Министерство образования Республики Беларусь

Учебно-методическое объединение по естественнонаучному образованию

УТВЕРЖДАЮ

Первый заместитель Министра образования

Республики Беларусь

А.И.Жук

22.04.2018

Регистрационный № ТД-*Ŀ, 463* /тип.

ЗАЩИТА ОТ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Типовая учебная программа для специальности 1-31 04 01 Физика (по направлениям), направлению специальности 1-31 04 01-05 Физика (ядерные физика и технологии)

СОГЛАСОВАНО

Тредсе Учебно-методического облетинений сестественнонаучно-А.Л. Толстик

СОГЛАСОВАНО

Начальник управления высшего и среднего специального образования Министерства образования Республики Беларусь

C.M.

С.И. Романюк

22-04. 2013

17/01.2013

Проректор по учебной и воспитательной работе Государственного учреждения образования «Республиканский институт высшей школы»

_ В.И. Шупляк

Эксперт нормоконтролер

МИНСК 2013

Banery of Willer

СОСТАВИТЕЛЬ:

И.Я.Дубовская – доцент кафедры ядерной физики Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕЦЕНЗЕНТЫ:

Кафедра ядерной и радиационной безопасности учреждения образования «Международный государственный экологический университет имени А.Д.Сахарова»;

Э.А.Рудак – главный научный сотрудник Государственного научного учреждения «Институт физики имени Б.И.Степанова» Национальной академии наук Беларуси, доктор физико-математических наук, старший научный сотрудник.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой ядерной физики физического факультета Белорусского государственного университета

(протокол № <u>8</u> от «<u>12</u>» <u>стремя</u> 2012 г.);

Научно-методическим советом Белорусского государственного университета (протокол № 5 от « 28» жесь 2012 г.);

Научно-методическим советом по физике Учебно-методического объединения по естественнонаучному образованию

(протокол № 5 от «30» лесь 2012 г.).

Ответственный за выпуск: И.Я.Дубовская

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дисциплина «Защита от ионизирующих излучений» является одной из дисциплин типового учебного плана направления специальности 1-31 04 01-05 «Физика (ядерные физика и технологии)», завершающих 1 ступень подготовки по данному направлению. Основными дисциплинами цикла общепроффесиональных и специальных дисциплин, необходимыми для освоения дисциплины «Защита от ионизирующих излучений» являются: «Физика атома и атомных явлений», «Физика ядра и элементарных частиц», «Взаимодействие ионизирующих излучений с веществом», «Физика ядерных реакторов», «Дозиметрия и радиационная безопасность», «Действие ионизирующих излучений на биообъекты». В ней используются сведения из таких дисциплин, как «Физическое материаловедение» (в части, касающейся радиационных свойств материалов), «Основы экологии и энергосбережения» (в части, касающейся естественного и техногенно измененного радиационного фона и распределения радионуклидных источников ионизирующего излучения в окружающей среде). Расчетные методы, применяемые в дисциплине, основаны на знаниях и навыках, полученных студентами при изучении таких дисциплин, как «Математический анализ», «Аналитическая геометрия и высшая алгебра», «Теория вероятности и математическая статистика», «Программирование и математическое моделирование», «Дифференциальные и интегральные уравнения», «Методы математической физики», «Теоретическая механика». «Электродинамика», «Квантовая механика», «Термодинамика и статистическая физика».

Концептуальную основу дисциплины «Защита от ионизирующих излучений» составляют:

- механизмы взаимодействия ионизирующего излучения с веществом, изучаемые, прежде всего, в дисциплинах «Взаимодействие ионизирующих излучений с веществом», «Действие ионизирующих излучений на биообъекты»;
- основные и рабочие дозовые характеристики взаимодействия ионизирующего излучения с веществом, изучение которых производится в дисциплинах «Физика ядра и ионизирующего излучения», «Дозиметрия и радиационная безопасность»;
- основные понятия и величины, применяемые в радиационной безопасности, и соответствующие нормативы (дисциплина «Дозиметрия и радиационная безопасность»).

Поэтому дисциплина «Защита от ионизирующих излучений» имеет тесные межпредметные связи и носит прикладной характер. В ней устанавливается связь между характеристиками источника или поля излучения и показаниями детектора или дозовой характеристикой излучения в условиях применения экранирующих излучение материалов, рассматриваются основ-

ные инженерные конструкции, применяемые в защите персонала, населения и окружающей среды от вредного воздействия ионизирующего излучения.

