl, ab2, kkl) and X2(ale, a3c, kkl), where a
and b vary from 1 to 3, assuming integral and semi-integral
values, ¢ takes all integral and semi-integral values from
1 to 5/, , k takes the values 2 and 4,

Supplementary tables are also given of the values of
[A(abe)]=2 . In Table XLV, &, b and ¢ are integral numbers,
where @ and\b assume values from 1 to 8, and ¢ varies from
0 to 6, In Table XIVI, ¢ and b are semi-integral and vary
within the limits from /3 to 1/, ; ¢ takes all possible
values, The vector addition coefficients (00,0] L0)? for I, I,
assuming the values from O to 6, are given in Table XLVII,
Table XLVIII contains the coefficients ({1 — 141 |L0)2for !/ and
I; equal to 1, 2 and 3, In Table XLIX, factorials of the
numbers from 1 to 24 inclusive are given,

Occasionally, in order to obtain the values of the coeffi-
cients X, ([100,0| L0), (/y— 1,1|L0) and the values of A (abc)
which are not given in the tables, it is sufficient to use
the properties of symmetry of these coefficients,

Finally, Tables L-LIIT and LIV-LVII, respectively, con-
tain formulae for calculating the vector addition coeffi-
cients (jymyjemg|jm) and the coefficients W (I4/ylsfy, sL), for
J2 and s taking the values Y2, 1, 8/, and 2,

c) Method of Recording the Numerical Values of the
Coefficients

We draw the attention of the student to the fact that in
all the calculated tables, with the exception of the table
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of factorials of numbers, the squares of the values of tne
coefficients are given, If the same coefficient is negative
in value, then in front of its square stands the sign % .

The calculated values of the squares of the coefficients
are rational fractions which, with rare exception for the
limits considered, changes of argument amount to only simple
multiples, are not greater than 19, TUsually, in the Appen-
dices, it is necessary to multiply certain of such rational
fractions in order to find the calculated coefficient of
the Legendre polynominals Py (cosf)or for normalization
of the associated Legendre functions }fi(cosﬂ). This opera-
tion is simplified if, in place of the fraction, only the
exponent of the powers of those simple numbers is written,
in which the numerator and denominator of the latter is
expanded, Exponents of powers of simple numbers are written
down in the following order: first of all the power of two
is written, secondly the power of three, thirdly the power

of five etc, If the simple number, next in order of seguence,

is absent in the breakdown, then in its place is written
zero, Negative powers of simple numbers are recorded by
underlining, For more rapid orientation, exponents of powers
of simple numbers of the first ten are distinguished by a
point from the remaining exponents, If in the breakdown a
simple number is encountered greater than 19, then it is
written down to the right in parentheses in an explicit form
in the corresponding power, If the exponent exceeds ten,
then only the amount of the excess is written together with
a line above it, As a unit, the notation in the form of &
is used, Such an entry we shall call the representation of
the number, For example, the representation of the number
30 will be 111, since 30=2t.31.51»111 . Let us give a
further series of examples:

198 =21.3%.50.70. 111 —» 1300.1

65/7056 =2~*.372.5!.772.112.13! — 421201

l—>e

6144 = 211. 3t —» 71

50410/17787 = 2. 3= 1. 5. 7-2. 1172 (71)? —> 11122. (71)~

lultiplication of number is accomplished by means of addi-
tion of their representations:
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2211
1260-1/7-1/210 —» 2211 + 0001 4 1111 = 4- 0001

nn
1101 — 677

2201
2/7.252.1/18 —> 1001 42201 412 = 4 :gﬂl
2 —»4
Blank compartments and omissions in the tables denote that
the corresponding coefficients are either non-existent (i.e,
some conditions for determiration of the coefficient are
violated), or are equal to zero,

d) Brief Instructions for Obtaining the Numerical Value of
a Coefficient from the Tables

In order to obtain the numerical value of a coefficient
itself, the number required from the table is transposed
into a general representation in accordance with the rule
abed, e...=28.3"b.50re 7d 118 = and from the result
obtained the square root is extracted; if against the num-
ber in the table stands the sign % , then the negative
value is taken for the root,

e) Legendre Functions

For the convenience of students we are giving here a few
formulae for functions by which various angular distribu-
tions in nuclear reactions are expressed,

Normalization of a spherical harmonic is obtained by the
relationship

Y1 (0, ¢) = P¥ (cos 8)1,_ e,

where fﬂ"(x) are the normalized associated Legendre func-
tions, They are related in the following manner with

PE(x) s

PEw =¥y )

which, in turn, are determined by the formula

dLt M

Pf(x)=(l x’) ' 251‘1 de+H(x, )
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For M>0 P' (x) are expressed via the general Legendre
polynomlna.l.s PL(x) I

a¥
= (1 —x? ' Py (x), i
PLx)=0—x) " — P(x) 2

101041

/s

whereupon

4
121

1 d
Pﬂx):mF(ﬁ-—l)L.

