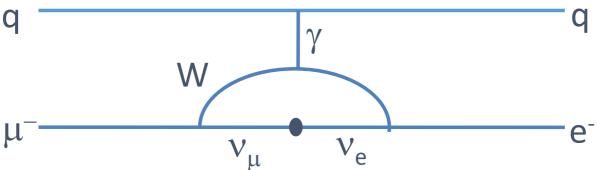
The LYSO:Ce crystals of SICCAS, Saint-Gobain and Zecotek comparison

A.M. Artikov¹, V.Yu. Baranov¹, J.A. Budagov¹, M. Cordelli², G. Corradi², E. Dane², <u>Yu.I. Davydov</u>¹, S. Giovannella², V.V. Glagolev¹, F. Happacher², D.R. Hitlin³, M. Martini², S. Miscetti², A. Saputi², I. Sarra², A.V. Simonenko¹, A.N. Shalyugin¹, V.V. Tereschenko¹, Z.U. Usubov¹, R.-Y. Zhu³


¹ Joint Institute for Nuclear Research, Dubna, Russia

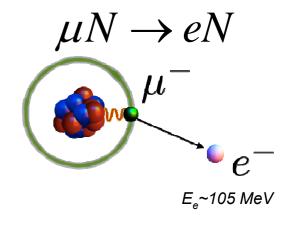
² Laboratori Nazionali di Frascati, INFN, Frascati, Italy

³ California Institute of Technology, Pasadena, CA, USA

CLFV in the Standard Model

- We've known for a long time that quarks mix \rightarrow (Quark) Flavor Violation
 - Mixing strengths parameterized by CKM matrix
- In last 15 years we've come to know that neutrinos mix → Lepton Flavor Violation (LFV)
 - Mixing strengths parameterized by PMNS matrix
- Why not charged leptons?
 - Charged Lepton Flavor Violation (CLFV)

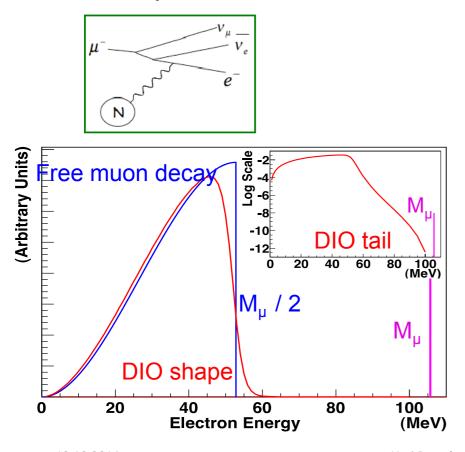
- Strictly speaking, forbidden in the SM
- Even in v-SM, extremely suppressed (rate $\sim \Delta m_v^2 / M_w^2 < 10^{-50}$)
- However, most all NP models predict rates observable at next generation CLFV experiments

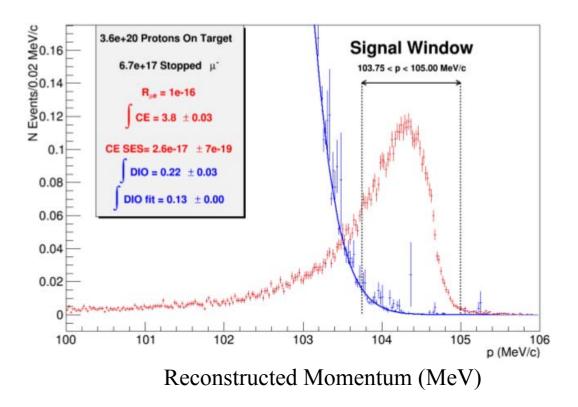

Muon to electron conversion in the field of a nucleus

Mu2e will measure Charged Lepton Flavor Violation (CLFV) with a single-event sensitivity of 2.5×10^{-17} (relative to ordinary muon capture)

$$\mu^-N \rightarrow e^-N$$

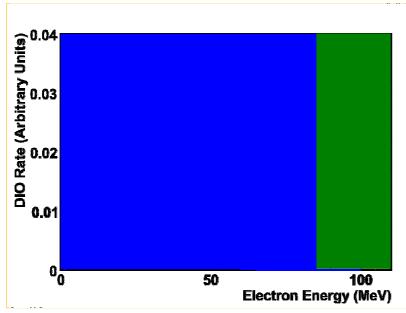
- Initial state: muonic atom
- Final state:
 - a single mono-energetic electron.
 - the energy depends on Z of target.
 - recoiling nucleus is not observed
 - the process is coherent: the nucleus stays intact.
 - neutrino-less
- Conventional Signal Normalization:
- Standard Model $(m_{\nu} \neq 0)$ rate is $\sim 10^{-52}$