Целью изучения данной дисциплины является освоение студентами знаний и получение навыков по расчету параметров защиты от ионизирующего излучения.

Важнейшие задачи дисциплины состоят в следующем:

- формирование системных знаний студентов в области защиты от ионизирующего излучения;
- привитие и закрепление базовых навыков решения расчетных задач защиты.

Перед преподавателем ставятся следующие задачи:

- изложить важнейшие методы расчета защиты от ионизирующего излучения;
- ознакомить обучаемых с основными инженерными методами, позволяющими предотвратить или снизить вредное воздействие ионизирующего излучения на человека.
- способствовать развитию научного мировоззрения, культуры безопасности.

Из множества эффективных педагогических методик и технологий, которые способствуют вовлечению студентов в поиск и управление знаниями, приобретению опыта самостоятельного решения разнообразных задач, следует выделить:

технологии проблемно-модульного обучения;

технологии научно-исследовательской деятельности;

проектные технологии;

проблемно-ориентированный междисциплинарный подход;

интенсивное обучение;

моделирование проблемных ситуаций и их решение.

Для формирования современных социально-профессиональных компетенций выпускника вуза в практику проведения занятий целесообразно внедрять методики активного обучения и дискуссионные формы.

В результате усвоения дисциплины студент должен в соответствии с требованиями образовательного стандарта направления специальности 1-31 04 01-05 «Физика (ядерные физика и технологии)»

знать:

- источники различных видов излучений в ядерном реакторе;
- модели и методы расчета полей различных видов излучений;
- предельные дозы и контрольные уровни излучения и концентрации радионуклидов.

уметь:

- рассчитать поля различных излучений в ядерном реакторе;
- выбрать наиболее рациональный способ защиты;
- рассчитать защиту, обеспечивающую допустимые дозы.

Самостоятельная работа студентов по дисциплине включает в себя повторение теоретического материала, закрепление его при выполнении расчетных домашних заданий, подготовку отчетов по лабораторным работам и подготовку к их защите, подготовку к экзамену по дисциплине.

Типовая учебная программа по дисциплине «Защита от ионизирующих излучений» разработана в соответствии с образовательным стандартом высшего образования первой ступени по направлению специальности 1-31 04 01-05 «Физика (ядерные физика и технологии)». Типовая программа рассчитана на 130 часов, из которых 52 часа отводится на аудиторные занятия. На лекции отводится 26 часов, на лабораторные занятия — 26 часов.

Промежуточный контроль знаний рекомендуется осуществлять путем защиты отчетов по лабораторным работам и проверки домашних заданий. Итоговой формой отчетности по дисциплине является экзамен.

II. ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

№	Название тем	Всего ауди- торных часов	В том числе	
			лекции	лабораторные занятия
1.	Характеристики источника и радиационного воздействия	2	2	
2.	Защита от фотонного излучения	2	2	
3.	Защита от нейтронного излучения	4	4	
4.	Защита от заряженных частиц	2	2	
5.	Защита от смешанного излучения	2	2	
6.	Уравнения переноса излучения и расчет защиты	20	8	12
7.	Особенности расчета защиты для ядерных реакторов и других источников ионизирующего излучения	20	6	14
		52	26	. 26

III. СОДЕРЖАНИЕ

Тема 1. Характеристики источника и радиационного воздействия

Характеристика источника. Характеристики радиационного воздействия. Основные и рабочие дозиметрические величины. Дозовые коэффициенты. Коэффициент взаимодействия. Коэффициент передачи энергии. Функция радиационного отклика. Концепция точечного ядра дозы, понятие эквивалента дозы. Локальные функции отклика для точечных мишеней. Расчет дозы нерассеянного излучения в зависимости от геометрии источника. Геометрические факторы. Функции отклика для тела человека как объекта облучения. Учет неоднородностей. Предельные переходы между различными видами распределения источников.