We draw attention to the choice of phase, made as a result

of the determination of PL (x) , for the normalized factor, -~ o
In the general theory of spherical functions, the normalized *
factor does not contain (—I1)¥ , Here we have related (=¥

s

to PL (cosB) so that our determination of the spherical —
harmonic agrees with Wigner's determination [12], PY (x)
satisfies the relationship i

PH (1) = (—)¥P; ¥ (),
hence PEw = )P )

)
52
3
*1101

L
Yim @ @) =DMy 4, )
We are writing out the explicit form of Py (x) and PI (x)
for L , taking integral values from O to 4 inclusive

(x=cosl) ;
Py(x)=1,

Pi(x) =x=cos0,

LY
2

2
111

TABLE I
w2 ( AN

Py (x) =%(3x2— N .:.(3 cos 20 4- 1),
Py (x) = 5 (639 — 3x) = - (5 cos 53+ 3cos ),

3/y

P¢(x}=%-(35x‘m30.t!+3)=lez-(35cosdﬂ+20cos2ﬁ-|—9),

P.(x)—~]/4<l~x=>’=——}/-3_smﬂ- )
Prm=—) Za—x? x=~]/——s'n2ﬂ & | =

P'(x)-:—]/m (1-.:!)' (5xr—1)=— l/-m (5 sin 30 {- sin 0), JE

- S~ =N N ® [gw | ww
P! (¥) =— 1—x2)? (748 —3x,
4 V 32( ) (7 ) - -5: :;: ;‘.: ;E: ;‘:

]/_ 5048 (7 sin 40 - 2 sin 26).

*11

s
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TABLE XII
we (1‘1.}112.{2; ;2% l)
\_ Jq 1/ ia 2 o q 9y
gli] 2ol 1| 2| 3|1 9 3 4 2 3 4 5 3 4 5
d B
1 22 211 21 321 31
'.I'f o =l — =
T2 |2 2o | x| w0 | x20n
o |2 2 21
1 | xsnf21| 121 %112 %301 %3021
5!( — e e by = = = -
Tl oz [axeo fenziwo2 | 22| si2f s | o2
3 %201 202 | o011 ¥2121 [¥1111 %1101
! o1 xaon| 2| feoart| o02 i
y 2 %3021 | 3121 [x2121| 202| 22212 [*6222 #1111 | %0002
1 3 112 [%1111 %6222 |¥3212.002 3002 | su12| s012 | 5022
1 1101 2002 s | [k [wsion | w2
2 1l | 3112 *2111 | 3002 3001
3 %0002 | 5012 %5202 | 3002 | 1102 [%1312 ¥5101 |%5300.1
7{ = =20 I - - - - —_ = — —
L 5022 *5101 *1312 %5411 | 331 | 8311 | se21 | 0321
5 %32 331 | 21111 ¥3320.1  [*1120.]
3 aoot | xston | 5311 xauina| s
o | 4 ¥5300.1| 54211 |%3320.1| 331 [3420.1(41)2% 63202
5 0[_32 1 * !_l_‘%(],‘l_ *6320.2 *aﬂ_?ﬂ.}‘ )2




244 KINEMATICS OF NUCLEAR REACTIONS APPENDIX II 245

3 TABLE XITT
we (31111212; = 2)
e 52 52 : o 9a
1 2 0 1 2 3 1 2 3 4 | 2 3 4 b 3 4 5
y 1 w. Eﬂl 201_ 201 2 on
s a2 i
2 201 | 322 somn [ 102 | w212 | %202 *102 *111
0 201 201 201 201
” 1 | 322 nz| w2 | 202 [ e [ 32 %52 REE [Jeally
s I o 32
2 301 | 3021 201 102 #102 | %3120 | %3001 0021 o1 [ 1021 | 31| 3001
3 201 102 %202 | %102 | %0121 2121 | 1222 a2 112 %3022 %2012 %2002 *3001
1| 200 | x212 ao2n | %3121 | 2121 1221 | a0 lozt L 1108
2 2211 x202| 201 322 | +:3001 1222 102 | %1102 2122.02 . %2012 1322 1012 |%3302 %2002 |%2301.1
oy = et it 2= et e ol citell 2l b = = ST= - - chieplad o gl
3 o1 | %102 %5221 | %0021 | 1322 w21 | 2122,02 4022 %4012 (%4322 |%5112.021%5302.0002 | 4101 | 4102 | 43011 29
4 *111 o |12 #2012 42 (%4302 4202 | 52 5221 e L il *21
2 201 102 | wm | ka2 | w2 | a2 *402 212 | 202 k4012 | 4102 ¥4002,1) 4101
3 *2111 311 | %2012 0111 1012 *5112.02 5322|4012 %3222 3212 4211 5212.1] 5211 ©|3211.1
TFJ. -— -—— —_—— —— — = - - - - - - - -
4 3001 | %2002 %3302 ¥5302.0002 | S2120f 4102 | 2| 32012 A2k 5022:11% 5211 (71) ¥ 1020.1
5 3001 LICIR sonn w2 xmnl e seme | ooaa
3 101 | %2002 A102 4312 e A002,1) S212:1 %5021 A211 | 420nY) XA 2301
" 4 R P 43011 |4t | 4lon | 5211 XBAALACIN| 40212 f 402 543033 | 20002
5 - 200 | %231 ¥a001 [x1020.0 | 122021 22204) 20002 | 120021




246 KINEMATICS OF NUCLEAR REACTIONS APPENDIX II 247
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