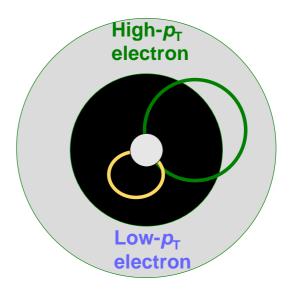

There is an observable rate in many new physics scenarios.



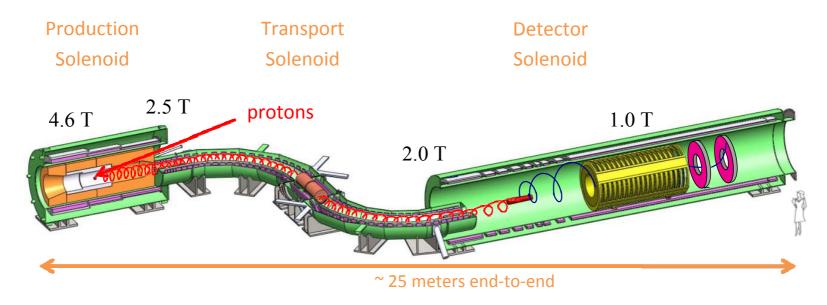
$$R_{\mu\nu} = \frac{\Gamma(\mu^- + N(A,Z) \to e^- \div N(A,Z))}{\Gamma(\mu^- + N(A,Z) \to \text{all muor captures})}$$

Decay-in-Orbit: Dominant Background


DIO: Decay in orbit



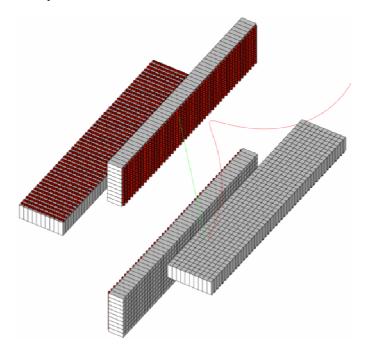
Designing the tracker and calorimeter


Remember the DIOs.

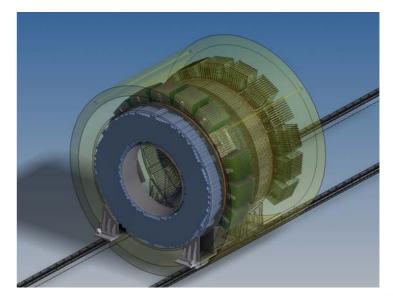
- Since radius of track is proportional to p_T, design the detectors to only see tracks with large enough radii.
 - Annular design

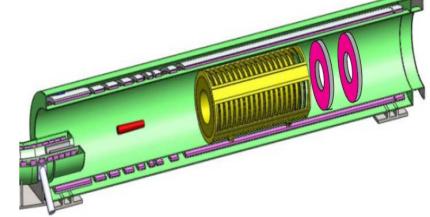
Mu2e Experimental Apparatus

PS: 8 GeV protons interact with a tungsten target to produce μ^- (from π^- decay)


TS: Captures π - and subsequent μ -; momentum- and sign-selects beam

DS: Upstream – Al. stopping target, Downstream – tracker, calorimeter


Graded fields are important to suppress backgrounds, to increase muon yield, and to improve geometric acceptance for signal electrons


Calorimeter design history

Initial design: 1936 square cross-section crystals in 4 vanes

Present design: 1860 hexagonal crosssection crystals in two disks

13.10.2014

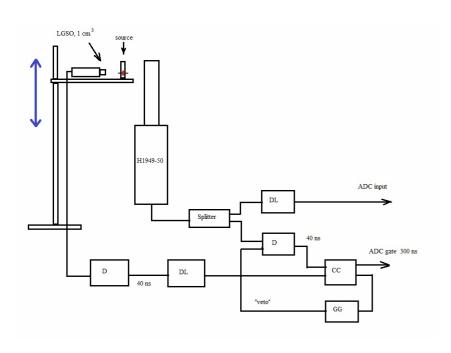
Calorimeter crystal history

- Initial choice PbWO4: small X0, low light yield, low temperature operation, temperature and rate dependence of light output
- CDR choice LYSO: small X0, high light yield, expensive (\rightarrow very expensive)
- TDR choice: BaF2: larger X0, lower light yield (in the UV), very fast component at 220 nm, readout R&D required, cheaper