Тема 2. Защита от фотонного излучения

Доза от нерассеянного фотонного излучения: экспоненциальное ослабление, средняя длина свободного пробега. Учет рассеянного излучения: фактор накопления. Приближенные методы расчета защиты для бесконечной однородной среды: приближение Бергера, приближение Тейлора, приближение геометрической прогрессии. Граничные эффекты в ограниченных средах. Роль неоднородности защиты. Многослойные экраны. Распространение фотонов в каналах. Концепция фотонного альбедо. Эффект «скайшайн». Инженерные методы оценки толщины защиты от фотонного излучения.

Тема 3. Защита от нейтронного излучения

Границы применимости понятия фактора накопления к нейтронам. Особенности понятия дозы от нейтронов. Источники нейтронов. Сечение выведения для быстрых нейтронов. Учет ослабления потока быстрых нейтронов в веществе, метод длин релаксации. Расчет флюэнса промежуточных и тепловых нейтронов. Возраст промежуточных и тепловых нейтронов. Альбедо нейтронов. Распространение нейтронов в каналах. Нейтронное «скайшайн». Материалы защиты от нейтронов. Особенности применения водородосодержащих сред и бетона для защиты от нейтронов. Инженерные методы расчета защиты от нейтронов.

Тема 4. Защита от заряженных частиц

Особенности взаимодействия быстрых электронов с веществом. Приближение непрерывного замедления. Характеристики пробега электронов в среде. Энергетический спектр электронов в среде. Точечные ядра поглощенной дозы для заряженных частиц: случаи моноэнергетических и полиэнергетических источников. Материалы и оценка толщины защиты от пучков электронов. Особенности выбора материала и расчета толщины защиты от бета-излучения радионуклидных источников. Защита от протонов и ионов различных энергий.

Тема 5. Защита от смешанного излучения

Возникновение смешанного излучения. Электронно-фотонные ливни. Выбор материалов и расчет защиты для смешанного электронно-фотонного излучения. Случай позитронного излучения. Нейтронно-фотонное, нейтронно-фотонно-электронное излучение. Особенности выбора материалов и расчета защиты с учетом реакций неупругого взаимодействия нейтронов с веществом.

Тема 6. Уравнения переноса излучения и расчет защиты

Общее уравнение переноса излучения. Интегральная форма уравнения переноса. Уравнение переноса для фотонов. Уравнение переноса для нейтронов. Граничные условия. Понятие о скейлинге для поля излучения. Переход от объемных источников к эквивалентным поверхностным источникам. Приближенные представления уравнения переноса (экспоненциальное ослабление, диффузионное приближение, многогрупповое приближение, метод моментов, метод дискретных ординат, интегральные представления). Методы Монте-Карло. Аналоговые и неаналоговые методы. Применение методов Монте-Карло к приближенному решению уравнений переноса фотонов, нейтронов и электронов в веществе биологической защиты.

Тема 7. Особенности расчета защиты для ядерных реакторов и других источников ионизирующего излучения

Биологическая защита ядерных реакторов. Применение методов Монте-Карло к приближенному решению уравнений переноса фотонов, нейтронов и электронов в веществе биологической защиты ядерного реактора. Нейтронные источники. Инженерные средства защиты от ионизирующего излучения для источников нейтронов. Другие применения источников ионизирующего излучения.

V. ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Средства диагностики

В качестве средств диагностики и контроля знаний рекомендуется использовать:

Выборочный контроль на лекциях; Проверка конспектов лекций студентов Проверка домашних заданий Прием отчетов по лабораторным работам Проведение экзамена по дисциплине

Примерный перечень тем лабораторных работ

Тема 6. Уравнения переноса и расчет защиты

Ознакомление с пакетами прикладных программ расчета защиты. Типовые расчеты защиты в случае фотонного, нейтронного излучений и потоков электронов.

Тема 7. Особенности расчета защиты для ядерных реакторов и других источников ионизирующего излучения

Расчет на ЭВМ толщины многослойной защиты от точечного и цилиндрического источников нейтронного излучения в ядерном реакторе. Расчет защиты от смешанного излучения в ядерном реакторе. Расчет защиты для нейтронного источника (радионуклидные источники, нейтронный генератор).

Примерный перечень тем для домашних заданий

Тема 1. Характеристики источника и радиационного воздействия

Характеристика источника. Характеристики радиационного воздействия. Основные и рабочие дозиметрические величины. Концепция точечного ядра дозы, понятие эквивалента дозы. Расчет дозы нерассеянного излучения в зависимости от геометрии источника. Геометрические факторы. Функции отклика для тела человека как объекта облучения. Учет неоднородностей. Предельные переходы между различными видами распределения источников.