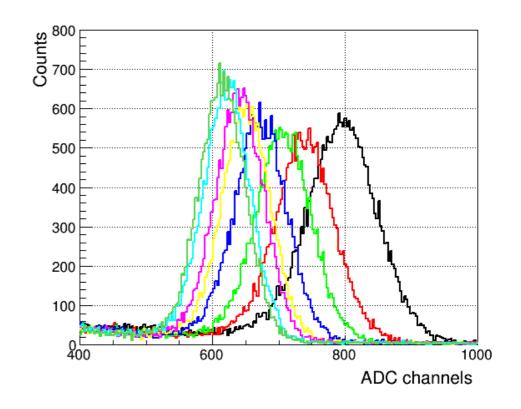
Crystal	BaF ₂	LYSO	CsI	PbWO ₄
Density (g/cm ³)	4.89	7.28	4.51	8.28
Radiation length (cm) X_0	2.03	1.14	1.86	0.9
Molière radius (cm) Rm	3.10	2.07	3.57	2.0
Interaction length (cm)	30.7	20.9	39.3	20.7
dE/dx (MeV/cm)	6.5	10.0	5.56	13.0
Refractive Index at λ_{max}	1.50	1.82	1.95	2.20
Peak luminescence (nm)	220, 300	402	310	420
Decay time τ (ns)	0.9,650	40	26	30, 10
Light yield (compared to NaI(Tl)) (%)	4.1, 36	85	3.6	0.3, 0.1
Light yield variation with	0.1, -1.9	-0.2	-1.4	-2.5
temperature (% / °C)				
Hygroscopicity	None	None	Slight	None

Crystals and apparatus

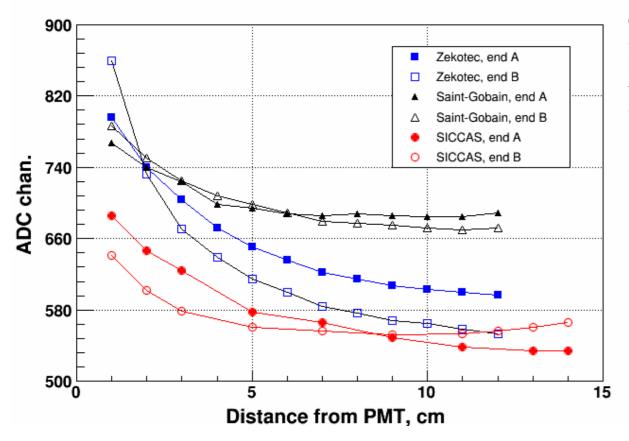
3 crystals have been tested:


■LYSO from SICCAS: 20x20x150 mm²

■LFS (Lutetium Fine Silicate) from Zecotek: 20x20x130 mm²


■PreLude 420 (LYSO) from Saint-Gobain: 30x30x130 mm²

- ➤ All measurements were done with Hamamatsu PMT module H1949-50
- > Crystals were attached to the PMT photocathode by means of optical grease
- ➤ Hamamatsu 5783 PMT with 1 cm³ LGSO crystal was used for runs where coincidences with tested crystals required
- ≥ ²²Na, ¹³⁷Cs and ⁶⁰Co gamma sources were used for measurements of all crystals.
- ➤ LeCroy ADC 2249W was used for signal processing. Signals from the PMT fed the ADC input with no additional amplification

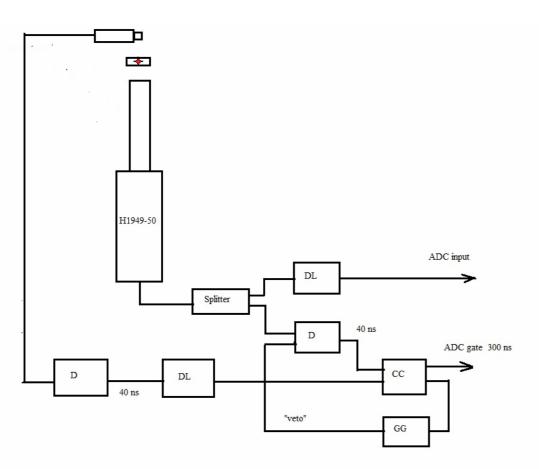

Longitudinal Light Response Uniformity (LRU) measurements

- ²²Na source was used for the measurements
- Source and trigger PMT moved along the crystals
- Data were taken with bare crystals, on both ends

Longitudinal LRU of three crystals

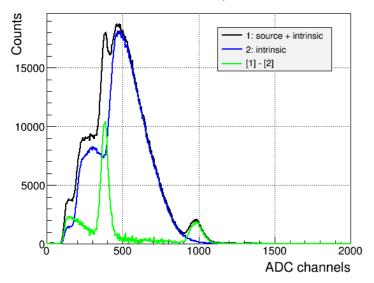
Graphs for the bare crystals measurements look reasonable:

- Each crystal has bigger response on one end (A>B for SICCAS, B>A for Zekotec, B>A for Saint-Gobain). Curves with A and B ends cross in the middle
- •Saint-Gobain has a smallest difference among three crystals


Ratio
$$\frac{H-L}{H}$$
 for bare crystals:

SICCAS: 6.5% Zekotec: 7.3% Saint-Gobain: 2.4%

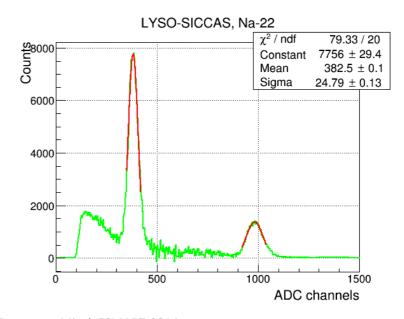
(H-bigger signal, L-smaller one)


13.10.2014 Yuri Davydov JINR Minsk ESMART-2014 11

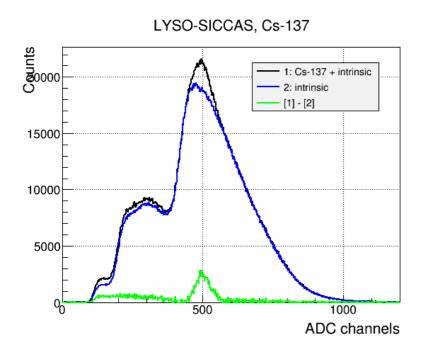
Energy resolution measurements

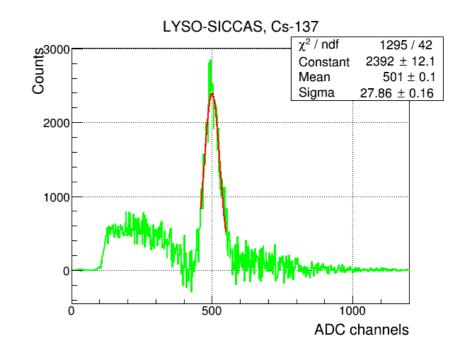
- Sources were placed over the crystals irradiating their far ends
- Data were taken in self triggering mode and in coincidence with 1 cm³ LGSO crystal attached to Hamamatsu 5783 PMT (in the former case CC unit required a single input signal)
- ²²Na, ¹³⁷Cs and ⁶⁰Co gamma sources were used for all crystals irradiation

LYSO-SICCAS, Na-22



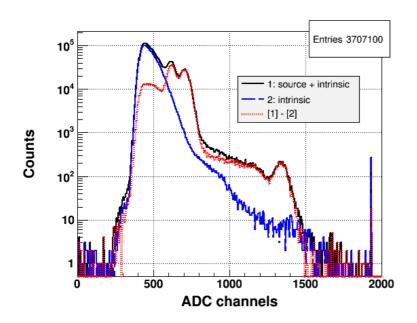
LYSO-SICCAS, Na-22

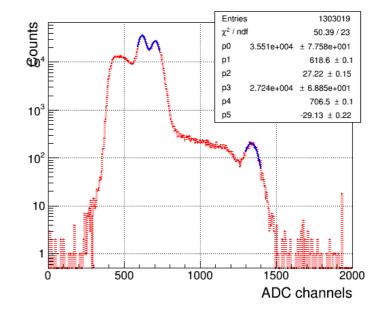

LYSO – SICCAS: ²²Na, self triggering


- Source+intrinsic and intrinsic spectra are normalized according to their rates
- Two left frames: normalized Na-22+intrinsic and intrinsic spectra and their difference in linear and log scales
- Bottom right frame: difference spectrum in linear scale with fitted 511 keV and 1275 keV peaks