Тема 2. Защита от фотонного излучения

Экспоненциальное ослабление, средняя длина свободного пробега. Фактор накопления. Приближенные методы расчета защиты для бесконечной однородной среды: приближение Бергера, приближение Тейлора, приближение геометрической прогрессии. Граничные эффекты в ограниченных средах. Роль неоднородности защиты. Инженерные методы оценки толщины защиты от фотонного излучения.

Тема 3. Защита от нейтронного излучения

Границы применимости понятия фактора накопления к нейтронам. Особенности понятия дозы от нейтронов. Источники нейтронов. Сечение выведения для быстрых нейтронов. Учет ослабления потока быстрых нейтронов в веществе, метод длин релаксации. Расчет флюэнса промежуточных и тепловых нейтронов. Возраст промежуточных и тепловых нейтронов. Альбедо нейтронов. Распространение нейтронов в каналах. Нейтронное «скайшайн». Материалы защиты от нейтронов. Особенности применения водородосодержащих сред и бетона для защиты от нейтронов. Инженерные методы расчета защиты от нейтронов.

Основная литература

- 1. J.K. Shultis, R.E.Faw. Radiation shielding. Prentice Hall, PTR, 1996.
- 2. Защита от ионизирующих излучений: в 2 т. Т.1. Физические основы защиты от излучений: Учебник для вузов / Н.Г. Гусев, В.А. Климанов, В.П. Машкович, А.П. Суворов; Под ред. Н.Г. Гусева.—3-е изд., пераб. и доп. М.: Энергоатомиздат, 1989.
- 3. Защита от ионизирующих излучений: в 2 т. Т.2. Защита от излучений ядерно-технических установок: Учебник для вузов / Н.Г. Гусев, В.П. Машкович, А.П. Суворов; Е.Е. Ковалёв. Под ред. Н.Г. Гусева.—2-е изд., пераб. и доп. М.: Энергоатомиздат, 1983.
- 4. Иванов, И.В., Константинов, Е.И., Машкович, В.П. Сборник задач по дозиметрии и защите от ионизирующих излучений. М.: Атомиздат, 1964.
- 5. Переверзенцев, В.В. Основы инженерных методов расчета защиты от ионизирующих излучений ядерных энергетических установок. М.: МГТУ им. Н.Э.Баумана, 1994.
- 6. Quantities and units in radiation protection dosimetry: ICRU Report. Bethesda, Maryland, 1993.
- 7. Санитарные правила и нормы 2.6.1.8-8-2002. «Основные санитарные правила обеспечения радиационной безопасности (ОСП-2002)» / Утв. пост. гл. сан. врача РБ 22.02.2002.
- 8. Рекомендации МКРЗ 2007 года по радиационной защите. Публикация МКРЗ 103. М.: Труды МКРЗ, 2009.

Дополнительная литература

- 1. Голубев, Б.П. Дозиметрия и защита от ионизирующих излучений. М., Энергоатомиздат, 1986.
- 2. Машкович, В.П., Кудрявцева, А.В. Защита от ионизирующих излучений. / Справочник. М.: Энергоатомиздат, 1995.
- 3. ANSI/ANS-6.4.3-1991. American National Standard Gamma RayAttenuation Coefficients and Buildup Factors for Engineering Materials, American Nuclear Society, L Grange Park, IL, 1991 [может быть заказан как Data Library Collection DLC-139/ANS-643 в Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN]
- 4. Takeuchi, K., Tanaka, S., Kinno, M. Transport calculations of gamma rays including Beremsstrahlung by the discrete ordinate code PALLAS. Nucl. Sci. Eng., V.78., Pp. 272 283 (1981).
- 5. Физические величины. Справочник. М.: Энергоатомиздат, 1991.
- 6. Шаров, Ю.Н., Шубин, Н.В. Дозиметрия и радиационная безопасность. М.: Энергоатомиздат, 1991.

- 7. Кутьков, В.А., Ткаченко, В.В., Романцов, В.П. Радиационная защита персонала организаций атомной отрасли. М.: Изд. МГТУ им. Н.Э.Баумана, 2011.
- 8. MCNPX network. Интернет-ресурс http://mcnpx.net/.