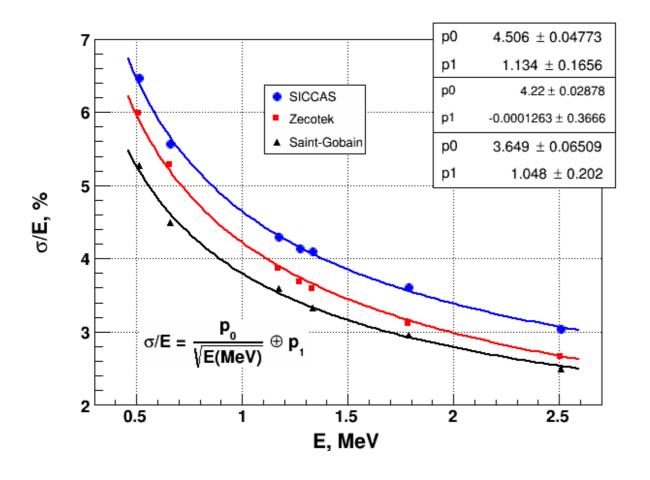
Yuri Davydov JINR Minsk ESMART-2014 13

LYSO – SICCAS: ¹³⁷Cs, self triggering

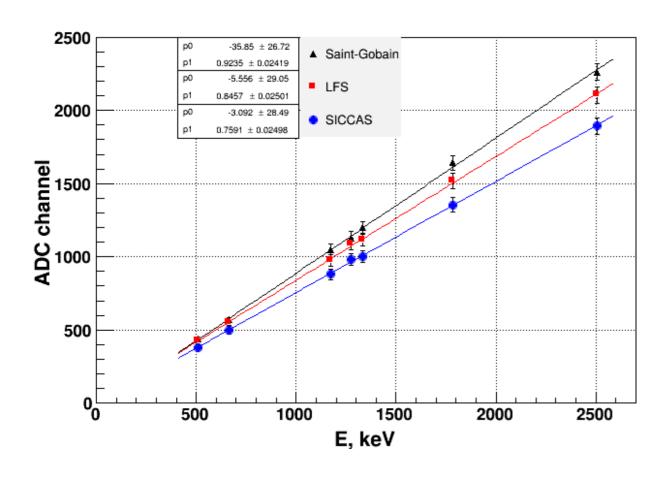




- Left frame: normalized Cs-137+intrinsic and intrinsic spectra and their difference
- Right frame: difference spectrum with fitted 662 keV peak


LYSO – SICCAS: ⁶⁰Co, self triggering

- The discriminator threshold was set to 150 mV in order to suppress low energy gammas (typical level was 30 mV)
- 3 dB attenuator in the ADC input line (multiply the peak position by 1.4125)
- Left frame: normalized Co-60+intrinsic and intrinsic spectra and their difference log scales
- 1173+1333 keV peak clearly seen on the log scale
- Bottom right frame: difference spectrum in log scale with three fitted peaks.



Energy resolution

Linearity of the energy response

- Peak position vs energy graphs are fitted with linear functions
- All three crystals demonstrate good energy response linearity
- Bigger slope reflects higher light output

13.10.2014 Yuri Davydov JINR Minsk ESMART-2014 17

Conclusion

- All three tested crystals demonstrate good energy resolution and linearity of energy response
- Crystals have different light outputs from two ends, with Saint-Gobain showing a minimal difference $\approx 2.4\%$.
- The Saint-Gobain crystal has best energy resolution in the whole 511-2500 keV energy range, it showed energy resolution $\sigma/E=2.5\%$ at E=2500keV
- Overall Prelude 420 from Saint-Gobain has best parameters among three tested crystals